Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 9
|
|
- Mirosław Urbański
- 8 lat temu
- Przeglądów:
Transkrypt
1 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś Wykład 9
2 Spis treści 14 Podpis cyfrowy Przypomnienie Cechy podpisu Podpis z wykorzystaniem jednokierunkowej funkcji hashującej Schemat ElGamala podpisu cyfrowego DSA Digital Signature Algorithm Ślepe podpisy cyfrowe Niezaprzeczalne podpisy cyfrowe
3 14 Podpis cyfrowy 14.1 Przypomnienie System kryptograficzny z kluczem publicznym może być wykorzystany do podpisywania dokumentów cyfrowych. Alicja szyfruje dokument używając swojego klucza prywatnego, podpisując w ten sposób dokument Alicja przesyła tak podpisany dokument do Bolka Bolek deszyfruje dokument używając klucza publicznego Alicji, weryfikując w ten sposób podpis Alicji
4 14 Podpis cyfrowy 14.1 Przypomnienie System kryptograficzny z kluczem publicznym może być wykorzystany do podpisywania dokumentów cyfrowych. Alicja szyfruje dokument używając swojego klucza prywatnego, podpisując w ten sposób dokument Alicja przesyła tak podpisany dokument do Bolka Bolek deszyfruje dokument używając klucza publicznego Alicji, weryfikując w ten sposób podpis Alicji
5 14 Podpis cyfrowy 14.1 Przypomnienie System kryptograficzny z kluczem publicznym może być wykorzystany do podpisywania dokumentów cyfrowych. Alicja szyfruje dokument używając swojego klucza prywatnego, podpisując w ten sposób dokument Alicja przesyła tak podpisany dokument do Bolka Bolek deszyfruje dokument używając klucza publicznego Alicji, weryfikując w ten sposób podpis Alicji
6 14 Podpis cyfrowy 14.1 Przypomnienie System kryptograficzny z kluczem publicznym może być wykorzystany do podpisywania dokumentów cyfrowych. Alicja szyfruje dokument używając swojego klucza prywatnego, podpisując w ten sposób dokument Alicja przesyła tak podpisany dokument do Bolka Bolek deszyfruje dokument używając klucza publicznego Alicji, weryfikując w ten sposób podpis Alicji
7 14 Podpis cyfrowy 14.1 Przypomnienie System kryptograficzny z kluczem publicznym może być wykorzystany do podpisywania dokumentów cyfrowych. Alicja szyfruje dokument używając swojego klucza prywatnego, podpisując w ten sposób dokument Alicja przesyła tak podpisany dokument do Bolka Bolek deszyfruje dokument używając klucza publicznego Alicji, weryfikując w ten sposób podpis Alicji
8 14.2 Cechy podpisu Podpis jest prawdziwy; Bolek weryfikuje go deszyfrując kryptogram kluczem publicznym Alicji Podpis nie może być sfałszowany; tylko Alicja zna jej klucz prywatny Podpis nie może być przeniesiony do innego dokumentu Podpisany dokument nie może być zmieniony; zmieniony dokument nie da się rozszyfrować kluczem publicznym Alicji Podpis jest niezaprzeczalny; Wada: podpis jest conajmniej tak długi jak sam dokument
9 14.2 Cechy podpisu Podpis jest prawdziwy; Bolek weryfikuje go deszyfrując kryptogram kluczem publicznym Alicji Podpis nie może być sfałszowany; tylko Alicja zna jej klucz prywatny Podpis nie może być przeniesiony do innego dokumentu Podpisany dokument nie może być zmieniony; zmieniony dokument nie da się rozszyfrować kluczem publicznym Alicji Podpis jest niezaprzeczalny; Wada: podpis jest conajmniej tak długi jak sam dokument
