Cud grecki cz. Cud grecki cz. 2. Wrocław, 9 marca 2016

Wielkość: px
Rozpocząć pokaz od strony:

Download "Cud grecki cz. Cud grecki cz. 2. Wrocław, 9 marca 2016"

Transkrypt

1 2 Wrocław, 9 marca 2016

2 Sokrates i Platon Sokrates (Ateny, ) nauczał na ulicach Aten, zaczepiając napotkanych ludzi - często zamożnych i wpływowych - i rozmawiał z nimi o ważnych dla życia społecznego sprawach np. czym jest sprawiedliwość lub dobro. Sam twierdził Wiem, że nic nie wiem. To nie mogło się dobrze skończyć. Proces opisany jest przez Platona w Obronie Sokratesa.

3 Platon Platon urodził się w roku 427 i otrzymał imię Aristokles. Był zapaśnikiem, po serii zwycięstw w zapasach ze względu na szerokie bary nazwano go Platonem (platys = szeroki)

4 Platon Platon urodził się w roku 427 i otrzymał imię Aristokles. Był zapaśnikiem, po serii zwycięstw w zapasach ze względu na szerokie bary nazwano go Platonem (platys = szeroki) Grecki ideał wychowania: kalos - kagatos czyli piękny i dobry

5 Platon Platon urodził się w roku 427 i otrzymał imię Aristokles. Był zapaśnikiem, po serii zwycięstw w zapasach ze względu na szerokie bary nazwano go Platonem (platys = szeroki) Grecki ideał wychowania: kalos - kagatos czyli piękny i dobry W wieku 20 lat został uczniem Sokratesa, po śmierci mistrza 10 lat przebywał w Egipcie, a po powrocie do Aten założył w gaju poświęconemu Akademosowi szkołę, zwaną z tej przyczyny akademią

6 Platon Platon urodził się w roku 427 i otrzymał imię Aristokles. Był zapaśnikiem, po serii zwycięstw w zapasach ze względu na szerokie bary nazwano go Platonem (platys = szeroki) Grecki ideał wychowania: kalos - kagatos czyli piękny i dobry W wieku 20 lat został uczniem Sokratesa, po śmierci mistrza 10 lat przebywał w Egipcie, a po powrocie do Aten założył w gaju poświęconemu Akademosowi szkołę, zwaną z tej przyczyny akademią Był filozofem i zajął się jednym z najważniejszych zagadnień filozofii:

7 Platon Platon urodził się w roku 427 i otrzymał imię Aristokles. Był zapaśnikiem, po serii zwycięstw w zapasach ze względu na szerokie bary nazwano go Platonem (platys = szeroki) Grecki ideał wychowania: kalos - kagatos czyli piękny i dobry W wieku 20 lat został uczniem Sokratesa, po śmierci mistrza 10 lat przebywał w Egipcie, a po powrocie do Aten założył w gaju poświęconemu Akademosowi szkołę, zwaną z tej przyczyny akademią Był filozofem i zajął się jednym z najważniejszych zagadnień filozofii: w jaki sposób byty istnieją? Ontologia = teoria bytu

8 Platon Platon urodził się w roku 427 i otrzymał imię Aristokles. Był zapaśnikiem, po serii zwycięstw w zapasach ze względu na szerokie bary nazwano go Platonem (platys = szeroki) Grecki ideał wychowania: kalos - kagatos czyli piękny i dobry W wieku 20 lat został uczniem Sokratesa, po śmierci mistrza 10 lat przebywał w Egipcie, a po powrocie do Aten założył w gaju poświęconemu Akademosowi szkołę, zwaną z tej przyczyny akademią Był filozofem i zajął się jednym z najważniejszych zagadnień filozofii: w jaki sposób byty istnieją? Ontologia = teoria bytu Alegoria jaskini (Państwo, 7, 514a-517a), str. 246

9 Idee Platona Coś, co jest powinno być stałe, wieczne i niezmienne, bo jak ujął to Parmenides Byt jest, a niebytu nie ma. ks. Tischner: Być może stąd taki niezwykły rozkwit matematyki greckiej. Platon: prawdziwy wieczny byt to idee, natomiast rzeczy materialne to tylko odbicie idei (cienie prawdziwych przedmiotów). Stąd idealizm.

10 Idee Platona Coś, co jest powinno być stałe, wieczne i niezmienne, bo jak ujął to Parmenides Byt jest, a niebytu nie ma. ks. Tischner: Być może stąd taki niezwykły rozkwit matematyki greckiej. Platon: prawdziwy wieczny byt to idee, natomiast rzeczy materialne to tylko odbicie idei (cienie prawdziwych przedmiotów). Stąd idealizm. Platon podał też definicję człowieka:

11 Idee Platona Coś, co jest powinno być stałe, wieczne i niezmienne, bo jak ujął to Parmenides Byt jest, a niebytu nie ma. ks. Tischner: Być może stąd taki niezwykły rozkwit matematyki greckiej. Platon: prawdziwy wieczny byt to idee, natomiast rzeczy materialne to tylko odbicie idei (cienie prawdziwych przedmiotów). Stąd idealizm. Platon podał też definicję człowieka: Człowiek jest to istota żywa, dwunożna, nieopierzona.

12 Idee Platona Coś, co jest powinno być stałe, wieczne i niezmienne, bo jak ujął to Parmenides Byt jest, a niebytu nie ma. ks. Tischner: Być może stąd taki niezwykły rozkwit matematyki greckiej. Platon: prawdziwy wieczny byt to idee, natomiast rzeczy materialne to tylko odbicie idei (cienie prawdziwych przedmiotów). Stąd idealizm. Platon podał też definicję człowieka: Człowiek jest to istota żywa, dwunożna, nieopierzona. Diogenes (cynik, ten od beczki) oskubał koguta i zaniósł do szkoły Platona mówiąc: Oto jest człowiek Platona.

