Funkcje powi za«, miary zale»no±ci i grube ogony, czyli kilka sªów o zale»no±ci w statystyce i matematyce nansowej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Funkcje powi za«, miary zale»no±ci i grube ogony, czyli kilka sªów o zale»no±ci w statystyce i matematyce nansowej"

Transkrypt

1 Funkcje powi za«, miary zale»no±ci i grube ogony, czyli kilka sªów o zale»no±ci w statystyce i matematyce nansowej Uniwersytet Jagiello«ski 9 maja 2012

2 Kilka wst pnych sªów: Kowariancja i korelacja Grube ogony ρ Spearmana Czym jest kopuªa? Denicja kopuªy Twierdzenie Sklara Miary monotonicznej zgodno±ci Kilka wst pnych sªów: Denicja kowariancji i korelacji Kowariancja Liczba okre±laj ca zale»no± liniow mi dzy zmiennymi losowymi X i Y. cov(x, Y ) = E[(X µ X )(Y µ Y )] Korelacja Wspóªczynnik korelacji liniowej Pearsona - unormowana kowariancja. Z Wikipedii: ρ X,Y = cov(x, Y ) σ X σ Y

3 Kilka wst pnych sªów: Kowariancja i korelacja Grube ogony ρ Spearmana Czym jest kopuªa? Denicja kopuªy Twierdzenie Sklara Miary monotonicznej zgodno±ci Wady wspóªczynnika korelacji liniowej Najcz ±ciej cytowane wady 1. Wspóªczynnik ten nie jest niezmienniczy wzgl dem przeksztaªce«monotonicznych. owo, korelacja mi dzy X i Y jest ró»na od korelacji mi dzy ln X i ln Y. 2. Cz sto ze wzgl du na rozkªad zmiennych, warto± korelacji jest bardzo ograniczona. owo, je±li ln X N(0, 1) oraz ln Y N(0, 4), to ρ XY ( 0.09, 0.66). 3. Z caªkowitej dodatniej zale»no±ci (monotonicznej) jednej zmiennej od drugiej nie wynika, i» ρ XY = 1. Podobnie w drug stron (z 1). 4. Zerowa warto± korelacji wcale nie oznacza niezale»no±ci zmiennych losowych (np. dla 2 wymiarowego rozkªadu t-studenta). 5. Cz sto nie da si poprawnie zdeniowa wspóªczynnika korelacji (gdy wariancje zmiennych losowych s niesko«czone). 6. Podatno± na próbki odstaj ce. 7. Nie jest zbyt 'odporna'.

4 Kilka wst pnych sªów: Kowariancja i korelacja Grube ogony ρ Spearmana Czym jest kopuªa? Denicja kopuªy Twierdzenie Sklara Miary monotonicznej zgodno±ci Co to s grube ogony? Kilka obrazków jednowymiarowy: pokaza w R. Wiele wymiarów Je»eli mamy model wielowymiarowy, to ªatwiej 'zapomnie ' o grubych ogonach. Pokaza w R.

5 Kilka wst pnych sªów: Kowariancja i korelacja Grube ogony ρ Spearmana Czym jest kopuªa? Denicja kopuªy Twierdzenie Sklara Miary monotonicznej zgodno±ci ρ Spearmana Rangowanie Mamy np. 2 obserwacje z rozkªadu dwuwymiarowego (1, 5), (2, 3), (4, 6).. Zamiast rozwa»a bezpo±rednio warto±ci warto±ci, spróbujmy je uporz dkowa i rozwa»a miejsce danej warto±ci wzgl dem innych. Tzn: dla 'pierwszego' wymiaru dostajemy ( 1, 2, 3 ), dla drugiego ( 2, 1, 3 ). W tedy otrzymujemy próbk ( 1 3, 2 3 ), ( 2 3, 1 3 ), ( 3 3, 3 3 ). Dla takiej próbki liczymy standardowe ρ Pearsona. Otrzyman w ten sposób warto± nazywamy ρ Spearmana. Uwaga Jest to tzw. miara monotonicznej zgodno±ci. Opowiemy o tym dokªadniej w dalszej cz ±ci referatu.