10 14.2 Cechy podpisu Podpis jest prawdziwy; Bolek weryfikuje go deszyfrując kryptogram kluczem publicznym Alicji Podpis nie może być sfałszowany; tylko Alicja zna jej klucz prywatny Podpis nie może być przeniesiony do innego dokumentu Podpisany dokument nie może być zmieniony; zmieniony dokument nie da się rozszyfrować kluczem publicznym Alicji Podpis jest niezaprzeczalny; Wada: podpis jest conajmniej tak długi jak sam dokument
11 14.2 Cechy podpisu Podpis jest prawdziwy; Bolek weryfikuje go deszyfrując kryptogram kluczem publicznym Alicji Podpis nie może być sfałszowany; tylko Alicja zna jej klucz prywatny Podpis nie może być przeniesiony do innego dokumentu Podpisany dokument nie może być zmieniony; zmieniony dokument nie da się rozszyfrować kluczem publicznym Alicji Podpis jest niezaprzeczalny; Wada: podpis jest conajmniej tak długi jak sam dokument
12 14.2 Cechy podpisu Podpis jest prawdziwy; Bolek weryfikuje go deszyfrując kryptogram kluczem publicznym Alicji Podpis nie może być sfałszowany; tylko Alicja zna jej klucz prywatny Podpis nie może być przeniesiony do innego dokumentu Podpisany dokument nie może być zmieniony; zmieniony dokument nie da się rozszyfrować kluczem publicznym Alicji Podpis jest niezaprzeczalny; Wada: podpis jest conajmniej tak długi jak sam dokument
13 14.2 Cechy podpisu Podpis jest prawdziwy; Bolek weryfikuje go deszyfrując kryptogram kluczem publicznym Alicji Podpis nie może być sfałszowany; tylko Alicja zna jej klucz prywatny Podpis nie może być przeniesiony do innego dokumentu Podpisany dokument nie może być zmieniony; zmieniony dokument nie da się rozszyfrować kluczem publicznym Alicji Podpis jest niezaprzeczalny; Wada: podpis jest conajmniej tak długi jak sam dokument
14 14.2 Cechy podpisu Podpis jest prawdziwy; Bolek weryfikuje go deszyfrując kryptogram kluczem publicznym Alicji Podpis nie może być sfałszowany; tylko Alicja zna jej klucz prywatny Podpis nie może być przeniesiony do innego dokumentu Podpisany dokument nie może być zmieniony; zmieniony dokument nie da się rozszyfrować kluczem publicznym Alicji Podpis jest niezaprzeczalny; Wada: podpis jest conajmniej tak długi jak sam dokument
15 14.3 Podpis z wykorzystaniem jednokierunkowej funkcji hashującej Alicja używa funkcji hashującej do dokumentu, który ma podpisać, otrzymując skrót ( odcisk palca ) dokumentu Alicja podpisuje skrót dokumentu szyfrując go swoim kluczem prywatnym Alicja przesyła Bolkowi dokument i podpisany skrót Bolek używa tej samej funkcji hashującej do otrzymania skrótu dokumentu, a następnie deszyfruje podpisany skrót używając klucza publicznego Alicji; jeśli zdeszyfrowany skrót zgadza się z otrzymanym przez niego od Alicji to podpis jest prawdziwy
16 14.3 Podpis z wykorzystaniem jednokierunkowej funkcji hashującej Alicja używa funkcji hashującej do dokumentu, który ma podpisać, otrzymując skrót ( odcisk palca ) dokumentu Alicja podpisuje skrót dokumentu szyfrując go swoim kluczem prywatnym Alicja przesyła Bolkowi dokument i podpisany skrót Bolek używa tej samej funkcji hashującej do otrzymania skrótu dokumentu, a następnie deszyfruje podpisany skrót używając klucza publicznego Alicji; jeśli zdeszyfrowany skrót zgadza się z otrzymanym przez niego od Alicji to podpis jest prawdziwy
