Uczeni greccy chronologicznie
|
|
- Dagmara Sawicka
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wykład 3 Grecy 1
2 Uczeni greccy chronologicznie p.n.e. 600 n.e Tales Anaksymander Anaksymenes Heraklit Pitagoras Parmenides Anaksagoras Empedokles Leukippos Demokryt Sokrates Platon Arystoteles Eudoksos Euklides Straton Archimedes Arystarch Eratostenes Ktesibios Apollonios Hipparch Heron Ptolemeusz 2
3 Zasady filozofii greckiej Opis świata filozofia, zaczyna się przede wszystkim od kosmogonii, czyli organizacji świata jako takiego i jego ewentualnego stworzenia Podstawy świata: Z czego jest stworzony Wedle jakich zasad jak możemy go badać? Filozofia jest nauką ogólną, czyli opis fizyczny i astronomiczny ma się zgadzać z opisem przyrodniczym i społecznym, także politycznym (i ewentualnie religijnym) Główna zasada brak jakichkolwiek eksperymentów, ewentualne obserwacje Uwaga mało zachowanych dzieł! 3
4 Matematyka system liczbowy System liczbowy grecki był bardzo skomplikowany i niespecjalnie nadający się do porządnych obliczeń Liczba arabska eta theta Liczba grecka Nazwa grecka alfa beta gamma delta epsilon digamma zeta Liczba arabska ni ksi omikron pi 90 Liczba grecka Nazwa grecka iota kappa lambda mi Liczba arabska koppa 900 Liczba grecka Nazwa grecka ro sigma tau upsilon fi chi psi omega sampi Podstawowym działem matematyki była więc geometria i teoria liczb dowody twierdzeń! 4
5 Arytmetyka grecka Abacus (abak): Rozważania pseudogeometryczne: liczby kwadratowe liczby trójkątne 5
6 Matematyka i matematycy Tales Pitagoras Podstawowe dzieło i kodyfikacja geometrii słynne postulaty Archimedes Szkoła pitagorejczyków, teoria liczb, trójkąty, harmonia Euklides Geometria rozważania na temat podobieństwa trójkątów krzywe stożkowe, liczba pi przez analizę wielokątów, objętość kuli, walca Apollonios krzywe stożkowe, od niego pochodzi nazwa elipsa, parabola, hiperbola 6
7 Szkoła pitagorejczyków Matematyka to nie tylko nauka, ale religijna i kosmogoniczna podstawa świata, a liczby mają znaczenia metafizyczne Wszelkie skomplikowane zjawiska da się zredukować do prostych Zastosowanie filozofii do rządzenia Całkowite odcięcie się od obserwacji jeżeli obserwacja przeczy idei, tym gorzej dla niej Wszystkie odkrycia pitagorejczyków przypisywane są Pitagorasowi, właściwie nie ma dowodów na to, że cokolwiek zdziałał on sam Astronomia jako geometria stosowana, muzyka jako arytmetyka 7
8 Kosmogonia pitagorejczyków Liczba 10 jest doskonałością ( ) 10 planet (dodanie Antichton, Antyziemi) Sfery niebieskie o promieniach o określonym stosunku wytwarzają muzykę o określonej harmonii Najdoskonalszym ciałem jest kula stąd Ziemia jest kulą Doskonałe krzywe to okręgi, więc wszystko we Wszechświecie krąży po okręgach Pojęcie kosmos - porządek ład, przeciwieństwo chaosu 8
9 Z czego stworzony jest świat Tales Anaksymander z ognia, jako że wszystko się zmienia, a ogień jest najbardziej zmienny ze wszystkiego Eudoksos z powietrza Heraklit z apejronu, dosłownie bezkresu, z którego przez ruch powstają cztery podstawowe żywioły woda, ziemia, powietrze i ogień Anaksymenes z wody klasyfikacja czterech podstawowych żywiołów Szkoła atomistyczna (Leukippos, Demokryt) z atomów 9
10 Żywioły wg Eudoksosa i Platona Zasady miłość i nienawiść (łączenie i rozdzielanie) Ogień gorący suchy Powietrze Ziemia mokry zimny Woda Do żywiołów Eudoksosa Platon dodał eter Ogień Ziemia Powietrze Woda Eter 10