6 Kilka wst pnych sªów: Kowariancja i korelacja Grube ogony ρ Spearmana Czym jest kopuªa? Denicja kopuªy Twierdzenie Sklara Miary monotonicznej zgodno±ci Czym jest kopuªa? Uproszczenie Ograniczymy si do dwóch wymiarów. Teoria wielowymiarowa jest bardzo podobna. Dystrybuanty brzegowe Zaªó»my,»e mamy dan par zmiennych losowych X, Y (okre±lon na R). Rozwa»my dwuwymiarow dystrybuant ª cz c X i Y dan wzorem: H(x, y) = P(X x, Y y) Jednowymiarowe dystrybuanty F (x) = P(X x) = H(x, ) oraz G(x) = P(Y y) = H(, y) nazywamy wtedy dystrybuantami brzegowymi. Czym jest kopuªa? Funkcj, która ª czy dystrybuant wielowymiarow z jej jednowymiarowymi dystrybuantami brzegowymi. Funkcj opisuj c zale»no± mi dzy zmiennymi.

7 Kilka wst pnych sªów: Kowariancja i korelacja Grube ogony ρ Spearmana Czym jest kopuªa? Denicja kopuªy Twierdzenie Sklara Miary monotonicznej zgodno±ci Denicja 2-kopuªy Denicja 2-kopuª nazywamy funkcj C : I 2 I, która speªnia nastepuj ce warunki: 1. Dla ka»dego u, v I, C(u, 0) = C(0, v) = 0, C(u, 1) = u oraz C(1, v) = v 2. Dla u 1, u 2, v 1, v 2 I takich,»e u 1 u 2, v 1 v 2 C jest 2-rosn ca. Mamy C(u 2, v 2) C(u 2, v 1) C(u 1, v 2) + C(u 1, v 1) 0 1 C(u,v) C(u,v)= 0 na = C(u,v)= u na = C(u,v)= v na = =

8 Kilka wst pnych sªów: Kowariancja i korelacja Grube ogony ρ Spearmana Czym jest kopuªa? Denicja kopuªy Twierdzenie Sklara Miary monotonicznej zgodno±ci Twierdzenie Sklara Twierdzenie (Sklar 1959) Niech H b dzie dystrybuant dwuwymiarow z funkcjami brzegowymi F oraz G. Istnieje wtedy kopuªa C taka,»e: x, y R : H(x, y) = C(F (x), G(y)) Ponadto: 1. Je»eli F i G s ci gªe, to C jest jedyna. W przeciwnym przypadku C jest jednoznacznie okre±lona na Ran(F ) Ran(G). 2. Podobnie je»eli C jest kopuª oraz F i G s dystrybuantami, to funkcja H zdeniowana powy»ej jest dystrybuant ª czn o funkcjach brzegowych F i G. Odwrócenie dystrybuant Zakªadaj c,»e dystrybuanty s ±ci±le rosn ce albo rozwa»aj c funkcje quasi-odwrotne dostajemy te» wzór: x, y R : C(x, y) = H(F ( 1) (x), G ( 1) (y))

9 Kilka wst pnych sªów: Kowariancja i korelacja Grube ogony ρ Spearmana Czym jest kopuªa? Denicja kopuªy Twierdzenie Sklara Miary monotonicznej zgodno±ci Miary monotonicznej zgodno±ci Najbardziej znane 1. ρ S Spearmana. Wspóªczynnik korelacji rang. Wzór w j zyku kopuª: ρ S = 12 uvdc(u, v) 3 = 12 C(u, v)dudv 3 I 2 I 2 2. τ Kendalla - stanowi ró»nic mi dzy prawdopodobie«stwem,»e porównywane zmienne b d ukªadaªy si w tym samym porz dku dla dwóch obserwacji, a prawdopodobie«stwem,»e uªo» si w przeciwnym porz dku. τ = P[(x 1 x 2)(y 1 y 2) > 0] P[(x 1 x 2)(y 1 y 2) < 0] W j zyku kopuª: τ = Q(C, C) = 4 C(u, v)dc(u, v) 1 I 2

10 Kilka wst pnych sªów: Kowariancja i korelacja Grube ogony ρ Spearmana Czym jest kopuªa? Denicja kopuªy Twierdzenie Sklara Miary monotonicznej zgodno±ci Inne Zachowanie w ogonach - tail index tail index: C(v, v) λ L = lim P[F (X ) v G(Y ) v] = lim v 0 + v 0 + v upper tail index: λ U = lim P[F (X ) > v G(Y ) > v] = lim 1 2v + C(v, v) v 1 v 1 1 v PQD - Positive quadratic dependance P[X x, Y y] P[X x]p[y y] C(u, v) uv