17 14.3 Podpis z wykorzystaniem jednokierunkowej funkcji hashującej Alicja używa funkcji hashującej do dokumentu, który ma podpisać, otrzymując skrót ( odcisk palca ) dokumentu Alicja podpisuje skrót dokumentu szyfrując go swoim kluczem prywatnym Alicja przesyła Bolkowi dokument i podpisany skrót Bolek używa tej samej funkcji hashującej do otrzymania skrótu dokumentu, a następnie deszyfruje podpisany skrót używając klucza publicznego Alicji; jeśli zdeszyfrowany skrót zgadza się z otrzymanym przez niego od Alicji to podpis jest prawdziwy
18 14.3 Podpis z wykorzystaniem jednokierunkowej funkcji hashującej Alicja używa funkcji hashującej do dokumentu, który ma podpisać, otrzymując skrót ( odcisk palca ) dokumentu Alicja podpisuje skrót dokumentu szyfrując go swoim kluczem prywatnym Alicja przesyła Bolkowi dokument i podpisany skrót Bolek używa tej samej funkcji hashującej do otrzymania skrótu dokumentu, a następnie deszyfruje podpisany skrót używając klucza publicznego Alicji; jeśli zdeszyfrowany skrót zgadza się z otrzymanym przez niego od Alicji to podpis jest prawdziwy
19 14.3 Podpis z wykorzystaniem jednokierunkowej funkcji hashującej Alicja używa funkcji hashującej do dokumentu, który ma podpisać, otrzymując skrót ( odcisk palca ) dokumentu Alicja podpisuje skrót dokumentu szyfrując go swoim kluczem prywatnym Alicja przesyła Bolkowi dokument i podpisany skrót Bolek używa tej samej funkcji hashującej do otrzymania skrótu dokumentu, a następnie deszyfruje podpisany skrót używając klucza publicznego Alicji; jeśli zdeszyfrowany skrót zgadza się z otrzymanym przez niego od Alicji to podpis jest prawdziwy
20 Podpis jest znacznie krótszy od dokumentu Można sprawdzić istnienie podpisu bez oglądania samego dokumentu
21 Podpis jest znacznie krótszy od dokumentu Można sprawdzić istnienie podpisu bez oglądania samego dokumentu
22 14.4 Schemat ElGamala podpisu cyfrowego Generowanie kluczy Alicja wybiera dużą liczbę pierwszą p oraz liczbę g Z p (generator grupy multiplikatywnej Z p ) Alicja wybiera liczbę losową 0 < a < p 1 oraz oblicza b g a (mod p) Kluczem publicznym Alicji są liczby {b, g, p} zaś kluczem prywatnym liczby {a, g, p}
23 14.4 Schemat ElGamala podpisu cyfrowego Generowanie kluczy Alicja wybiera dużą liczbę pierwszą p oraz liczbę g Z p (generator grupy multiplikatywnej Z p ) Alicja wybiera liczbę losową 0 < a < p 1 oraz oblicza b g a (mod p) Kluczem publicznym Alicji są liczby {b, g, p} zaś kluczem prywatnym liczby {a, g, p}
24 14.4 Schemat ElGamala podpisu cyfrowego Generowanie kluczy Alicja wybiera dużą liczbę pierwszą p oraz liczbę g Z p (generator grupy multiplikatywnej Z p ) Alicja wybiera liczbę losową 0 < a < p 1 oraz oblicza b g a (mod p) Kluczem publicznym Alicji są liczby {b, g, p} zaś kluczem prywatnym liczby {a, g, p}