11 Atomy Leukippos i jego uczeń Demokryt przyroda składa się z atomów, najdrobniejszych cząstek, niepodzielnych i wiecznych, pomiędzy którymi znajduje się próżnia (obserwacja pyłków) Uczniowie Leukipposa i Demokryta nazywali najmniejsze ciała pierwotne atomami i twierdzili, że w zależności od różnicy ich kształtów, położenia i porządku, ciała z nich ułożone są gorące czy ogniste, jeżeli składają się z atomów bardziej ostrych, drobniejszych, których wzajemne położenie jest podobne, podczas gdy ciała zimne i wodniste składają się z atomów przeciwnych; pierwsze są błyszczące i jasne, drugie matowe i ciemne. (Simplikios,komentarz do Fizyki Arystotelesa) Późniejsze rozwinięcie Epikur 11
12 Podstawy fizyki Arystotelesa Dychotomiczny podział świata na części rządzone odmiennymi prawami (Tam Na Górze i Tu Na Dole): Ruch - urzeczywistnienie bytu potencjalnego, wymaga przyczyny Cztery rodzaje przyczyn - materialna, formalna, sprawcza i celowa Pojęcie miejsca naturalnego Ruch przemieszczający: naturalny lub wymuszony ciała ciężkie i lekkie Zasady dynamiki Arystotelesa dla sfery podksiężycowej: sfera podksiężycowa - cztery żywioły, sfera ponadksiężycowa eter Ciało nie poddane wpływom zewnętrznym jest w spoczynku Prędkość ciała wprawianego w ruch przez zewnętrzną przyczynę jest proporcjonalna do działającej siły i odwrotnie proporcjonalna do oporu ośrodka Próżnia nie może istnieć! 12
13 Arystoteles opis ruchu Świat ponadksiężycowy: Świat podksiężycowy ruch wieczny, po okręgu ruch naturalny, czyli dążenie do naturalnego miejsca danej substancji (ziemia na dół, powietrze czy ogień do góry), przy czym ciała cięższe spadają szybciej ruch wymuszony, pod działaniem impetusu po utracie styczności z ciałem popychającym dalej popycha ośrodek, wpadający w ślad ciała Ważne koncepcje do opisu ruchu tak przestrzeń jak i czas są ciągłe, nieskończenie podzielne, nie istnieje najmniejsza jednostka czasu ani przestrzeni 13
14 Rozumowanie a obserwacja Eksperymentu w ogóle brak technika jest dobra dla niewolników i innych niższych form Obserwacje są przydatne: Anaksymenes (meteorologia) Leukippos Anaksagoras (obserwacje nieba i meteorytów) Arystoteles Obserwacje, jako efekt działania zawodnych zmysłów są co najmniej podejrzane, a właściwym działaniem jest rozumowanie Anaksymander (m.in. Ziemia jako walec) Pitagorejczycy eleaci (np. Parmenides) Platon (koncepcja cieni na ścianie, obserwacji ludzkich jako przybliżenia Idei) 14
15 Problem próżni Argumenty za: jak może się poruszać ciało, a zwłaszcza jedno ciało przenikać drugie, jeżeli nie ma pustej przestrzeni pomiędzy ciałami? próżni wymagały absolutnie teorie atomistyczne Przeciw: Parmenides: "Trzeba z konieczności powiedzieć i myśleć, że tylko to, co jest, istnieje. Bo byt jest, a niebytu nie ma". Dalej wnioskował, iż byt jest ciągły (gdyby nie był każda nieciągłość byłaby niebytem), nieruchomy i niezmienny. Arystoteles: ponieważ ciała poruszają się z prędkością zależną od oporu ośrodka, to próżnia, jako ośrodek pusty, dawałaby prędkość nieskończoną sprzeczność ze zdrowym rozsądkiem 15
16 Astronomia grecka Tales przewidywanie zaćmień Słońca (Egipt? Babilon?) Problem pomiaru czasu: Grecki filozof Hezjod w traktacie "Noce i dnie" pisze: "Skoro się córy Atlasa, Plejady, ukażą, czas zacząć Żniwa, a kiedy zachodzą, niech orka się wtedy rozpocznie". Pitagoras Gwiazda Poranna i Wieczorna to to samo, nachylenie orbity Księżyca, Filolaos pitagorejska koncepcja Wszechświata Eudoksos z Knidos podstawowa koncepcja geocentryczna stworzenie modelu sfer (jako teorii matematycznej!) Arystoteles model Eudoksosa jako fizyczny 16