11 Wst p Rodziny kopuª Estymacja Zalety u»ycia funkcji Copula Kilka udogodnie«1. Twierdzenie sklara H(x, y) = C(F (x), G(y)) Pozwala nam to na osobne modelowanie rozkªadów brzegowych i funkcji copula. 2. Monotoniczne przeksztaªcenia C α(x )β(y ) = C XY monotoniczne przeksztaªcenia nie zmieniaj kopuªy. 3. Znamy du»o rodzin kopuª Tworzenie wielowymiarowych rozkªadów innych ni» normalne/eliptyczne [np. kopuªy archimedesowe (Gumbel, Clayton, Frank), vine copula, sko±na kopuªa t-studenta].

12 Wst p Rodziny kopuª Estymacja Kilka znanych rodzin kopuª Kopuªy zwi zane z rozkªadami eliptycznymi 1. Kopuªa Gaussa 2. Kopuªa t-studenta 3. Sko±na kopuªa t-studenta (praca, str 26) Zalety Cz sto znane procedury estymacji. Szczególnie dla kopuªy Gaussa. - np. przez macierz kowariancji, czy macierz z τ Kendalla. (potem b d algorytmy) Dosy dobrze opisuj zale»no± przy bardzo du»ej liczbie wymiarów. I numerycznie umo»liwiaj jej opis. (CDO, czy bankructwa) pakiet 'copula' w R oraz inne programy (szczególnie nansowe)

13 Wst p Rodziny kopuª Estymacja Kopuªy zwi zane z rozkªadami eliptycznymi Kopuªa Gaussa ) C Ga R (u) := Φ R (Φ 1 (u 1), Φ 1 (u 2),..., Φ 1 (u n) Rysunek: G sto± i próbka z 2-kopuªy Gaussa, ρ = 0.5 i ρ = 0.3

14 Wst p Rodziny kopuª Estymacja Kopuªy zwi zane z rozkªadami eliptycznymi Kopuªa t-studenta C Stud R,v (u) := t R,v (t 1 (u 1),..., t 1 (u n)) v v Rysunek: G sto± i próbka z 2-kopuªy t-studenta, (ρ = 0.5, v = 3) i (ρ = 0.1, v = 5)

15 Wst p Rodziny kopuª Estymacja Kopuªy zwi zane z rozkªadami eliptycznymi Sko±na kopuªa t-studenta Rysunek: Próbka 1000 elementowa dla sko±nej 2-kopuªy t-studenta, (v = 3, µ = (0.5, 0), ρ = 0.5, γ = (0.9, 0)) oraz (v = 4, µ = (0, 0), ρ = 0.5, γ = ( 0.7, 0.7))

16 Wst p Rodziny kopuª Estymacja Kilka znanych rodzin kopuª Kopuªy Archimedesowe C(u, v) = ϕ [ 1] (ϕ(u) + ϕ(v)) ϕ : I [0, ], ci gªa, ±ci±le malej ca, ϕ(1) = 0, ϕ jest wypukªa. owe rodziny 1. Kopuªa Franka 2. Kopuªa Gumbela 3. Kopuªa Claytona Zalety Šatwa estymacja z u»yciem τ Kendalla. Du»o procedur estymacji. (równie» nieparametrycznych) Dobre dopasowanie do danych maªowymiarowych. Du»o uogólnie«(np.vine Copula)

17 Wst p Rodziny kopuª Estymacja Kopuªy Archimedesowe Kopuªa Franka C α(u 1,..., u n) = 1 α ln [1 + ( ) e Generator: ϕ α(u) = ln αu 1 α > 0 e α 1 n i=1 (e αu i 1) (e α 1) n 1 ] Rysunek: G sto± i próbka z 2-kopuªy Franka, α = 4 i α = 15

18 Wst p Rodziny kopuª Estymacja Kopuªy Archimedesowe Kopuªy Gumbela i Claytona Rysunek: Próbka 1000 elementowa dla jednoparametrowych 2-kopuª z rodziny Gumbela i Claytona (α = 2.5)

19 Wst p Rodziny kopuª Estymacja Kilka znanych rodzin kopuª Inne Rodziny 1. Extreme-value Copulas (modelowanie rzadko wyst puj cych procesów) 2. Kopuªy zwi zane z funkcjami prze»ycia (Survival copulas) 3. Lévy copulas, Markov copulas, semimartingale copula (w nansach - dynamiczne podej±cie).