13 Idee Platona Coś, co jest powinno być stałe, wieczne i niezmienne, bo jak ujął to Parmenides Byt jest, a niebytu nie ma. ks. Tischner: Być może stąd taki niezwykły rozkwit matematyki greckiej. Platon: prawdziwy wieczny byt to idee, natomiast rzeczy materialne to tylko odbicie idei (cienie prawdziwych przedmiotów). Stąd idealizm. Platon podał też definicję człowieka: Człowiek jest to istota żywa, dwunożna, nieopierzona. Diogenes (cynik, ten od beczki) oskubał koguta i zaniósł do szkoły Platona mówiąc: Oto jest człowiek Platona. Odtąd do definicji dodawano słowa o szerokich pazurach. (str. 331 Laertios)

14 Wpływ Platona na matematykę Platon wprowadził definicje w matematyce, np. punkt to początek linii albo linia niepodzielna. Linia to długość bez szerokości. Aksjomaty, np. wielkości równe odjęte od równych dają w wyniku wielkości równe. Platon zainicjował rozwój stereometrii (bryły platońskie to wielościany foremne). Cztery wielościany obrazowały cztery żywioły (dialog Timaios): ziemia - sześcian, powietrze - ośmiościan, woda - dwudziestościan i ogień - czworościan. Dwunastościan foremny odpowiadał strukturze wszechświata. Dozwolone są wyłącznie konstrukcje geometryczne za pomocą cyrkla i liniału, gdyż tylko okrąg i prosta mogą się ślizgać po sobie. Dozwolona jest jedynie nieskończoność potencjalna, ale nie aktualna. Przekonania te wywarły ogromny wpływ na Euklidesa.

15 Nauczyciel - uczeń Wpływ wybitnych nauczycieli na uczniów pokazuje następujący przykład: Sokrates

16 Nauczyciel - uczeń Wpływ wybitnych nauczycieli na uczniów pokazuje następujący przykład: Sokrates Platon

17 Nauczyciel - uczeń Wpływ wybitnych nauczycieli na uczniów pokazuje następujący przykład: Sokrates Platon Arystoteles

18 Nauczyciel - uczeń Wpływ wybitnych nauczycieli na uczniów pokazuje następujący przykład: Sokrates Platon Arystoteles Aleksander Wielki

19 Nauczyciel - uczeń Wpływ wybitnych nauczycieli na uczniów pokazuje następujący przykład: Sokrates Platon Arystoteles Aleksander Wielki miasto Aleksandria

20 Arystoteles ze Stagiry ( ) Uczeń Platona, ale przeciwstawił się idealizmowi swego nauczyciela. Będąc lekarzem zauważył, że, w przeciwieństwie do poglądów Platona, małe dzieci nie mają pamięci idealnego świata. Rodzą się jako tabula rasa czyli czysta tablica, a wiedzę zdobywaja poprzez doświadczenia. Należy uporządkować sposób wyciągania wniosków z doświadczeń, aby dochodzić do prawdziwych stwierdzeń trzeba wiedzieć, które myśli są adekwatne do rzeczywistości, a które nie. W tym celu należało stworzyć naukę o myśleniu. I Arystoteles stworzył logikę, którą nazywał analityką, bo dla niego logika=dialektyka czyli sztuka prowadzenia dyskusji.

21 Arystoteles ze Stagiry ( ) Ponieważ był metojkiem (nie-ateńczykiem), więc nie mógł kupić ziemi w Atenach. Na obrzeżach Aten istniał gimnazjon przy świątyni Apollina Lykeiosa (wilczego). Przy tym gimnazjonie Arystoteles założył własną szkołę, zwaną Lykeion (stąd dzisiejsze liceum). Uczniów nazywano perypatetykami, bo w zwyczaju mieli spacerowanie w czasie dysput filozoficznych.

22 Arystoteles ze Stagiry ( ) System filozoficzny Arystotelesa: Forma i materia (albo: istota i istnienie).

23 Arystoteles ze Stagiry ( ) System filozoficzny Arystotelesa: Forma i materia (albo: istota i istnienie). Ulubiony przykład filozofów jednorożec, łatwo wyobrazić sobie formę (istotę, ideę) jednorożca, ale jednorożce nie istnieją.

24 Arystoteles ze Stagiry ( ) System filozoficzny Arystotelesa: Forma i materia (albo: istota i istnienie). Ulubiony przykład filozofów jednorożec, łatwo wyobrazić sobie formę (istotę, ideę) jednorożca, ale jednorożce nie istnieją. Tomasz z Akwinu ( , dominikanin). JHWH = ten, który JEST. Zatem istotą Boga jest istnienie.

25 Arystoteles ze Stagiry ( ) System filozoficzny Arystotelesa: Forma i materia (albo: istota i istnienie). Ulubiony przykład filozofów jednorożec, łatwo wyobrazić sobie formę (istotę, ideę) jednorożca, ale jednorożce nie istnieją. Tomasz z Akwinu ( , dominikanin). JHWH = ten, który JEST. Zatem istotą Boga jest istnienie. Tomizm i neotomizm.

26 Arystoteles ze Stagiry ( ) System filozoficzny Arystotelesa: Forma i materia (albo: istota i istnienie). Ulubiony przykład filozofów jednorożec, łatwo wyobrazić sobie formę (istotę, ideę) jednorożca, ale jednorożce nie istnieją. Tomasz z Akwinu ( , dominikanin). JHWH = ten, który JEST. Zatem istotą Boga jest istnienie. Tomizm i neotomizm. Problem uniwersaliów (powszechników): idealizm, realizm, nominalizm, reizm, solipsyzm,...

27 Arystoteles ze Stagiry ( ) System filozoficzny Arystotelesa: Forma i materia (albo: istota i istnienie). Ulubiony przykład filozofów jednorożec, łatwo wyobrazić sobie formę (istotę, ideę) jednorożca, ale jednorożce nie istnieją. Tomasz z Akwinu ( , dominikanin). JHWH = ten, który JEST. Zatem istotą Boga jest istnienie. Tomizm i neotomizm. Problem uniwersaliów (powszechników): idealizm, realizm, nominalizm, reizm, solipsyzm,... Można zaryzykować stwierdzenie, że większość matematyków to platonicy.