25 14.4 Schemat ElGamala podpisu cyfrowego Generowanie kluczy Alicja wybiera dużą liczbę pierwszą p oraz liczbę g Z p (generator grupy multiplikatywnej Z p ) Alicja wybiera liczbę losową 0 < a < p 1 oraz oblicza b g a (mod p) Kluczem publicznym Alicji są liczby {b, g, p} zaś kluczem prywatnym liczby {a, g, p}
26 Podpisywanie Alicja wybiera liczbę losową k (tajną), taką, że 0 < k < p 1 oraz NW D(k, p 1) = 1 Alicja oblicza r = g k (mod p), k 1 (mod p 1), s = k 1 [ H(M) ar ] (mod p 1). Podpisem Alicji dla wiadomości M jest para liczb {r, s}
27 Podpisywanie Alicja wybiera liczbę losową k (tajną), taką, że 0 < k < p 1 oraz NW D(k, p 1) = 1 Alicja oblicza r = g k (mod p), k 1 (mod p 1), s = k 1 [ H(M) ar ] (mod p 1). Podpisem Alicji dla wiadomości M jest para liczb {r, s}
28 Podpisywanie Alicja wybiera liczbę losową k (tajną), taką, że 0 < k < p 1 oraz NW D(k, p 1) = 1 Alicja oblicza r = g k (mod p), k 1 (mod p 1), s = k 1 [ H(M) ar ] (mod p 1). Podpisem Alicji dla wiadomości M jest para liczb {r, s}
29 Podpisywanie Alicja wybiera liczbę losową k (tajną), taką, że 0 < k < p 1 oraz NW D(k, p 1) = 1 Alicja oblicza r = g k (mod p), k 1 (mod p 1), s = k 1 [ H(M) ar ] (mod p 1). Podpisem Alicji dla wiadomości M jest para liczb {r, s}
30 Weryfikacja Bolek aby stwierdzić prawdziwość podpisu Alicji pobiera klucz publiczny Alicji {b, g, p} Bolek sprawdza czy 0 < r < p, jeśli nie, podpis nie jest prawdziwy Bolek oblicza x 1 = b r r s (mod p), x 2 = g H(M) (mod p). Bolek akceptuje podpis jeśli x 1 = x 2
31 Weryfikacja Bolek aby stwierdzić prawdziwość podpisu Alicji pobiera klucz publiczny Alicji {b, g, p} Bolek sprawdza czy 0 < r < p, jeśli nie, podpis nie jest prawdziwy Bolek oblicza x 1 = b r r s (mod p), x 2 = g H(M) (mod p). Bolek akceptuje podpis jeśli x 1 = x 2
32 Weryfikacja Bolek aby stwierdzić prawdziwość podpisu Alicji pobiera klucz publiczny Alicji {b, g, p} Bolek sprawdza czy 0 < r < p, jeśli nie, podpis nie jest prawdziwy Bolek oblicza x 1 = b r r s (mod p), x 2 = g H(M) (mod p). Bolek akceptuje podpis jeśli x 1 = x 2
33 Weryfikacja Bolek aby stwierdzić prawdziwość podpisu Alicji pobiera klucz publiczny Alicji {b, g, p} Bolek sprawdza czy 0 < r < p, jeśli nie, podpis nie jest prawdziwy Bolek oblicza x 1 = b r r s (mod p), x 2 = g H(M) (mod p). Bolek akceptuje podpis jeśli x 1 = x 2
34 Weryfikacja Bolek aby stwierdzić prawdziwość podpisu Alicji pobiera klucz publiczny Alicji {b, g, p} Bolek sprawdza czy 0 < r < p, jeśli nie, podpis nie jest prawdziwy Bolek oblicza x 1 = b r r s (mod p), x 2 = g H(M) (mod p). Bolek akceptuje podpis jeśli x 1 = x 2
35 Uzasadnienie Ponieważ s k [ 1 H(M) ar ] (mod p 1), to mnożąc stronami przez k mamy ks H(M) ar (mod p 1) i po przekształceniu H(M) ar + ks (mod p 1), a co za tym idzie g H(M) g ar+ks (g a ) r r s b r r s (mod p). Tak więc x 1 = x 2.
36 14.5 DSA Digital Signature Algorithm Algorytm podpisu cyfrowego zatwierdzony w 1994 r. przez NIST jako standard podpisu cyfrowego w USA (Digital Signature Standard DSS). Wykorzystuje funkcję hashującą SHA-1.
37 14.5 DSA Digital Signature Algorithm Algorytm podpisu cyfrowego zatwierdzony w 1994 r. przez NIST jako standard podpisu cyfrowego w USA (Digital Signature Standard DSS). Wykorzystuje funkcję hashującą SHA-1.