20 Wst p Rodziny kopuª Estymacja Estymacja - przegl d metod Podstawowy podziaª - MLE 1. MLE (Exact Maximum Likelihood Estimation) 2. IFM (Infrence Functions for Margins) 3. CML (Canonical Maximum Likelihood) Podstawowy podziaª - Inne 1. KA - τ Kendalla Clayton: τ = θ (τ [0, 1]\{0}) Gumbel: τ = 1 θ 1 (τ [0, 1]) 2. KA - Estymacja generatora (przez 'poziomice' kopuªy) 3. Du»o innych..

21 3-wymiarowy model stóp zwrotu 1. Mamy trzy akcje - PKO, PEKAO, ORBIS. Ich notowania w okre±lonym czasie 2. Chcemy stworzy 3-wymiarowy model logarytmicznych stóp zwrotu, zakªadaj c kopuª normaln i brzegi t-studenta. U»yjemy modelu GARCH(1,1)-Copula. GARCH(1,1): y t ψ t 1 N(0, h t) h t = α 0 + α 1y 2 t 1 + β 1h t 1

22 rodowisko R

Ekonometria Finansowa II EARF. Michał Rubaszek

Ekonometria Finansowa II EARF. Michał Rubaszek Ekonometria Finansowa II EARF Michał Rubaszek 1 Cele - Zapoznanie z charakterystykami szeregów finansowych - Omówienie jednowymiarowych metod liczenia VaR - Omówienie wielowymiarowych metod liczenia VaR

Bardziej szczegółowo

Modelowanie z u»yciem funkcji Copula. Modelowanie portfela akcji przy u»yciu modelu copula-garch

Modelowanie z u»yciem funkcji Copula. Modelowanie portfela akcji przy u»yciu modelu copula-garch Modelowanie z u»yciem funkcji Copula. Modelowanie portfela akcji przy u»yciu modelu copula-garch 23 maja 2010 Monotoniczne przeksztaªcenie zmiennej losowej kopuªy archimedesowe n-kopuªy Czym jest kopuªa?

Bardziej szczegółowo

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego Katarzyna Kuziak Cel: łączenie różnych rodzajów ryzyka rynkowego za pomocą wielowymiarowej funkcji powiązań 2 Ryzyko rynkowe W pomiarze ryzyka

Bardziej szczegółowo

MIARY ZALEŻNOŚCI OPARTE NA KOPULACH

MIARY ZALEŻNOŚCI OPARTE NA KOPULACH Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 246 2015 Współczesne Finanse 3 Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie Wydział Matematyczno-Przyrodniczy.

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Stacjonarne szeregi czasowe

Stacjonarne szeregi czasowe e-mail:e.kozlovski@pollub.pl Spis tre±ci 1 Denicja 1 Szereg {x t } 1 t N nazywamy ±ci±le stacjonarnym (stacjonarnym w w»szym sensie), je»eli dla dowolnych m, t 1, t 2,..., t m, τ ª czny rozkªad prawdopodobie«stwa

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

Zastosowanie funkcji copula w nansach i statystyce

Zastosowanie funkcji copula w nansach i statystyce UNIWERSYTET JAGIELLO SKI WYDZIAŠ MATEMATYKI I INFORMATYKI INSTYTUT MATEMATYKI Marcin Pitera Zastosowanie funkcji copula w nansach i statystyce ze szczególnym uwzgl dnieniem wyceny instrumentów opartych

Bardziej szczegółowo

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f.

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f. GAL II 2012-2013 A Strojnowski str1 Wykªad 1 Ten semestr rozpoczniemy badaniem endomorzmów sko«czenie wymiarowych przestrzeni liniowych Denicja 11 Niech V b dzie przestrzeni liniow nad ciaªem K 1) Przeksztaªceniem

Bardziej szczegółowo

Wektory w przestrzeni

Wektory w przestrzeni Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem

Bardziej szczegółowo

Matematyka z elementami statystyki

Matematyka z elementami statystyki Matematyka z elementami statystyki Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Korelacja Zale»no± funkcyjna wraz ze wzrostem jednej zmiennej nast puje ±ci±le okre±lona zmiana druiej zmiennej.