28 Arystoteles ze Stagiry ( ) System filozoficzny Arystotelesa: Forma i materia (albo: istota i istnienie). Ulubiony przykład filozofów jednorożec, łatwo wyobrazić sobie formę (istotę, ideę) jednorożca, ale jednorożce nie istnieją. Tomasz z Akwinu ( , dominikanin). JHWH = ten, który JEST. Zatem istotą Boga jest istnienie. Tomizm i neotomizm. Problem uniwersaliów (powszechników): idealizm, realizm, nominalizm, reizm, solipsyzm,... Można zaryzykować stwierdzenie, że większość matematyków to platonicy. Dowód: nowe fakty w matematyce odkrywamy.

29 Matematyka grecka Popatrzmy chronologicznie na greckich matematyków: Zenon z Elei (ok. -450): paradoksy: Achilles i żółw, lecąca strzała.

30 Matematyka grecka Popatrzmy chronologicznie na greckich matematyków: Zenon z Elei (ok. -450): paradoksy: Achilles i żółw, lecąca strzała. Hipokrates z Chios (-440)

31 Matematyka grecka Popatrzmy chronologicznie na greckich matematyków: Zenon z Elei (ok. -450): paradoksy: Achilles i żółw, lecąca strzała. Hipokrates z Chios (-440) Platon (Akademia, rok -387)

32 Matematyka grecka Popatrzmy chronologicznie na greckich matematyków: Zenon z Elei (ok. -450): paradoksy: Achilles i żółw, lecąca strzała. Hipokrates z Chios (-440) Platon (Akademia, rok -387) Eudoksos z Knidos (ok. -360): teoria proporcji, metoda wyczerpywania

33 Matematyka grecka Popatrzmy chronologicznie na greckich matematyków: Zenon z Elei (ok. -450): paradoksy: Achilles i żółw, lecąca strzała. Hipokrates z Chios (-440) Platon (Akademia, rok -387) Eudoksos z Knidos (ok. -360): teoria proporcji, metoda wyczerpywania Euklides z Aleksandrii (ok. -300): Στ ωιχεια czyli Elementy

34 Matematyka grecka Popatrzmy chronologicznie na greckich matematyków: Zenon z Elei (ok. -450): paradoksy: Achilles i żółw, lecąca strzała. Hipokrates z Chios (-440) Platon (Akademia, rok -387) Eudoksos z Knidos (ok. -360): teoria proporcji, metoda wyczerpywania Euklides z Aleksandrii (ok. -300): Στ ωιχεια czyli Elementy Arystarch z Samos (-270) odległość z Ziemi do Księżyca i Słońca

35 Matematyka grecka Popatrzmy chronologicznie na greckich matematyków: Zenon z Elei (ok. -450): paradoksy: Achilles i żółw, lecąca strzała. Hipokrates z Chios (-440) Platon (Akademia, rok -387) Eudoksos z Knidos (ok. -360): teoria proporcji, metoda wyczerpywania Euklides z Aleksandrii (ok. -300): Στ ωιχεια czyli Elementy Arystarch z Samos (-270) odległość z Ziemi do Księżyca i Słońca Archimedes ( -287 do -212): O walcu i kuli, najsłynniejszy palimpsest świata, Trzoda Heliosa. (Annals Probab. 1986)

36 Matematyka grecka Popatrzmy chronologicznie na greckich matematyków: Zenon z Elei (ok. -450): paradoksy: Achilles i żółw, lecąca strzała. Hipokrates z Chios (-440) Platon (Akademia, rok -387) Eudoksos z Knidos (ok. -360): teoria proporcji, metoda wyczerpywania Euklides z Aleksandrii (ok. -300): Στ ωιχεια czyli Elementy Arystarch z Samos (-270) odległość z Ziemi do Księżyca i Słońca Archimedes ( -287 do -212): O walcu i kuli, najsłynniejszy palimpsest świata, Trzoda Heliosa. (Annals Probab. 1986) Eratostenes z Cyreny (-230): obwód Ziemi, odsiewanie liczb pierwszych

37 Matematyka grecka Popatrzmy chronologicznie na greckich matematyków: Zenon z Elei (ok. -450): paradoksy: Achilles i żółw, lecąca strzała. Hipokrates z Chios (-440) Platon (Akademia, rok -387) Eudoksos z Knidos (ok. -360): teoria proporcji, metoda wyczerpywania Euklides z Aleksandrii (ok. -300): Στ ωιχεια czyli Elementy Arystarch z Samos (-270) odległość z Ziemi do Księżyca i Słońca Archimedes ( -287 do -212): O walcu i kuli, najsłynniejszy palimpsest świata, Trzoda Heliosa. (Annals Probab. 1986) Eratostenes z Cyreny (-230): obwód Ziemi, odsiewanie liczb pierwszych Apoloniusz z Pergi (-225): Stożkowe (koniki), nazwy elipsa, parabola, hiperbola

38 Matematyka grecka Hipparch (-127) precesja równonocy

39 Matematyka grecka Hipparch (-127) precesja równonocy Heron z Aleksandrii (+60) pola i objetości

40 Matematyka grecka Hipparch (-127) precesja równonocy Heron z Aleksandrii (+60) pola i objetości Klaudiusz Ptolemeusz (150) Almagest astronomia i geometria, pierwsze tablice sinusów

41 Matematyka grecka Hipparch (-127) precesja równonocy Heron z Aleksandrii (+60) pola i objetości Klaudiusz Ptolemeusz (150) Almagest astronomia i geometria, pierwsze tablice sinusów Diofantos z Aleksandrii (250?? (-150 do +300) Arytmetyka

42 Matematyka grecka Hipparch (-127) precesja równonocy Heron z Aleksandrii (+60) pola i objetości Klaudiusz Ptolemeusz (150) Almagest astronomia i geometria, pierwsze tablice sinusów Diofantos z Aleksandrii (250?? (-150 do +300) Arytmetyka Pappus z Aleksandrii (340)

43 Matematyka grecka Hipparch (-127) precesja równonocy Heron z Aleksandrii (+60) pola i objetości Klaudiusz Ptolemeusz (150) Almagest astronomia i geometria, pierwsze tablice sinusów Diofantos z Aleksandrii (250?? (-150 do +300) Arytmetyka Pappus z Aleksandrii (340) Teon z Aleksandrii (390) wydaje Elementy Euklidesa, odtąd to będzie tekst kanoniczny