17 Kosmos Eudoksosa i Arystotelesa Ziemia w środku Sfera gwiazd stałych wieczna i niezmienna Arystoteles potrzebował 55 sfer do opisu planet 17
18 Poprawiacze Apolloniusz z Pergi deferent (ze środkiem niekoniecznie w środku Ziemi) i epicykl Hipparch poprawki na bazie obserwacji babilońskich, odkrycie precesji, katalog gwiazd, Arystarch koncepcja heliocentryczna i zakładająca, że Księżyc i planety składają się z tej samej materii co Ziemia (rzadkość i herezja), pomiar odległości do Księżyca i Słońca Ptolemeusz kompletna kodyfikacja systemu deferentów i epicykli, dodanie pojęcia ekwantu. Jego dzieło, Mathematike syntaxis (zwane później Megale syntaxis, a przez Arabów Almagest) na kilkanaście wieków ustanowiło obraz świata, pomimo oczywistych wad (np. obraz Księżyca) 18
19 A gdzie w tym wszystkim fizyka? Obserwacje meteorologiczne Prawa ruchu Arystotelesa Optyka dźwignia, prawo wyporu, pojęcie środka ciężkości Heron Euklides (prawa rozchodzenia się, odbicie światła), Ptolemeusz (m.in. prawo załamania światła) Archimedes Anaksymenes Arystoteles opis wszystkich maszyn prostych, opis atomistyczny problemów ciśnienia powietrza rozszerzalność cieplna wody, powietrza Pomiary Ziemi Eratostenes, Posejdonios 19
20 Technologia 20
21 Mechanizm z Antykithiry Wyłowiony w 1900 roku, właściwie odkryty w 1902 Tarcza z przodu pokazywała ruch Słońca i Księżyca na tle zodiaku. Ukazywała też fazy Księżyca (przy pomocy cykli odkrytych przez Metona i Kallipposa). Autor Hipparch? Posejdonios? Archimedes? W każdym razie najprawdopodobniej z Rodos 21
Starożytne poglądy na czas, ruch i przestrzeń (cz. II)
Starożytne poglądy na czas, ruch i przestrzeń (cz. II) 1. Cele lekcji a) Wiadomości 1. Uczeń zna poglądy Arystotelesa. 2. Uczeń zna poglądy pitagorejczyków. 3. Uczeń zna poglądy Demokryta. b) Umiejętności
14. Obrazy świata II. Starożytność i średniowiecze. Andrzej Wiśniewski Wstęp do filozofii Materiały do wykładu
14. Obrazy świata II Starożytność i średniowiecze Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu Starożytność wytworzyła wiele teorii. My jednak skupimy się na
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
14. Obrazy świata II
14. Obrazy świata II Starożytność i średniowiecze Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu 2015/2016 Starożytność wytworzyła wiele teorii. My jednak skupimy
NIE FAŁSZOWAĆ FIZYKI!
* Jacek Własak NIE FAŁSZOWAĆ FIZYKI! Zdania: 1. Ziemia krąży wokół Słońca 2. Słońce krąży wokół Ziemi Są jednakowo prawdziwe!!! RUCH JEST WZGLĘDNY. Podział Fizyki 1. Budowa materii i oddziaływania 2. Mechanika
Filozofia, Pedagogika, Wykład III - Filozofia archaiczna
Filozofia, Pedagogika, Wykład III - Filozofia archaiczna 2009-09-04 Plan wykładu 1 Jońska filozofia przyrody - wprowadzenie 2 3 Jońska filozofia przyrody - problematyka Centralna problematyka filozofii
(ok p.n.e.)
(ok. 572-497 p.n.e.) Pitagoras pochodził z wyspy Samos. Znany jest głównie z słynnego twierdzenia o trójkącie prostokątnym, powszechnie zwanego jako twierdzenie Pitagorasa. Twierdzenie Pitagorasa ilustracja
Filozofia, Socjologia, Wykład II - Podział filozofii. Filozofia archaiczna
Filozofia, Socjologia, Wykład II - Podział filozofii. Filozofia archaiczna 2011-10-01 Plan wykładu 1 Klasyczny podział dyscyplin filozoficznych Metafizyka Ontologia Epistemologia Logika Etyka Estetyka
Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.
Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna
p.n.e. n.e. 600 500 400 300 200 100
Nauka grecka p.n.e. n.e. 600 500 400 300 200 100 1 Tales Anaksymander Anaksymenes Heraklit Pitagoras Parmenides Anaksagoras Empedokles Leukippos Demokryt Epikur Sokrates Platon Arystoteles Eudoksos Euklides
Fizyka i Chemia Ziemi
Fizyka i Chemia Ziemi Temat 4: Ruch geocentryczny i heliocentryczny planet T.J. Jopek jopek@amu.edu.pl IOA UAM Układ Planetarny - klasyfikacja. Planety grupy ziemskiej: Merkury Wenus Ziemia Mars 2. Planety
NAUKA I TECHNIKA W GRECJI I RZYMIE
NAUKA I TECHNIKA W GRECJI I RZYMIE p.n.e. 600 500 400 300 200 100 1 Tales Anaksymander Anaksymenes Heraklit Pitagoras Parmenides Anaksagoras Empedokles Leukippos Demokryt Budda Kung-tsy Epikur Sokrates
Historia myśli naukowej. Ewolucja poglądów związanych z budową Wszechświata. dr inż. Romuald Kędzierski
Historia myśli naukowej Ewolucja poglądów związanych z budową Wszechświata dr inż. Romuald Kędzierski Wszechświat według uczonych starożytnych Starożytny Babilon -Ziemia jest nieruchomą półkulą, która
Fizyka i Chemia Ziemi
Fizyka i Chemia Ziemi Ruch geocentryczny i heliocentryczny planet T.J. Jopek jopek@amu.edu.pl IOA UAM 013-01-4 T.J.Jopek, Fizyka i chemia Ziemi 1 Układ Planetarny - klasyfikacja 1. Planety grupy ziemskiej:
Filozofia przyrody - Filozofia Eleatów i Demokryta
5 lutego 2012 Plan wykładu 1 Filozofia Parmenidesa z Elei Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej filozofii 2 3 4 Materializm Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej
Filozofia, Historia, Wykład V - Filozofia Arystotelesa
Filozofia, Historia, Wykład V - Filozofia Arystotelesa 2010-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Podział nauk Arystoteles podzielił wszystkie dyscypliny wiedzy na trzy grupy:
Filozofia przyrody, Wykład V - Filozofia Arystotelesa
Filozofia przyrody, Wykład V - Filozofia Arystotelesa 2011-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Różnice w metodzie uprawiania nauki Krytyka platońskiej teorii idei Podział
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
Grecki matematyk, filozof, mistyk PITAGORAS
Grecki matematyk, filozof, mistyk PITAGORAS FAKTY I MITY Dotarcie do prawdy związanej z życiem Pitagorasa jest bardzo trudne, ponieważ nie zostawił on po sobie żadnego pisma. Wywarł jednak ogromny wpływ
Elementy astronomii w nauczaniu przyrody. dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK 2011
Elementy astronomii w nauczaniu przyrody dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK 2011 Szkic referatu Krótki przegląd wątków tematycznych przedmiotu Przyroda w podstawie MEN Astronomiczne zasoby
Jak poznawaliśmy. Marek Stęślicki. Instytut Astronomiczny UWr
Jak poznawaliśmy Wszechświat Marek Stęślicki Instytut Astronomiczny UWr Fot. Babak Tafreshi Prehistoria Fot. Josch Hambsch Prehistoria Czas ekspozycji - 11h Prehistoria Fot. Justin Quinnell Ruch roczny
Filozofia, Historia, Wykład IV - Platońska teoria idei
Filozofia, Historia, Wykład IV - Platońska teoria idei 2010-10-01 Tematyka wykładu 1 Metafora jaskini 2 Świat materialny - świat pozoru Świat idei - świat prawdziwy Relacja między światem idei i światem
STRUKTURA REWOLUCJI NAUKOWYCH. Rafał Demkowicz-Dobrzański Centrum Fizyki Teoretycznej PAN
STRUKTURA REWOLUCJI NAUKOWYCH Rafał Demkowicz-Dobrzański Centrum Fizyki Teoretycznej PAN WSZECHŚWIAT CXXVI Festiwal Nauki, Rzym, 180AD OBRÓT KRYSZTAŁOWEJ SFERY GWIAZD CXXVI Festiwal Nauki, Rzym, 180AD
Filozofia, Historia, Wykład VIII - Wprowadzenie do filozofii nowożytnej
Filozofia, Historia, Wykład VIII - Wprowadzenie do filozofii nowożytnej 2010-10-01 Plan wykładu Epistemologia centralną dyscypliną filozoficzną W filozofii starożytnej i średniowiecznej dominującą rolę
Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN
Pozorne orbity planet Z notatek prof. Antoniego Opolskiego Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Początek Młody miłośnik astronomii patrzy w niebo Młody miłośnik astronomii
Są to liczby najpowszechniej używane w życiu codziennym.