Bardziej szczegółowo

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo

Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo Spis tre±ci Elementy Modelowania Matematycznego Wykªad 1 Prawdopodobie«stwo Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis tre±ci Spis tre±ci 1 2 3 4 5 Spis tre±ci Spis tre±ci 1 2 3 4

Bardziej szczegółowo

Rozwini cia asymptotyczne dla mocy testów przybli»onych

Rozwini cia asymptotyczne dla mocy testów przybli»onych Rozwini cia asymptotyczne dla mocy testów przybli»onych Piotr Majerski, Zbigniew Szkutnik AGH Kraków Wisªa 2010 P. Majerski, Z. Szkutnik, AGH () Rozwini cia mocy testów przybli»onych Wisªa 2010 1 / 22

Bardziej szczegółowo

Biostatystyka, # 4 /Weterynaria I/

Biostatystyka, # 4 /Weterynaria I/ Biostatystyka, # 4 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 9: Metody numeryczne: MCMC Andrzej Torój 1 / 17 Plan wykªadu Wprowadzenie 1 Wprowadzenie 3 / 17 Plan prezentacji Wprowadzenie 1 Wprowadzenie 3 3 / 17 Zastosowanie metod numerycznych

Bardziej szczegółowo

Zastosowania kopuli w wyznaczaniu wartości zagrożonej portfela. Applications of copulas in calculating Value-at-Risk. Paweł Budzianowski

Zastosowania kopuli w wyznaczaniu wartości zagrożonej portfela. Applications of copulas in calculating Value-at-Risk. Paweł Budzianowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Matematyki i Informatyki Pracownia Ekonometrii Finansowej Zastosowania kopuli w wyznaczaniu wartości zagrożonej portfela Applications of copulas in

Bardziej szczegółowo

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów *** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów I.1 Przestrze«towarów Podstawowe poj cia Rynek towarów

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Analiza matematyczna 2; MatematykaS-I 0 lic 21 maja 2018 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(, y b dzie okre±lona przynajmniej na otoczeniu punktu

Bardziej szczegółowo

Praca dyplomowa magisterska. Modelowanie straty przy użyciu GLM i kopuł. Sylwia Piotrowska

Praca dyplomowa magisterska. Modelowanie straty przy użyciu GLM i kopuł. Sylwia Piotrowska Praca dyplomowa magisterska Modelowanie straty przy użyciu GLM i kopuł Sylwia Piotrowska Rok akademicki 2017/2018 Spis treści Wstęp i cel pracy 3 1 Kopuły 4 1.1 Definicja kopuły.....................................

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej

Bardziej szczegółowo

ANALIZA WIELOWYMIAROWEJ STRUKTURY ZALEŻNOŚCI ZASTOSOWANIE W RODZINNYCH UBEZPIECZENIACH NA ŻYCIE 1

ANALIZA WIELOWYMIAROWEJ STRUKTURY ZALEŻNOŚCI ZASTOSOWANIE W RODZINNYCH UBEZPIECZENIACH NA ŻYCIE 1 Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 301 2016 Stanisław Heilpern Uniwersytet Ekonomiczny we Wrocławiu Wydział Zarządzania, Informatyki i Finansów

Bardziej szczegółowo

Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2

Zadania z PM II A. Strojnowski str. 1. Zadania przygotowawcze z Podstaw Matematyki seria 2 Zadania z PM II 010-011 A. Strojnowski str. 1 Zadania przygotowawcze z Podstaw Matematyki seria Zadanie 1 Niech A = {1,, 3, 4} za± T A A b dzie relacj okre±lon wzorem: (a, b) T, gdy n N a n = b. a) Ile

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Zadania. 4 grudnia k=1

Zadania. 4 grudnia k=1 Zadania 4 grudnia 205 Zadanie. Poka»,»e dla dowolnych liczb zespolonych z,..., z n istnieje zbiór B {,..., n}, taki,»e n z k π z k. k B Zadanie 2. Jakie warunki musz speªnia ci gi a n i b n, aby istniaªy