44 Matematyka grecka Hipparch (-127) precesja równonocy Heron z Aleksandrii (+60) pola i objetości Klaudiusz Ptolemeusz (150) Almagest astronomia i geometria, pierwsze tablice sinusów Diofantos z Aleksandrii (250?? (-150 do +300) Arytmetyka Pappus z Aleksandrii (340) Teon z Aleksandrii (390) wydaje Elementy Euklidesa, odtąd to będzie tekst kanoniczny Hypatia (400) (córka Teona) komentarze do Diofantosa i Apoloniusza

45 Skąd Aleksandria? Aleksander Macedoński zakłada w dniu 7 kwietnia roku -332 na miejscu miejscowości Rhakotis nowe miasto, nazwane jego imieniem, zaprojektowane przez architekta Dejnokratesa, znanego z przebudowy Efezu. Od roku -311 stolica dynastii Ptolemeuszów (pierwszym był Ptolemeusz Soter). Za czasów rzymskich miasto milionowe, drugie po Rzymie w imperium. Wzniesiono: pałac królewski, Bibliotekę Aleksandryjską, Muzeion (przybytek muz), latarnię morską w Faros itd.

46 Książki czyli Zwoje W Aleksandrii działały: Muzeion = instytut naukowo-badawczy

47 Książki czyli Zwoje W Aleksandrii działały: Muzeion = instytut naukowo-badawczy biblioteka = główna Brucheion dostępna tylko dla badaczy i Serapeion dla wszystkich (przy świątyni Serapisa)

48 Książki czyli Zwoje W Aleksandrii działały: Muzeion = instytut naukowo-badawczy biblioteka = główna Brucheion dostępna tylko dla badaczy i Serapeion dla wszystkich (przy świątyni Serapisa) Każdy, kto wjeżdżał do Aleksandrii z książką, albo musiał ją odprzedać, albo zostawić do skopiowania.

49 Książki czyli Zwoje W Aleksandrii działały: Muzeion = instytut naukowo-badawczy biblioteka = główna Brucheion dostępna tylko dla badaczy i Serapeion dla wszystkich (przy świątyni Serapisa) Każdy, kto wjeżdżał do Aleksandrii z książką, albo musiał ją odprzedać, albo zostawić do skopiowania. Kopiowano szybko: Septuaginta, za czasów Ptolemeusza II Filadelfosa (syna Sotera), ok. roku -270

50 Książki czyli Zwoje W Aleksandrii działały: Muzeion = instytut naukowo-badawczy biblioteka = główna Brucheion dostępna tylko dla badaczy i Serapeion dla wszystkich (przy świątyni Serapisa) Każdy, kto wjeżdżał do Aleksandrii z książką, albo musiał ją odprzedać, albo zostawić do skopiowania. Kopiowano szybko: Septuaginta, za czasów Ptolemeusza II Filadelfosa (syna Sotera), ok. roku -270 Biblioteka płonęła co najmniej 2 razy.

51 Książki czyli Zwoje W Aleksandrii działały: Muzeion = instytut naukowo-badawczy biblioteka = główna Brucheion dostępna tylko dla badaczy i Serapeion dla wszystkich (przy świątyni Serapisa) Każdy, kto wjeżdżał do Aleksandrii z książką, albo musiał ją odprzedać, albo zostawić do skopiowania. Kopiowano szybko: Septuaginta, za czasów Ptolemeusza II Filadelfosa (syna Sotera), ok. roku -270 Biblioteka płonęła co najmniej 2 razy. Przestała istnieć w roku 642, gdy Aleksandrię zdobyli Arabowie (Omar I: Albo te księgi zawierają...)

52 Arytmetyka Diofantosa Zawierała 13 ksiąg, zachowało się 6 po grecku i 4 po arabsku. Rozwiązuje równania, nawet niektóre trzeciego stopnia. Dziś równaniem diofantycznym nazywamy równanie w liczbach całkowitych. Według legendy na grobie Diofantosa był napis: Tu jest grobowiec, w którym złożono prochy Diofantosa. Przez jedną szóstą jego życia Bóg obdarzył go młodością, przez dalszą, dwunastą część życia jego policzki były pokryte brodą. Po siódmej dalszej części życia doświadczył szczęścia małżeńskiego, w którego piątym roku został ojcem syna. Nieszczęśliwie syn żył tylko połowę lat ojca, który pozostał w smutku przez cztery ostatnie lata swego życia. Przechodniu, oblicz długość jego życia!

53 Fermat i Arytmetyka Diofantosa W roku 1621 ukazało się łacińskie wydanie Arytmetyki. Około roku 1630 czytał je Fermat i na jednej ze stron zrobił notatkę. W roku 1670 syn Fermata wydał Arytmetykę wraz z komentarzami swego ojca. Oto najsłynniejsza strona tego wydania:

54 Fermat i Arytmetyka Diofantosa... cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.

55 Archimedes Znamy kilka jego prac, m.in. O walcu i kuli, O kwadraturze paraboli czy Metoda. Ponieważ studiował w Aleksandrii, a Eratostenes był jego przyjacielem, więc w Aleksandrii znano jego prace. Nie były one jednak tak znane, jak Elementy Euklidesa. Poprzez tłumaczenia arabskie lub oryginały (z Konstantynopola), niektóre dzieła Archimedesa dotarły do Europy (np. wydane w 1544 O walcu i kuli).

56 Archimedes W roku 1773 niemiecki dramaturg Gottlob Lessing odkrył w pewnej bibliotece manuskrypt, zawierający zadanie w formie wiersza, złożonego z 22 dystychów elegijnych, przypuszczalnie napisane przez Archimedesa około roku -250 i przesłane w liście Eratostenesowi. Zaczynały się tak: Jeśliś pilny i mądry, o cudzoziemcze, określ mnogość stada Heliosa, które dawno temu pasło się na trinakijskich polach Sycylii. Archimedes Cattle Problem

57 Archimedes i najsłynniejszy palimpsest świata W roku 1906 duński językoznawca J.L. Heiberg odkrył w Konstantynopolu pewien palimpsest. Po I wojnie światowej zniknął, odnalazł się w 1998 roku na aukcji w Christies w Nowym Jorku. Od 1998 restaurowano go w muzeum w Baltimore. I odczytano:

58 Elementy Euklidesa

59 Elementy Napisane około roku -300, do roku 1900 były obowiązującym podręcznikiem niemal w całej Europie. Liczba wydań mniejsza tylko od Biblii. Materiały np. External Links na stronie s Elements

60 Trzy klasyczne konstrukcje cyrklem i liniałem są niewykonalne Wykażemy później, że mając dany odcinek jednostkowy na płaszczyźnie, za pomocą cyrkla i liniału można skonstruować TYLKO odcinki o długościach, będących albo liczbami wymiernymi albo algebraicznymi stopni 2 n (dokładniej: liczbami z ciała, powstałego przez rozszerzenie ciała Q przez kolejne dołączanie pierwiastków kwadratowych). W szczególności, nie można w ten sposób skonstruować odcinka, którego długość nie jest liczbą algebraiczną.