NR1 LICZBY RZECZYWISTE ZASTOSOWANIE: Są to liczby najpowszechniej używane w życiu codziennym. Określanie ilości lat, Określanie ilości osób znajdujących się w pokoju i tym podobne, Określanie wzrostu,
SCENARIUSZ LEKCJI DO DZIAŁU:
Autorka: Małgorzata Kacprzykowska SCENARIUSZ LEKCJI DO DZIAŁU: Wprowadzenie do filozofii Temat (4): Dlaczego zadajemy pytania? Cele lekcji: poznanie istoty pytań filozoficznych, stawianie pytań filozoficznych,
Cud grecki. Cud grecki. Wrocław, 2 marca 2016
Wrocław, 2 marca 2016 Wykształcenie podstawowe Spośród wielu twierdzeń i faktów pochodzących ze starożytnej Grecji w szkole na lekcjach matematyki pojawiają się: Twierdzenie Talesa Wykształcenie podstawowe
ARGUMENTY KOSMOLOGICZNE. Sformułowane na gruncie nauk przyrodniczych
ARGUMENTY KOSMOLOGICZNE Sformułowane na gruncie nauk przyrodniczych O CO CHODZI W TYM ARGUMENCIE Argument ten ma pokazać, że istnieje zewnętrzna przyczyna wszechświata o naturze wyższej niż wszystko, co
Metody badania kosmosu
Metody badania kosmosu Zakres widzialny Fale radiowe i mikrofale Promieniowanie wysokoenergetyczne Detektory cząstek Pomiar sił grawitacyjnych Obserwacje prehistoryczne Obserwatorium słoneczne w Goseck
Spór o atom droga do mechaniki kwantowej. Wpływ filozofii antycznej na współczesną fizykę według Wernera Heisenberga
Semina Nr 2 Scientiarum 2003 Spór o atom droga do mechaniki kwantowej. Wpływ filozofii antycznej na współczesną fizykę według Wernera Heisenberga Żeby zrozumieć późniejszych filozofów, trzeba się uczyć
ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi.
ETAP II Konkurencja I Ach te definicje! (każda poprawnie ułożona definicja warta jest aż dwa punkty) Astronomia to nauka o ciałach niebieskich zajmująca się badaniem ich położenia, ruchów, odległości i
DYNAMIKA dr Mikolaj Szopa
dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo
NAUKA I TECHNIKA W GRECJI I RZYMIE
NAUKA I TECHNIKA W GRECJI I RZYMIE p.n.e. 600 500 400 300 200 100 1 Tales Anaksymander Anaksymenes Heraklit Pitagoras Parmenides Anaksagoras Empedokles Leukippos Demokryt Budda Kung-tsy Epikur Sokrates
I.Pojęcie ruchu w historii filozofii i w naukach przyrodniczych.
I.Pojęcie ruchu w historii filozofii i w naukach przyrodniczych. Ruch jest to zjawisko występujące w przyrodzie, polegające na zmianie położenia przez ciało względem danego punktu. 1. Rozwój poglądów na
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
GSP077 Pakiet. KArty pracy. MateMatyka. Ekstraklasa 6klasisty matematyka kpracy 6 pak 1.indd 1
GSP077 klasa Pakiet 6 KArty pracy MateMatyka Ekstraklasa 6klasisty matematyka kpracy 6 pak.indd 9/24/3 2:2 PM Instrukcja matematyka Uważnie czytaj teksty zadań i polecenia. Rozwiązania zapisz długopisem
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta
Cud grecki cz. Cud grecki cz. 2. Wrocław, 9 marca 2016
2 Wrocław, 9 marca 2016 Sokrates i Platon Sokrates (Ateny, 469-399) nauczał na ulicach Aten, zaczepiając napotkanych ludzi - często zamożnych i wpływowych - i rozmawiał z nimi o ważnych dla życia społecznego
ASTRONOMIA Klasa Ia Rok szkolny 2012/2013
1 ASTRONOMIA Klasa Ia Rok szkolny 2012/2013 NR Temat Konieczne 1 Niebo w oczach dawnych kultur i cywilizacji - wie, jakie były wyobrażenia starożytnych (zwłaszcza starożytnych Greków) na budowę Podstawowe
Warunki uzyskania oceny wyższej niż przewidywana ocena końcowa.
NAUCZYCIEL FIZYKI mgr Beata Wasiak KARTY INFORMACYJNE Z FIZYKI DLA POSZCZEGÓLNYCH KLAS GIMNAZJUM KLASA I semestr I DZIAŁ I: KINEMATYKA 1. Pomiary w fizyce. Umiejętność dokonywania pomiarów: długości, masy,
Historia Fizyki i Astronomii
1 2 Wiedza prehistoryczna 3 Wiedza prehistoryczna Stonehenge 4 5 Wiedza prehistoryczna 6 7 Wiedza prehistoryczna Chankillo, Peru 8 Wiedza prehistoryczna Chankillo, Peru 9 Wiedza prehistoryczna Chankillo,
Twierdzenie Pitagorasa. Autor. Wstęp. Pitagoras. Dariusz Kulma
Twierdzenie Pitagorasa Autor Dariusz Kulma Wstęp Myli się ten kto myśli, że najbardziej znane twierdzenie na świecie dotyczące geometrii czyli twierdzenie Pitagorasa zawdzięczamy tylko samemu Pitagorasowi.