Bardziej szczegółowo

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi:

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi: Pochodna funkcji Def 1 Pochodn wªa±ciw funkcji f w punkcie x 0 nazywamy granic f (x 0 ) := lim o ile granica ta istnieje i jest wªa±ciwa Funkcj f nazywamy wtedy ró»niczkowaln Przy zaªo»eniu,»e f jest ci

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

Daniel Papla Akademia Ekonomiczna we Wrocławiu

Daniel Papla Akademia Ekonomiczna we Wrocławiu DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Akademia Ekonomiczna we Wrocławiu

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

Algorytmy zwiazane z gramatykami bezkontekstowymi

Algorytmy zwiazane z gramatykami bezkontekstowymi Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

Estymacja parametru gªadko±ci przy u»yciu falek splajnowych

Estymacja parametru gªadko±ci przy u»yciu falek splajnowych Estymacja parametru gªadko±ci przy u»yciu falek splajnowych Politechnika Gda«ska Wydziaª Fizyki Technicznej i Matematyki Stosowanej Wisªa, 3-7.12.2012 Przestrze«Biesowa Przestrze«Biesowa B s p,q, 1 p,

Bardziej szczegółowo

PORÓWNANIE METOD ESTYMACJI PARAMETRU W KLASIE WYBRANYCH DWUWYMIAROWYCH KOPULI ARCHIMEDESOWYCH

PORÓWNANIE METOD ESTYMACJI PARAMETRU W KLASIE WYBRANYCH DWUWYMIAROWYCH KOPULI ARCHIMEDESOWYCH Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 297 2016 Andrzej Stryjek Szkoła Główna Handlowa w Warszawie Instytut Ekonometrii astryj@sgh.waw.pl PORÓWNANIE

Bardziej szczegółowo

Geometria Algebraiczna

Geometria Algebraiczna Geometria Algebraiczna Zadania domowe: seria 1 Zadania 1-11 to powtórzenie podstawowych poj z teorii kategorii. Zapewne rozwi zywali Pa«stwo te zadania wcze±niej, dlatego nie b d one omawiane na wiczeniach.

Bardziej szczegółowo

1 Poj cia pomocnicze. Przykªad 1. A A d

1 Poj cia pomocnicze. Przykªad 1. A A d Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy

Bardziej szczegółowo

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Denicja 1. Niech X = R n b dzie przestrzeni unormowan oraz d(x, y) = x y.

Bardziej szczegółowo

Tablice wzorów z probabilistyki

Tablice wzorów z probabilistyki Akademia Górniczo - Hutnicza im. Stanisªawa Staszica Wydziaª Elektrotechniki, Automatyki, Informatyki i In»ynierii Biomedycznej Kierunek: Automatyka i robotyka Tablice wzorów z probabilistyki Prowadz cy:

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym

Bardziej szczegółowo

Metody probablistyczne i statystyka stosowana

Metody probablistyczne i statystyka stosowana Politechnika Wrocªawska - Wydziaª Podstawowych Problemów Techniki - 011 Metody probablistyczne i statystyka stosowana prowadz cy: dr hab. in». Krzysztof Szajowski opracowanie: Tomasz Kusienicki* κ 17801

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Definicje zależności. Kopuły w matematyce finansowej. Aleksandra Kantowska

Definicje zależności. Kopuły w matematyce finansowej. Aleksandra Kantowska Definicje zależności. Kopuły w matematyce finansowej. Aleksandra Kantowska 18.06.2014 Spis treści Wstęp 2 1 Funkcja kopuła 4 1.1 Podstawowe pojęcia................................... 4 1.2 Pochodne kopuł......................................

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach. a) (6 pkt.) oblicz intensywno± pªaconych skªadek;

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach. a) (6 pkt.) oblicz intensywno± pªaconych skªadek; EGZAMIN MAGISTERSKI, 26.06.2019r Matematyka w ekonomii i ubezpieczeniach 1. (8 punktów) Dwa niezale»ne portfele S 1, S 2 maj zªo»one rozkªady Poissona. S 1 CP oisson(2, F ), S 2 CP oisson(2, G), gdzie

Bardziej szczegółowo

Biostatystyka, # 5 /Weterynaria I/

Biostatystyka, # 5 /Weterynaria I/ Biostatystyka, # 5 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Funkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu)

Funkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu) Funkcja rzeczywista zmiennej rzeczywistej. Pochodna (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Denicja pochodnej Denicja. Niech : X R, X R oraz U(x 0, r) X dla pewnego r > 0. Ilorazem ró»nicowym unkcji

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego

Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego Krzysztof Kapulkin IX Warsztaty Logiczne 5 12 lipca 2008 1 Wst p W referacie tym przedstawiamy wyniki uzyskane przez Andrzeja Ehrenfeuchta i Andrzeja

Bardziej szczegółowo

Miary siły związku między zmiennymi losowymi. Marcin Szatkowski

Miary siły związku między zmiennymi losowymi. Marcin Szatkowski Miary siły związku między zmiennymi losowymi Marcin Szatkowski 1 października 15 Streszczenie Praca ta przedstawia różne miary siły związku między zmiennymi losowymi i przedyskutowuje ich wady oraz zalety.

Bardziej szczegółowo

Maªgorzata Murat. Modele matematyczne.

Maªgorzata Murat. Modele matematyczne. WYKŠAD I Modele matematyczne Maªgorzata Murat Wiadomo±ci organizacyjne LITERATURA Lars Gårding "Spotkanie z matematyk " PWN 1993 http://moodle.cs.pollub.pl/ m.murat@pollub.pl Model matematyczny poj cia

Bardziej szczegółowo

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo

Zastosowanie mieszanki kopul do modelowania współzależności pomiędzy wybranymi sektorami gospodarki

Zastosowanie mieszanki kopul do modelowania współzależności pomiędzy wybranymi sektorami gospodarki Ekonomia Menedżerska 2009, nr 6, s. 129 139 Piotr Gurgul*, Robert Syrek** Zastosowanie mieszanki kopul do modelowania współzależności pomiędzy wybranymi sektorami gospodarki 1. Wprowadzenie Możliwość prognozowania

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Korelacja krzywoliniowa i współzależność cech niemierzalnych

Korelacja krzywoliniowa i współzależność cech niemierzalnych Korelacja krzywoliniowa i współzależność cech niemierzalnych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej

Bardziej szczegółowo

5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach

5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach ( Niezale»ne szkody maja rozkªady P (X i = k) = exp( 1)/k!, P (Y i = k) = 4+k ) k (1/3) 5 (/3) k, k = 0, 1,.... Niech S = X 1 +... + X 500 + Y 1 +... + Y 500. Skªadka

Bardziej szczegółowo

Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu)

Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu) Funkcje jednej zmiennej Granica, ci gªo± (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Granica funkcji Denicja Niech 0 R, r > 0 Otoczeniem punktu 0 o promieniu r nazywamy przedziaª ( 0 r, 0 +r) Otoczeniem

Bardziej szczegółowo

Ekonometria - wykªad 8

Ekonometria - wykªad 8 Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Analiza zależności ekstremalnych

Analiza zależności ekstremalnych Zeszyty Naukowe nr 726 Akademii Ekonomicznej w Krakowie 2006 Katedra Statystyki Analiza zależności ekstremalnych. Wprowadzenie W dobie globalizacji gospodarki zarządzający ryzykiem w instytucjach finansowych

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

MODEL HAHNFELDTA I IN. ANGIOGENEZY NOWOTWOROWEJ Z UWZGL DNIENIEM LEKOOPORNO CI KOMÓREK NOWOTWOROWYCH

MODEL HAHNFELDTA I IN. ANGIOGENEZY NOWOTWOROWEJ Z UWZGL DNIENIEM LEKOOPORNO CI KOMÓREK NOWOTWOROWYCH MODEL HAHNFELDTA I IN. ANGIOGENEZY NOWOTWOROWEJ Z UWZGL DNIENIEM LEKOOPORNO CI KOMÓREK NOWOTWOROWYCH Urszula Fory± Zakªad Biomatematyki i Teorii Gier, Instytut Matematyki Stosowanej i Mechaniki, Wydziaª

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 6: Bayesowskie ª czenie wiedzy (6) Ekonometria Bayesowska 1 / 21 Plan wykªadu 1 Wprowadzenie 2 Oczekiwana wielko± modelu 3 Losowanie próby modeli 4 wiczenia w R (6) Ekonometria