38 14.5 DSA Digital Signature Algorithm Algorytm podpisu cyfrowego zatwierdzony w 1994 r. przez NIST jako standard podpisu cyfrowego w USA (Digital Signature Standard DSS). Wykorzystuje funkcję hashującą SHA-1.
39 Generacja klucza Alicja wybiera liczbę pierwszą q o długości 160 bitów Alicja wybiera liczbę pierwszą p o długości 512 l 1024, przy czym 64 l, taką, że q p 1 Alicja wybiera element g Z p i oblicza b = g (p 1)/q (mod p); jeśli b = 1 to wybiera inne g. Alicja wybiera liczbę losową a, 0 < a < q, i oblicza c = b a (mod p) Kluczem publicznym Alicji jest zbiór liczb {b, c, p, q}
40 Generacja klucza Alicja wybiera liczbę pierwszą q o długości 160 bitów Alicja wybiera liczbę pierwszą p o długości 512 l 1024, przy czym 64 l, taką, że q p 1 Alicja wybiera element g Z p i oblicza b = g (p 1)/q (mod p); jeśli b = 1 to wybiera inne g. Alicja wybiera liczbę losową a, 0 < a < q, i oblicza c = b a (mod p) Kluczem publicznym Alicji jest zbiór liczb {b, c, p, q}
41 Generacja klucza Alicja wybiera liczbę pierwszą q o długości 160 bitów Alicja wybiera liczbę pierwszą p o długości 512 l 1024, przy czym 64 l, taką, że q p 1 Alicja wybiera element g Z p i oblicza b = g (p 1)/q (mod p); jeśli b = 1 to wybiera inne g. Alicja wybiera liczbę losową a, 0 < a < q, i oblicza c = b a (mod p) Kluczem publicznym Alicji jest zbiór liczb {b, c, p, q}
42 Generacja klucza Alicja wybiera liczbę pierwszą q o długości 160 bitów Alicja wybiera liczbę pierwszą p o długości 512 l 1024, przy czym 64 l, taką, że q p 1 Alicja wybiera element g Z p i oblicza b = g (p 1)/q (mod p); jeśli b = 1 to wybiera inne g. Alicja wybiera liczbę losową a, 0 < a < q, i oblicza c = b a (mod p) Kluczem publicznym Alicji jest zbiór liczb {b, c, p, q}
43 Generacja klucza Alicja wybiera liczbę pierwszą q o długości 160 bitów Alicja wybiera liczbę pierwszą p o długości 512 l 1024, przy czym 64 l, taką, że q p 1 Alicja wybiera element g Z p i oblicza b = g (p 1)/q (mod p); jeśli b = 1 to wybiera inne g. Alicja wybiera liczbę losową a, 0 < a < q, i oblicza c = b a (mod p) Kluczem publicznym Alicji jest zbiór liczb {b, c, p, q}
44 Generacja klucza Alicja wybiera liczbę pierwszą q o długości 160 bitów Alicja wybiera liczbę pierwszą p o długości 512 l 1024, przy czym 64 l, taką, że q p 1 Alicja wybiera element g Z p i oblicza b = g (p 1)/q (mod p); jeśli b = 1 to wybiera inne g. Alicja wybiera liczbę losową a, 0 < a < q, i oblicza c = b a (mod p) Kluczem publicznym Alicji jest zbiór liczb {b, c, p, q}
45 Podpisywanie Alicja wybiera tajną liczbę losową k, 0 < k < q, Alicja oblicza r = (b k (mod p)) (mod q), k 1 (mod q), s = k 1 [ H(M) + ar ] (mod q). Podpisem Alicji dla wiadomości M jest para liczb {r, s}
46 Podpisywanie Alicja wybiera tajną liczbę losową k, 0 < k < q, Alicja oblicza r = (b k (mod p)) (mod q), k 1 (mod q), s = k 1 [ H(M) + ar ] (mod q). Podpisem Alicji dla wiadomości M jest para liczb {r, s}
47 Podpisywanie Alicja wybiera tajną liczbę losową k, 0 < k < q, Alicja oblicza r = (b k (mod p)) (mod q), k 1 (mod q), s = k 1 [ H(M) + ar ] (mod q). Podpisem Alicji dla wiadomości M jest para liczb {r, s}
48 Podpisywanie Alicja wybiera tajną liczbę losową k, 0 < k < q, Alicja oblicza r = (b k (mod p)) (mod q), k 1 (mod q), s = k 1 [ H(M) + ar ] (mod q). Podpisem Alicji dla wiadomości M jest para liczb {r, s}
49 Weryfikacja Bolek pobiera klucz publiczny Alicji {b, c, p, q} Bolek sprawdza czy 0 < r < q i 0 < s < q, jeśli nie, to podpis jest fałszywy Bolek oblicza H(M) i w = s 1 (mod q), u 1 = w H(M) (mod q), u 2 = rw (mod q), v = (b u 1 c u 2 (mod p)) (mod q). Bolek uznaje podpis za prawdziwy jeśli v = r.