Spełnienie wymagań poziomu oznacza, że uczeń ponadto:
Fizyka LO - 1, zakres podstawowy R - treści nadobowiązkowe. Wymagania podstawowe odpowiadają ocenom dopuszczającej i dostatecznej, ponadpodstawowe dobrej i bardzo dobrej Wymagania podstawowe Spełnienie
WSZECHŚWIAT = KOSMOS
Wszechświat czyli po łacinie Uniwersum jest tym samym co Kosmos w języku i rozumieniu Greków. WSZECHŚWIAT = KOSMOS Grecy i my dziś definiujemy: KOSMOS to WSZYSTKO Nie wolno wskazywać lub wyobrażać sobie
mgr Ewa Socha Gimnazjum Miejskie w Darłowie
mgr Ewa Socha Gimnazjum Miejskie w Darłowie LP. PLAN WYNIKOWY Z FIZYKI DLA II KL. GIMNAZJUM MA ROK SZKOLNY 2003/04 TEMATYKA LEKCJI LICZBA GODZIN 1. Lekcja organizacyjna. 1 2. Opis ruchów prostoliniowych.
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;
1. Dyscypliny filozoficzne. Andrzej Wiśniewski Wstęp do filozofii Materiały do wykładu 2015/2016
1. Dyscypliny filozoficzne Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu 2015/2016 Pochodzenie nazwy filozofia Wyraz filozofia pochodzi od dwóch greckich słów:
Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.
I ABC FIZYKA 2018/2019 Tematyka kartkówek oraz zestaw zadań na sprawdzian - Dział I Grawitacja 1.1 1. Podaj główne założenia teorii geocentrycznej Ptolemeusza. 2. Podaj treść II prawa Keplera. 3. Odpowiedz
"Bialska Liga Matematyczna Gimnazjalistów" II EDYCJA Harmonogram i zakres materiału
"Bialska Liga Matematyczna Gimnazjalistów" II EDYCJA Harmonogram i zakres materiału Etap I Termin konkursu: 15 października 2014 r. godz. 17.00 Wyniki konkursu: do 25 października 2014r. 1. Matematyka-
Platon ( ) Herma Platona (Muzeum Kapitolińskie w Rzymie)
Platon (427-347) Herma Platona (Muzeum Kapitolińskie w Rzymie) Życie Platona ur. 7 maja 427 (matka - Periktione, ojciec - Ariston) pierwsze kontakty z filozofią u Kratylosa (skrajny heraklityzm) spotyka
Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;
Geografia listopad Liceum klasa I, poziom rozszerzony XI Ziemia we wszechświecie Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;
Grawitacja - powtórka
Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego
RENÉ DESCARTES (KARTEZJUSZ)
(1596-1650) mal. Frans Hals (1648) RENÉ DESCARTES (KARTEZJUSZ) NAJWAŻNIEJSZE DZIEŁA Discours de la Méthode (Rozprawa o metodzie) 1637 Meditationes de prima philosophia (Medytacje o filozofii pierwszej)
Fizyka współczesna a ontologie Demokryta i Platona
Fizyka współczesna a ontologie Demokryta i Platona Współczesne interpretacje zjawisk mikroświata niewiele mają wspólnego z prawdziwie materialistyczną filozofią. Można właściwie powiedzieć, że fizyka atomowa
Wirtualny Hogwart im. Syriusza Croucha
Wirtualny Hogwart im. Syriusza Croucha Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. EGZAMIN STANDARDOWYCH UMIEJĘTNOŚCI MAGICZNYCH ASTRONOMIA LIPIEC 2013 Instrukcja dla zdających:
Cud grecki. Cud grecki. Wrocław, 5 marca 2014
Wrocław, 5 marca 2014 Wykształcenie podstawowe Spośród wielu twierdzeń i faktów pochodzących ze starożytnej Grecji w szkole na lekcjach matematyki pojawiają się: Twierdzenie Talesa Wykształcenie podstawowe
Ćwiczenie 402. Wyznaczanie siły wyporu i gęstości ciał. PROSTOPADŁOŚCIAN (wpisz nazwę ciała) WALEC (wpisz numer z wieczka)
2012 Katedra Fizyki SGGW Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Ćwiczenie 402 Godzina... Wyznaczanie siły wyporu i gęstości ciał WIELKOŚCI FIZYCZNE JEDNOSTKI WALEC (wpisz
Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22.