Bardziej szczegółowo

UBEZPIECZENIA MAŁŻEŃSKIE UWZGLĘDNIAJĄCE ZALEŻNOŚCI 1

UBEZPIECZENIA MAŁŻEŃSKIE UWZGLĘDNIAJĄCE ZALEŻNOŚCI 1 Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 331 2017 Uniwersytet Ekonomiczny we Wrocławiu Wydział Zarządzania, Informatyki i Finansów Katedra Statystyki

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 3 11.03.2016 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Wykłady z poprzednich lat (dr inż. H. Zbroszczyk): http://www.if.pw.edu.pl/~gos/student

Bardziej szczegółowo

In»ynierskie zastosowania statystyki wiczenia

In»ynierskie zastosowania statystyki wiczenia Uwagi: 27012014 poprawiono kilka literówek, zwi zanych z przedziaªami ufno±ci dla wariancji i odchylenia standardowego In»ynierskie zastosowania statystyki wiczenia Przedziaªy wiarygodno±ci, testowanie

Bardziej szczegółowo

Rozdziaª 9: Wycena opcji

Rozdziaª 9: Wycena opcji Rozdziaª 9: Wycena opcji MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 9) Wycena opcji 1 / 23 Denicja opcji. Opcja nansowa:. Warunkowy kontrakt terminowy na sprzeda» lub kupno instrumentu bazowego,

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Interpolacja PWSZ Gªogów, 2009 Interpolacja Okre±lenie zale»no±ci pomi dzy interesuj cymi nas wielko±ciami, Umo»liwia uproszczenie skomplikowanych funkcji (np. wykorzystywana

Bardziej szczegółowo

1 Lista 6 1. LISTA Obliczy JSN renty z doªu dla (30)-latka na 3 lata w wysoko±ci Obliczenia zrobi dla TT -PL97m oraz i = 4%.

1 Lista 6 1. LISTA Obliczy JSN renty z doªu dla (30)-latka na 3 lata w wysoko±ci Obliczenia zrobi dla TT -PL97m oraz i = 4%. 1. LISTA 6 1 1 Lista 6 1.1 Obliczy JSN renty z doªu dla (30)-latka na 3 lata w wysoko±ci 3000. Obliczenia zrobi dla TT -PL97m oraz i = 4%. 1.2 Obliczy JSN dla nast puj cej renty dla (30)-latka: je±li»yje

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy

Bardziej szczegółowo

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności

Bardziej szczegółowo

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka

3. (8 punktów) EGZAMIN MAGISTERSKI, Biomatematyka EGZAMIN MAGISTERSKI, 26.06.2017 Biomatematyka 1. (8 punktów) Rozwój wielko±ci pewnej populacji jest opisany równaniem: dn dt = rn(t) (1 + an(t), b gdzie N(t) jest wielko±ci populacji w chwili t, natomiast

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie

Bardziej szczegółowo

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji

W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji W poprzednim odcinku... Podstawy matematyki dla informatyków Rodzina indeksowana {A t } t T podzbiorów D to taka funkcja A : T P(D),»e A(t) = A t, dla dowolnego t T. Wykªad 3 20 pa¹dziernika 2011 Produkt

Bardziej szczegółowo

KOMPUTEROWE MODELOWANIE WIELOWYMIAROWYCH DANYCH Z WYKORZYSTANIEM KOPUŁ

KOMPUTEROWE MODELOWANIE WIELOWYMIAROWYCH DANYCH Z WYKORZYSTANIEM KOPUŁ Zeszyty Naukowe Wydziału Informatyki Wyższej Szkoły Informatyki Stosowanej i Zarzadzania Informatyka Stosowana Nr 1/214 KOMPUTEROWE MODELOWANIE WIELOWYMIAROWYCH DANYCH Z WYKORZYSTANIEM KOPUŁ Hubert Czobodziński

Bardziej szczegółowo

Wykorzystanie lokalnej geometrii danych w Maszynie Wektorów No±nych

Wykorzystanie lokalnej geometrii danych w Maszynie Wektorów No±nych WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada 2013 1 / 26 Wykorzystanie lokalnej geometrii danych w Maszynie Wektorów No±nych Wojciech Marian Czarnecki Jacek Tabor GMUM Grupa Metod Uczenia Maszynowego

Bardziej szczegółowo