61 Liczby algebraiczne Liczba niewymierna α jest liczbą algebraiczną stopnia d, jeśli jest pierwiastkiem pewnego wielomianu stopnia d o wszystkich współczynnikach całkowitych i nie jest pierwiastkim żadnego wielomianu stopnia mniejszego niż d o współczynnikach całkowitych. Przykłady: Każda liczba wymierna p q jest algebraiczna stopnia 1: qx p = 0.

62 Liczby algebraiczne Liczba niewymierna α jest liczbą algebraiczną stopnia d, jeśli jest pierwiastkiem pewnego wielomianu stopnia d o wszystkich współczynnikach całkowitych i nie jest pierwiastkim żadnego wielomianu stopnia mniejszego niż d o współczynnikach całkowitych. Przykłady: Każda liczba wymierna p q jest algebraiczna stopnia 1: qx p = 0. Każdy pierwiastek kwadratowy z n jest liczbą algebraiczną stopnia 2: x 2 n = 0.

63 Liczby algebraiczne Liczba niewymierna α jest liczbą algebraiczną stopnia d, jeśli jest pierwiastkiem pewnego wielomianu stopnia d o wszystkich współczynnikach całkowitych i nie jest pierwiastkim żadnego wielomianu stopnia mniejszego niż d o współczynnikach całkowitych. Przykłady: Każda liczba wymierna p q jest algebraiczna stopnia 1: qx p = 0. Każdy pierwiastek kwadratowy z n jest liczbą algebraiczną stopnia 2: x 2 n = jest liczbą algebraiczną stopnia 3, ale nie jest liczbą stopnia 2.

64 Liczby algebraiczne Liczba niewymierna α jest liczbą algebraiczną stopnia d, jeśli jest pierwiastkiem pewnego wielomianu stopnia d o wszystkich współczynnikach całkowitych i nie jest pierwiastkim żadnego wielomianu stopnia mniejszego niż d o współczynnikach całkowitych. Przykłady: Każda liczba wymierna p q jest algebraiczna stopnia 1: qx p = 0. Każdy pierwiastek kwadratowy z n jest liczbą algebraiczną stopnia 2: x 2 n = jest liczbą algebraiczną stopnia 3, ale nie jest liczbą stopnia 2. Zadanie: Podać (wraz z dowodem) przykład liczby, która nie jest algebraiczna (czyli jest przestępna). Euler: takie liczby przestępują możliwości metod algebraicznych.

65 Twierdzenie Liouville a J. Liouville w roku 1844 udowodnił następujace twierdzenie: Twierdzenie Niech α będzie liczbą algebraiczną stopnia d > 1. Wówczas istnieje taka stała C(α) > 0, że nierówność α p q > C(α) q d zachodzi dla wszystkich liczb wymiernych p/q.

66 Wniosek Liczba jest liczbą przestępną. n= n!

67 e jest liczbą przestępną W roku 1873 Charles Hermite udowodnił, że liczba e jest przestępna. Nieznacznie modyfikując dowód Hermite a w roku 1882 F. Lindemann udowodnił, że liczba π jest przestępna, a zatem kwadratura koła nie jest możliwa.

Cud grecki. Cud grecki. Wrocław, 5 marca 2014

Cud grecki. Cud grecki. Wrocław, 5 marca 2014 Wrocław, 5 marca 2014 Wykształcenie podstawowe Spośród wielu twierdzeń i faktów pochodzących ze starożytnej Grecji w szkole na lekcjach matematyki pojawiają się: Twierdzenie Talesa Wykształcenie podstawowe

Bardziej szczegółowo

Cud grecki. Cud grecki. Wrocław, 12 X 2012

Cud grecki. Cud grecki. Wrocław, 12 X 2012 Wrocław, 12 X 2012 Wykształcenie podstawowe Spośród wielu twierdzeń i faktów pochodzących ze starożytnej Grecji w szkole na lekcjach matematyki pojawiają się: Twierdzenie Talesa Twierdzenie Pitagorasa

Bardziej szczegółowo

Teoria liczb. Wykład nr 1: Podzielność i algorytm Euklidesa Semestr letni 2018/2019

Teoria liczb. Wykład nr 1: Podzielność i algorytm Euklidesa Semestr letni 2018/2019 Teoria liczb Wykład nr 1: Podzielność i algorytm Euklidesa Semestr letni 2018/2019 matpz@mat.ug.edu.pl http://mat.ug.edu.pl/~matpz/ Wykłady ustalenia Podręczniki: W.M. & P.Z. Elementarna teoria liczb,

Bardziej szczegółowo

Cud grecki. Cud grecki. Wrocław, 2 marca 2016

Cud grecki. Cud grecki. Wrocław, 2 marca 2016 Wrocław, 2 marca 2016 Wykształcenie podstawowe Spośród wielu twierdzeń i faktów pochodzących ze starożytnej Grecji w szkole na lekcjach matematyki pojawiają się: Twierdzenie Talesa Wykształcenie podstawowe

Bardziej szczegółowo

Tytuł. Autor. Dział. Innowacyjne cele edukacyjne. Czas. Przebieg. Etap 1 - Wprowadzenie z rysem historycznym i dyskusją

Tytuł. Autor. Dział. Innowacyjne cele edukacyjne. Czas. Przebieg. Etap 1 - Wprowadzenie z rysem historycznym i dyskusją Tytuł Kto nie zna geometrii, niech tu nie wchodzi czyli geometria brył platońskich Autor Dariusz Kulma Dział Bryły Innowacyjne cele edukacyjne Uczeń zapoznaje się z kolejnymi wielościanami foremnymi. Czas