Omnibus matematyczny 1. Cele lekcji a) Wiadomości Uczeń: zna pojęcia matematyczne z zakresu szkoły podstawowej i gimnazjum. b) Umiejętności Uczeń: potrafi podać odpowiednie pojęcie matematyczne na podstawie
Wielcy rewolucjoniści nauki
Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy
Dlaczego matematyka jest wszędzie?
Festiwal Nauki. Wydział MiNI PW. 27 września 2014 Dlaczego matematyka jest wszędzie? Dlaczego świat jest matematyczny? Autor: Paweł Stacewicz (PW) Czy matematyka jest WSZĘDZIE? w życiu praktycznym nie
O sięganiu głębiej CZWARTY WYMIAR
O sięganiu głębiej CZWARTY WYMIAR Czym jest wymiar? Flatlandia; czyli kraina płaszczaków Edwin A. Abbott Życie w krainie 2. wymiaru Świat w którym żył Kwadrat jest kształtu kartki papieru, a zaludniają
ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE
ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE 1. Ruch planet dookoła Słońca Najjaśniejszą gwiazdą na niebie jest Słońce. W przeszłości debatowano na temat związku Ziemi i Słońca, a także innych
1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5.
Budowa i ewolucja Wszechświata Autor: Weronika Gawrych Spis treści: 1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd
JAK MATEMATYKA POZWALA OPISYWAĆ WSZECHŚWIAT. 1 Leszek Błaszkiewicz
JAK MATEMATYKA POZWALA OPISYWAĆ WSZECHŚWIAT 1 Leszek Błaszkiewicz 2 Matematyka w Astrometrii Matematyka w Astrometrii Astrometria (astronomia pozycyjna) najstarszy dział astronomii zajmujący się pomiarami
14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.
Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym
Grawitacja okiem biol chemów i Linuxów.
Grawitacja okiem biol chemów i Linuxów. Spis treści 1. Odrobina teorii 2. Prawo powszechnego ciążenia 3. Geotropizm 4. Grawitacja na małą skalę ciężkość ciał 5. Grawitacja nie z tej Ziemi 6. Grawitacja
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne
SP Klasa VI, temat 2
SP Klasa VI, temat 2 SP Klasa VI, temat 2 SP Klasa VI, temat 2 SP Klasa VI, temat 2 SP Klasa VI, temat 2 SP Klasa VI, temat 2 SP Klasa VI, temat 2 SP Klasa VI, temat 2 zagiąć NAUKOWCY SP Klasa VI, temat
FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N
OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P
Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia
Powtórzenie wiadomości z klasy I Temat: Ruchy prostoliniowe. Obliczenia Ruch jest względny 1.Ruch i spoczynek są pojęciami względnymi. Można jednocześnie być w ruchu względem jednego ciała i w spoczynku
CERTYFIKAT UKOŃCZENIA
CERTYFIKAT UKOŃCZENIA Szkoły Magii i Czarodziejstwa w Hogwarcie 26 KWIETNIA 2015 SMICHOGWART.PL dyr. Nick Ramsey & vice dyr. Samantha Sinegan Zaświadczenie o ukończeniu szkoły Niniejszym dokumentem zaświadcza
Ogólna teoria względności - wykład dla przyszłych uczonych, r. Albert Einstein
W dobrej edukacji nie chodzi o wkuwanie wielu faktów, lecz o wdrożenie umysłu do myślenia Albert Einstein ELEMENTY OGÓLNEJ TEORII WZGLĘDNOŚCI Podstawa tej teorii zasada równoważności Zakrzywienie przestrzeni
Cud grecki. Cud grecki. Wrocław, 12 X 2012
Wrocław, 12 X 2012 Wykształcenie podstawowe Spośród wielu twierdzeń i faktów pochodzących ze starożytnej Grecji w szkole na lekcjach matematyki pojawiają się: Twierdzenie Talesa Twierdzenie Pitagorasa
GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA.
MODUŁ 6 SCENARIUSZ TEMATYCZNY GRAWITACJA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski
PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym
Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu
Filozofia, ISE, Wykład VII - Platońska teoria idei cz. 2.
Filozofia, ISE, Wykład VII - Platońska teoria idei cz. 2. Artur Machlarz 2011-10-01 Plan wykładu 1 Czym według Platona jest wiedza prawdziwa i jak ją osiągnąć? 2 3 Protagoras - człowiek jest miarą wszechrzeczy...