50 Weryfikacja Bolek pobiera klucz publiczny Alicji {b, c, p, q} Bolek sprawdza czy 0 < r < q i 0 < s < q, jeśli nie, to podpis jest fałszywy Bolek oblicza H(M) i w = s 1 (mod q), u 1 = w H(M) (mod q), u 2 = rw (mod q), v = (b u 1 c u 2 (mod p)) (mod q). Bolek uznaje podpis za prawdziwy jeśli v = r.
51 Weryfikacja Bolek pobiera klucz publiczny Alicji {b, c, p, q} Bolek sprawdza czy 0 < r < q i 0 < s < q, jeśli nie, to podpis jest fałszywy Bolek oblicza H(M) i w = s 1 (mod q), u 1 = w H(M) (mod q), u 2 = rw (mod q), v = (b u 1 c u 2 (mod p)) (mod q). Bolek uznaje podpis za prawdziwy jeśli v = r.
52 Weryfikacja Bolek pobiera klucz publiczny Alicji {b, c, p, q} Bolek sprawdza czy 0 < r < q i 0 < s < q, jeśli nie, to podpis jest fałszywy Bolek oblicza H(M) i w = s 1 (mod q), u 1 = w H(M) (mod q), u 2 = rw (mod q), v = (b u 1 c u 2 (mod p)) (mod q). Bolek uznaje podpis za prawdziwy jeśli v = r.
53 Weryfikacja Bolek pobiera klucz publiczny Alicji {b, c, p, q} Bolek sprawdza czy 0 < r < q i 0 < s < q, jeśli nie, to podpis jest fałszywy Bolek oblicza H(M) i w = s 1 (mod q), u 1 = w H(M) (mod q), u 2 = rw (mod q), v = (b u 1 c u 2 (mod p)) (mod q). Bolek uznaje podpis za prawdziwy jeśli v = r.
54 Uzasadnienie Jeśli {r, s} jest prawdziwym podpisem Alicji dla wiadomości M, to H(M) ar + ks (mod q). Mnożąc stronami przez w i przekształcając otrzymujemy w H(M) + arw k (mod q), co jest równoważne u 1 + au 2 k (mod q). Podnosząc b do potęgi lewej i prawej strony tej kongruencji otrzymujemy (b u 1+au 2 (mod p)) (mod q) (b k (mod p)) (mod q) i dalej mamy (b u 1 c u 2 (mod p)) (mod q) (b k (mod p)) (mod q), a to oznacza v = r.
55 14.6 Ślepe podpisy cyfrowe Zasadniczym założeniem protokołów podpisów cyfrowych jest, że podpisujący dokument wie co podpisuje. Nie należy podpisywać dokumentów wyglądających na losowy ciąg bitów. Od powyższej zasady są jednak odstępstwa. Przypuśćmy, że Bolek jest notariuszem, zaś Alicja chce aby Bolek potwierdził notarialnie istnienie dokumentu, ale nie chce aby ten dokument obejrzał. Mamy wtedy do czynienia z tzw. ślepym podpisem.