Bardziej szczegółowo

BRYŁY PLATOŃSKIE W CZTERECH WYMIARACH

BRYŁY PLATOŃSKIE W CZTERECH WYMIARACH BRYŁY PLATOŃSKIE W CZTERECH WYMIARACH Adam Doliwa doliwa@matman.uwm.edu.pl Instytut Matematyczny Polskiej Akademii Nauk (Warszawa) Uniwersytet Warmińsko-Mazurski (Olsztyn) SPOTKANIA Z MATEMATYK A Olsztyn,

Bardziej szczegółowo

Wielokąty foremne. (Konstrukcje platońskie)

Wielokąty foremne. (Konstrukcje platońskie) Wielokąty foremne (Konstrukcje platońskie) 1 Definicja 1. Wielokąt wypukły nazywa się foremny, jeżeli ma wszystkie kąty równe i wszystkie boki równe. Przykładami wielokątów foremnych są trójkąt równoboczny,

Bardziej szczegółowo

Elementy. Elementy. Wrocław, 24 marca 2010

Elementy. Elementy. Wrocław, 24 marca 2010 Wrocław, 24 marca 2010 Podstawowe dane Euklides pracował w Aleksandrii, około roku -300 zebrał najważniejsze fragmenty znanej Grekom matematyki i stworzył z tego nową jakość. Elementy to monografia i podręcznik.

Bardziej szczegółowo

Czym jest liczba π? O liczbie π. Paweł Zwoleński. Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska

Czym jest liczba π? O liczbie π. Paweł Zwoleński. Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska 200.03.4 Motywacja wprowadzenia π Kluczowym momentem w historii liczby π było zauważenie przez starożytnych Babilończyków

Bardziej szczegółowo

3. Spór o uniwersalia. Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu 2015/2016

3. Spór o uniwersalia. Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu 2015/2016 3. Spór o uniwersalia Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu 2015/2016 Nieco semiotyki nazwa napis lub dźwięk pojęcie znaczenie nazwy desygnat nazwy każdy

Bardziej szczegółowo

Elementy. Elementy. Wrocław, 16 marca 2016

Elementy. Elementy. Wrocław, 16 marca 2016 Wrocław, 16 marca 2016 Podstawowe dane Euklides pracował w Aleksandrii, około roku -300 zebrał najważniejsze fragmenty znanej Grekom matematyki i stworzył z tego nową jakość. Elementy to monografia i podręcznik.

Bardziej szczegółowo

Platon ( ) Herma Platona (Muzeum Kapitolińskie w Rzymie)

Platon ( ) Herma Platona (Muzeum Kapitolińskie w Rzymie) Platon (427-347) Herma Platona (Muzeum Kapitolińskie w Rzymie) Życie Platona ur. 7 maja 427 (matka - Periktione, ojciec - Ariston) pierwsze kontakty z filozofią u Kratylosa (skrajny heraklityzm) spotyka

Bardziej szczegółowo

Są to liczby najpowszechniej używane w życiu codziennym.

Są to liczby najpowszechniej używane w życiu codziennym. NR1 LICZBY RZECZYWISTE ZASTOSOWANIE: Są to liczby najpowszechniej używane w życiu codziennym. Określanie ilości lat, Określanie ilości osób znajdujących się w pokoju i tym podobne, Określanie wzrostu,

Bardziej szczegółowo

KONSPEKT DO LEKCJI. Cele lekcji: ogólne:

KONSPEKT DO LEKCJI. Cele lekcji: ogólne: KONSPEKT DO LEKCJI Przedmiot: matematyka Temat: Rozwiązywanie zadań tekstowych z zastosowaniem równań. Klasa: III gimnazjum Prowadząca: mgr Julita Otok Obserwator: nauczyciele zespołu matematyczno - przyrodniczego

Bardziej szczegółowo

Dlaczego matematyka jest wszędzie?

Dlaczego matematyka jest wszędzie? Festiwal Nauki. Wydział MiNI PW. 27 września 2014 Dlaczego matematyka jest wszędzie? Dlaczego świat jest matematyczny? Autor: Paweł Stacewicz (PW) Czy matematyka jest WSZĘDZIE? w życiu praktycznym nie

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

Grecki matematyk, filozof, mistyk PITAGORAS

Grecki matematyk, filozof, mistyk PITAGORAS Grecki matematyk, filozof, mistyk PITAGORAS FAKTY I MITY Dotarcie do prawdy związanej z życiem Pitagorasa jest bardzo trudne, ponieważ nie zostawił on po sobie żadnego pisma. Wywarł jednak ogromny wpływ

Bardziej szczegółowo

INFORMATYKA a FILOZOFIA

INFORMATYKA a FILOZOFIA INFORMATYKA a FILOZOFIA (Pytania i odpowiedzi) Pytanie 1: Czy potrafisz wymienić pięciu filozofów, którzy zajmowali się także matematyką, logiką lub informatyką? Ewentualnie na odwrót: Matematyków, logików

Bardziej szczegółowo

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45 METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 O KONSTRUKCJACH GEOMETRYCZNYCH 1. Starożytni matematycy posługiwali się konstrukcjami geometrycznymi. 2. Wykonanie konstrukcji polega na narysowaniu

Bardziej szczegółowo

Krzywe stożkowe Lekcja I: Wprowadzenie

Krzywe stożkowe Lekcja I: Wprowadzenie Krzywe stożkowe Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Powierzchnia stożkowa Zaczniemy od przyjrzenia się powierzchni stożkowej. Jest ona wyznaczona przez linię prostą (tworzącą)

Bardziej szczegółowo

Filozofia przyrody - Filozofia Eleatów i Demokryta

Filozofia przyrody - Filozofia Eleatów i Demokryta 5 lutego 2012 Plan wykładu 1 Filozofia Parmenidesa z Elei Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej filozofii 2 3 4 Materializm Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Filozofia, Historia, Wykład IV - Platońska teoria idei

Filozofia, Historia, Wykład IV - Platońska teoria idei Filozofia, Historia, Wykład IV - Platońska teoria idei 2010-10-01 Tematyka wykładu 1 Metafora jaskini 2 Świat materialny - świat pozoru Świat idei - świat prawdziwy Relacja między światem idei i światem