ZASADY DYNAMIKI NEWTONA
ZASADY DYNAMIKI NEWTONA I. Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą to ciało pozostaje w spoczynku lub porusza sie ruchem jednostajnym po linii prostej. Ta zasada często
Czy i/lub w jakim sensie można uważać, że świat jest matematyczny? Wprowadzenie do dyskusji J. Lubacz, luty 2018
Czy i/lub w jakim sensie można uważać, że świat jest matematyczny? Wprowadzenie do dyskusji J. Lubacz, luty 2018 Do czego odnoszą się poniższe stwierdzenia? Do tego, czym jest matematyka dla świata, w
GRAWITACJA I ELEMENTY ASTRONOMII
MODUŁ 1 SCENARIUSZ TEMATYCZNY GRAWITACJA I ELEMENTY ASTRONOMII OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES PODSTAWOWY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI
FIZYKA IV etap edukacyjny zakres podstawowy
FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie
Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności
Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
Kontrola wiadomości Grawitacja i elementy astronomii
Kontrola wiadomości Grawitacja i elementy astronomii I LO im. Stefana Żeromskiego w Lęborku 15 października Kartkówka w klasie IA - 20 minut Grupa 1 1 Wykonaj rysunek ilustrujący sposób wyznaczania odległości
Kinematyka: opis ruchu
Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe
Wykład 5. Początki nauki nowożytnej część 1 (prawo powszechnego ciążenia)
Wykład 5 Początki nauki nowożytnej część 1 (prawo powszechnego ciążenia) 1 Nauka średniowiecza - podsum. Filozofia i metodologia Astronomia wprowadzenie eksperymentu i analizy ilościowej z obserwacji prawa
Filozofia, ISE, Wykład V - Filozofia Eleatów.
2011-10-01 Plan wykładu 1 Filozofia Parmenidesa z Elei Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej filozofii 2 3 Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej filozofii
Kinematyka relatywistyczna
Kinematyka relatywistyczna Fizyka I (B+C) Wykład V: Prędkość światła historia pomiarów doświadczenie Michelsona-Morleya prędkość graniczna Teoria względności Einsteina Dylatacja czasu Prędkość światła
SYLABUS. Malarstwa. Malarstwo. Kierunek studiów Specjalność Forma studiów
SYLABUS Nazwa przedmiotu: Nazwa jednostki prowadzącej przedmiot: Katedra: Kierunek: Poziom kształcenia: Profil kształcenia: Liczba punktów ETCS za zaliczenie przedmiotu: Podstawy filozofii Wyższa Szkoła
Ziemia. jako obiekt fizyczny. Tomasz Sowiński Centrum Fizyki Teoreytcnzej PAN
Ziemia jako obiekt fizyczny Tomasz Sowiński Centrum Fizyki Teoreytcnzej PAN Ziemia okiem fizyka XII Festiwal Nauki, 27 września 2008 Ziemia wydaje się płaska! Texas, USA Ziemia jest płaska i kończy się
EGZAMIN MATURALNY 2011 FILOZOFIA
Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 2011 FILOZOFIA POZIOM ROZSZERZONY MAJ 2011 2 Egzamin maturalny z filozofii poziom rozszerzony Zadanie 1. (0 1) Obszar standardów B. Opis wymagań
Fizyka z astronomią. Klasa I C Profil matematyczny
Fizyka z astronomią Klasa I C Profil matematyczny Klasa matematyczna Przedmioty rozszerzone matematyka, fizyka Języki obce: język angielski, do wyboru język niemiecki lub rosyjski Obowiązkowe przedmioty
Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
DYNAMIKA SIŁA I JEJ CECHY
DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia
Optyka 2012/13 powtórzenie
strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono
Tytuł. Autor. Dział. Innowacyjne cele edukacyjne. Czas. Przebieg. Etap 1 - Wprowadzenie z rysem historycznym i dyskusją
Tytuł Kto nie zna geometrii, niech tu nie wchodzi czyli geometria brył platońskich Autor Dariusz Kulma Dział Bryły Innowacyjne cele edukacyjne Uczeń zapoznaje się z kolejnymi wielościanami foremnymi. Czas
opracowanie mgr M. Czerwińska
opracowanie mgr M. Czerwińska lekcja wprowadzająca informacje o Mikołaju Koperniku, historia odkrycia tablicy astronomicznej, organizacja zespołu badawczego eksperyment odtwarzający obserwacje M. Kopernika
Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował.
Kinematyka Ruch Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Ruch rozumiany jest jako zmiana położenia jednych ciał względem innych, które nazywamy