56 14.6 Ślepe podpisy cyfrowe Zasadniczym założeniem protokołów podpisów cyfrowych jest, że podpisujący dokument wie co podpisuje. Nie należy podpisywać dokumentów wyglądających na losowy ciąg bitów. Od powyższej zasady są jednak odstępstwa. Przypuśćmy, że Bolek jest notariuszem, zaś Alicja chce aby Bolek potwierdził notarialnie istnienie dokumentu, ale nie chce aby ten dokument obejrzał. Mamy wtedy do czynienia z tzw. ślepym podpisem.
57 14.6 Ślepe podpisy cyfrowe Zasadniczym założeniem protokołów podpisów cyfrowych jest, że podpisujący dokument wie co podpisuje. Nie należy podpisywać dokumentów wyglądających na losowy ciąg bitów. Od powyższej zasady są jednak odstępstwa. Przypuśćmy, że Bolek jest notariuszem, zaś Alicja chce aby Bolek potwierdził notarialnie istnienie dokumentu, ale nie chce aby ten dokument obejrzał. Mamy wtedy do czynienia z tzw. ślepym podpisem.
58 14.6 Ślepe podpisy cyfrowe Zasadniczym założeniem protokołów podpisów cyfrowych jest, że podpisujący dokument wie co podpisuje. Nie należy podpisywać dokumentów wyglądających na losowy ciąg bitów. Od powyższej zasady są jednak odstępstwa. Przypuśćmy, że Bolek jest notariuszem, zaś Alicja chce aby Bolek potwierdził notarialnie istnienie dokumentu, ale nie chce aby ten dokument obejrzał. Mamy wtedy do czynienia z tzw. ślepym podpisem.
59 14.6 Ślepe podpisy cyfrowe Zasadniczym założeniem protokołów podpisów cyfrowych jest, że podpisujący dokument wie co podpisuje. Nie należy podpisywać dokumentów wyglądających na losowy ciąg bitów. Od powyższej zasady są jednak odstępstwa. Przypuśćmy, że Bolek jest notariuszem, zaś Alicja chce aby Bolek potwierdził notarialnie istnienie dokumentu, ale nie chce aby ten dokument obejrzał. Mamy wtedy do czynienia z tzw. ślepym podpisem.
60 Wyobraźmy sobie taką systuację: Alicja wkłada list do koperty łącznie z kalką, zakleja kopertę, a potem prosi Bolka o złożenie podpisu na zaklejonej kopercie. Po otwarciu koperty na liście będzie kopia podpisu Bolka. Cyfrowo ślepy podpis można zrealizować korzystając np. z algorytmu RSA.
61 Wyobraźmy sobie taką systuację: Alicja wkłada list do koperty łącznie z kalką, zakleja kopertę, a potem prosi Bolka o złożenie podpisu na zaklejonej kopercie. Po otwarciu koperty na liście będzie kopia podpisu Bolka. Cyfrowo ślepy podpis można zrealizować korzystając np. z algorytmu RSA.
62 Wyobraźmy sobie taką systuację: Alicja wkłada list do koperty łącznie z kalką, zakleja kopertę, a potem prosi Bolka o złożenie podpisu na zaklejonej kopercie. Po otwarciu koperty na liście będzie kopia podpisu Bolka. Cyfrowo ślepy podpis można zrealizować korzystając np. z algorytmu RSA.
63 Wyobraźmy sobie taką systuację: Alicja wkłada list do koperty łącznie z kalką, zakleja kopertę, a potem prosi Bolka o złożenie podpisu na zaklejonej kopercie. Po otwarciu koperty na liście będzie kopia podpisu Bolka. Cyfrowo ślepy podpis można zrealizować korzystając np. z algorytmu RSA.
64 Ślepy podpis z użyciem RSA Alicja pobiera klucz publiczny Bolka {e, n} Alicja wybiera liczbę losową k, 0 < k < n, Alicja oblicza z = M k e (mod n) i przesyła z do Bolka Bolek oblicza z d = (M k e ) d (mod n) używając swojego klucza prywatnego {d, n} i wynik przesyła Alicji Alicja oblicza s = z d /k (mod n). Ponieważ z d (M k e ) d M d k (mod n), więc z d /k = M d k/k M d (mod n), czyli s = M d (mod n) jest podpisem Bolka na wiadomości M.