Bardziej szczegółowo

Uczeni greccy chronologicznie

Uczeni greccy chronologicznie Wykład 3 Grecy 1 Uczeni greccy chronologicznie p.n.e. 600 n.e. 500 400 300 200 100 0 100 200 Tales Anaksymander Anaksymenes Heraklit Pitagoras Parmenides Anaksagoras Empedokles Leukippos Demokryt Sokrates

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI Ewa Koralewska LP..... 5... OGÓLNA PODSTA- WA PROGRA- MOWA PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Potęga

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 5

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 5 Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 5 Zadanie domowe Kolokwium: przeczytaj z [U] o błędach w stosowaniu zasady poglądowości w nauczaniu matematyki

Bardziej szczegółowo

Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej

Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej Geometria w starożytnym świecie Część A. Sprawdź, czy rozumiesz film. 1. Skreśl w tekście niewłaściwe słowa i sformułowania. Bryły platońskie

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Lp. I PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Temat lekcji Umiejętności Podstawowe Ponadpodstawowe Funkcja kwadratowa Uczeń: Uczeń: 1 Wykres i własności funkcji y = ax 2. - narysuje

Bardziej szczegółowo

Równoliczność zbiorów

Równoliczność zbiorów Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność

Bardziej szczegółowo

FILO MATH ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH GAZETKA KOŁA MATEMATYCZNEGO CO W NUMERZE: PRZEGLĄD MATEMATYKÓW. APOLONIUSZ Z PERGII W KAMIENNEJ GÓRZE

FILO MATH ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH GAZETKA KOŁA MATEMATYCZNEGO CO W NUMERZE: PRZEGLĄD MATEMATYKÓW. APOLONIUSZ Z PERGII W KAMIENNEJ GÓRZE ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH W KAMIENNEJ GÓRZE FILO MATH GAZETKA KOŁA MATEMATYCZNEGO MARZEC 2014 NR (1)/2014 CO W NUMERZE: PRZEGLĄD MATEMATYKÓW: Apoloniusz z Pergi... MATEMATYKA W INNYCH DZIEDZINACH

Bardziej szczegółowo

SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine

SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine 1. Autor: Anna Wołoszyn 2. Grupa docelowa: Klasa 2 Gimnazjum 3. Liczba godzin: 2 4. Temat zajęć: Geometria brył

Bardziej szczegółowo

Twierdzenie Pitagorasa

Twierdzenie Pitagorasa Imię Nazwisko: Paweł Rogaliński Nr indeksu: 123456 Grupa: wtorek 7:30 Data: 10-10-2012 Twierdzenie Pitagorasa Tekst artykułu jest skrótem artykułu Twierdzenie Pitagorasa zamieszczonego w polskiej edycji

Bardziej szczegółowo

OGÓLNA CHARAKTERYSTYKA FILOZOFII XIII WIEKU

OGÓLNA CHARAKTERYSTYKA FILOZOFII XIII WIEKU OGÓLNA CHARAKTERYSTYKA FILOZOFII XIII WIEKU POWSTANIE UNIWERSYTETÓW Najwcześniej powstają dwa uniwersytety: Sorbona - Paryż Oxford Uniwersytety zostają zorganizowane na wzór struktury cechowej, w której

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO III KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO III KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO III KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Wyrażenia wymierne (19 h) Przekształcanie wielomianów Wyrażenia wymierne 4 Równania

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny: informatyka matematyka Rozmaitości matematyczne

Bardziej szczegółowo

w najprostszych przypadkach, np. dla trójkątów równobocznych

w najprostszych przypadkach, np. dla trójkątów równobocznych MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

WYMAGANIA WSTĘPNE Z MATEMATYKI

WYMAGANIA WSTĘPNE Z MATEMATYKI WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

83 Przekształcanie wykresów funkcji (cd.) 3

83 Przekształcanie wykresów funkcji (cd.) 3 Zakres podstawowy Zakres rozszerzony dział temat godz. dział temat godz,. KLASA 1 (3 godziny tygodniowo) - 90 godzin KLASA 1 (5 godzin tygodniowo) - 150 godzin I Zbiory Zbiory i działania na zbiorach 2

Bardziej szczegółowo

Egzamin wstępny z Matematyki 1 lipca 2011 r.

Egzamin wstępny z Matematyki 1 lipca 2011 r. Egzamin wstępny z Matematyki 1 lipca 011 r. 1. Mamy 6 elementów. Ile jest możliwych permutacji tych elementów jeśli: a) wszystkie elementy są różne, b) dwa elementy wśród nich są identyczne, a wszystkie

Bardziej szczegółowo

Pytania z HM1. Jakub Sygnowski. 23 stycznia a) Kepler b) Ptolemeusz c) Kopernik. a) Kepler b) Kartezjusz c) Fermat

Pytania z HM1. Jakub Sygnowski. 23 stycznia a) Kepler b) Ptolemeusz c) Kopernik. a) Kepler b) Kartezjusz c) Fermat Pytania z HM1 Jakub Sygnowski 23 stycznia 2013 1. Najstarsze świadectwo uprawiania geometrii to a) piramidy egipskie b) labirynt na Krecie c) rytm ornamentów wstęgowych 2. Świadectwa o najdawniejszej działalności

Bardziej szczegółowo

KONSPEKT LEKCJI MATEMATYKI W KLASIE II GIMNAZJUM

KONSPEKT LEKCJI MATEMATYKI W KLASIE II GIMNAZJUM KONSPEKT LEKCJI MATEMATYKI W KLASIE II GIMNAZJUM TEMAT: Układanie równań do zadań z treścią. CZAS TRWANIA ZAJĘĆ: 45 minut CELE ZAJĘĆ: Matematyzowanie sytuacji opisanych słowami redagowanie treści z użyciem

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

(4) W zbiorze R R definiujemy działania i wzorami. (a, b) (c, d) =(a + c, b + d),

(4) W zbiorze R R definiujemy działania i wzorami. (a, b) (c, d) =(a + c, b + d), Zestaw zadań 2: Ciało liczb zespolonych Układy równań liniowych () Ile działań można określić na zbiorze n-elementowym? Ile z nich to działania przemienne? (2) Zbadaj własności działania różnicy symetrycznej

Bardziej szczegółowo

Aproksymacja diofantyczna

Aproksymacja diofantyczna Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb Carl Friedrich Gauss O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH OPRACOWANIE: MATEUSZ OLSZAMOWSKI KL 6A, ALEKSANDER SUCHORAB

Bardziej szczegółowo

odczytywać własności funkcji y = ax 2 na podstawie funkcji y = ax 2 szkicować wykresy funkcji postaci y = ax,

odczytywać własności funkcji y = ax 2 na podstawie funkcji y = ax 2 szkicować wykresy funkcji postaci y = ax, Funkcja kwadratowa Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Zawód: FRYZJER, STOLARZ, MECHANIK POJAZDÓW SAMOCHODOWYCH, BLACHARZ SAMOCHODOWY I inne Rok szkolny 2012/2013 Przedmiot: MATEMATYKA Numer programu

Bardziej szczegółowo

0.1 Pierścienie wielomianów

0.1 Pierścienie wielomianów 0.1 Pierścienie wielomianów Zadanie 1. Znaleźć w pierścieniu Z 5 [X] drugi wielomian określający tę samą funkcję, co wielomian X 2 X + 1. (Odp. np. X 5 + X 2 2X + 1). Zadanie 2. Znaleźć sumę i iloczyn

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:

Bardziej szczegółowo

rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności

rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności KRYTERIA OCENIANIA Z MATEMATYKI Klasa I Gimnazjum Kryteria ocen i wymagań: Ocenę dopuszczającą otrzymuje uczeń, który: w ograniczonym zakresie opanował podstawowe wiadomości i umiejętności, a braki nie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ PLAN WYNIKOWY Z MATEMATYKI DLA KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Liczby i wyrażenia. Uczeń: Uczeń: 1 Liczby naturalne i całkowite. - sprawnie

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

Algebra I sprawozdanie z badania 2014-2015

Algebra I sprawozdanie z badania 2014-2015 MATEMATYKA Algebra I sprawozdanie z badania 2014-2015 IMIĘ I NAZWISKO Data urodzenia: 08/09/2000 ID: 5200154019 Klasa: 11 Niniejsze sprawozdanie zawiera informacje o wynikach zdobytych przez Państwa dziecko

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria efinicja 1. Mówimy, że odcinki i są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli ramiona

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy (według podręczników z serii MATeMAtyka) Temat Klasa I (60 h) Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 14 h

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Jak Arabowie rozwiązywali równania?

Jak Arabowie rozwiązywali równania? Jak Arabowie rozwiązywali równania? Agnieszka Niemczynowicz Katedra Fizyki Relatywistycznej Uniwersytet Warmińsko-Mazurski w Olsztynie Niezwykła Matematyka 2016 Co to jest równanie? Kilka dygresji z logiki.

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

Pozostała algebra w pigułce

Pozostała algebra w pigułce Algebra Pozostała algebra w pigułce Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.

Bardziej szczegółowo

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA System rzymski. Powtórzenie i utrwalenie umiejętności z zakresu podstawy

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów. Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Filozofia, ISE, Wykład III - Klasyfikacja dyscyplin filozoficznych

Filozofia, ISE, Wykład III - Klasyfikacja dyscyplin filozoficznych Filozofia, ISE, Wykład III - Klasyfikacja dyscyplin filozoficznych 2011-10-01 Plan wykładu 1 Klasyczny podział dyscyplin filozoficznych 2 Podział dyscyplin filozoficznych Klasyczny podział dyscyplin filozoficznych:

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

O geometrii semialgebraicznej

O geometrii semialgebraicznej Inauguracja roku akademickiego 2018/2019 na Wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego O geometrii semialgebraicznej Stanisław Spodzieja Łódź, 28 września 2018 Wstęp Rozwiązywanie równań

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II Zgodny z programem Matematyka z plusem. Numer dopuszczenia DKW /99.

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II Zgodny z programem Matematyka z plusem. Numer dopuszczenia DKW /99. PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II Zgodny z programem Matematyka z plusem. Numer dopuszczenia DKW-4014-139/99. Jednostka tematyczna Jednostka lekcyjna Ścieżka edukacyjna Czas ścieżki

Bardziej szczegółowo

Filozofia, ISE, Wykład V - Filozofia Eleatów.

Filozofia, ISE, Wykład V - Filozofia Eleatów. 2011-10-01 Plan wykładu 1 Filozofia Parmenidesa z Elei Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej filozofii 2 3 Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej filozofii

Bardziej szczegółowo

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki w ZSZ Klasa I

Przedmiotowy system oceniania z matematyki w ZSZ Klasa I Przedmiotowy system oceniania z matematyki w ZSZ Klasa I Dopuszczający Uczeń z potrafi : -zamienić ułamek zwykły na dziesiętny i odwrotnie -rozróżnia liczby wymierne i niewymierne -zna definicję liczby

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.

Bardziej szczegółowo

Rozkład materiału KLASA I

Rozkład materiału KLASA I I. Liczby (20 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy KLASA I 1. Zapis dziesiętny liczby rzeczywistej 1 1.1 2. Wzory skróconego mnoŝenia 3 2.1 3. Nierówności

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn

Bardziej szczegółowo

Spór o uniwersalia - podstawowe stanowiska i główni przedstawiciele. Filozofia scholastyczna i jej znaczenie dla filozofii zachodniej.

Spór o uniwersalia - podstawowe stanowiska i główni przedstawiciele. Filozofia scholastyczna i jej znaczenie dla filozofii zachodniej. Spór o uniwersalia - podstawowe stanowiska i główni przedstawiciele. Filozofia scholastyczna i jej znaczenie dla filozofii zachodniej. Spór o uniwersalia, to spór o status pojęć ogólnych. Wiąże się z tym

Bardziej szczegółowo

Równania wielomianowe

Równania wielomianowe Instytut Matematyki Uniwersytetu Jagiellońskiego 20 marca 2009 Kraków Równanie z jedną niewiadomą Wielomian jednej zmiennej to wyrażenie postaci P(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, gdzie współczynniki

Bardziej szczegółowo