65 Ślepy podpis z użyciem RSA Alicja pobiera klucz publiczny Bolka {e, n} Alicja wybiera liczbę losową k, 0 < k < n, Alicja oblicza z = M k e (mod n) i przesyła z do Bolka Bolek oblicza z d = (M k e ) d (mod n) używając swojego klucza prywatnego {d, n} i wynik przesyła Alicji Alicja oblicza s = z d /k (mod n). Ponieważ z d (M k e ) d M d k (mod n), więc z d /k = M d k/k M d (mod n), czyli s = M d (mod n) jest podpisem Bolka na wiadomości M.
66 Ślepy podpis z użyciem RSA Alicja pobiera klucz publiczny Bolka {e, n} Alicja wybiera liczbę losową k, 0 < k < n, Alicja oblicza z = M k e (mod n) i przesyła z do Bolka Bolek oblicza z d = (M k e ) d (mod n) używając swojego klucza prywatnego {d, n} i wynik przesyła Alicji Alicja oblicza s = z d /k (mod n). Ponieważ z d (M k e ) d M d k (mod n), więc z d /k = M d k/k M d (mod n), czyli s = M d (mod n) jest podpisem Bolka na wiadomości M.
67 Ślepy podpis z użyciem RSA Alicja pobiera klucz publiczny Bolka {e, n} Alicja wybiera liczbę losową k, 0 < k < n, Alicja oblicza z = M k e (mod n) i przesyła z do Bolka Bolek oblicza z d = (M k e ) d (mod n) używając swojego klucza prywatnego {d, n} i wynik przesyła Alicji Alicja oblicza s = z d /k (mod n). Ponieważ z d (M k e ) d M d k (mod n), więc z d /k = M d k/k M d (mod n), czyli s = M d (mod n) jest podpisem Bolka na wiadomości M.
68 Ślepy podpis z użyciem RSA Alicja pobiera klucz publiczny Bolka {e, n} Alicja wybiera liczbę losową k, 0 < k < n, Alicja oblicza z = M k e (mod n) i przesyła z do Bolka Bolek oblicza z d = (M k e ) d (mod n) używając swojego klucza prywatnego {d, n} i wynik przesyła Alicji Alicja oblicza s = z d /k (mod n). Ponieważ z d (M k e ) d M d k (mod n), więc z d /k = M d k/k M d (mod n), czyli s = M d (mod n) jest podpisem Bolka na wiadomości M.
69 Ślepy podpis z użyciem RSA Alicja pobiera klucz publiczny Bolka {e, n} Alicja wybiera liczbę losową k, 0 < k < n, Alicja oblicza z = M k e (mod n) i przesyła z do Bolka Bolek oblicza z d = (M k e ) d (mod n) używając swojego klucza prywatnego {d, n} i wynik przesyła Alicji Alicja oblicza s = z d /k (mod n). Ponieważ z d (M k e ) d M d k (mod n), więc z d /k = M d k/k M d (mod n), czyli s = M d (mod n) jest podpisem Bolka na wiadomości M.
70 14.7 Niezaprzeczalne podpisy cyfrowe Podpis niezaprzeczalny nie może być sprawdzony bez zgody osoby podpisującej. Podpisujący nie może się wyprzeć swojego podpisu, ale może także dowieść, że podpis jest fałszywy (jeśli jest).
71 14.7 Niezaprzeczalne podpisy cyfrowe Podpis niezaprzeczalny nie może być sprawdzony bez zgody osoby podpisującej. Podpisujący nie może się wyprzeć swojego podpisu, ale może także dowieść, że podpis jest fałszywy (jeśli jest).
72 14.7 Niezaprzeczalne podpisy cyfrowe Podpis niezaprzeczalny nie może być sprawdzony bez zgody osoby podpisującej. Podpisujący nie może się wyprzeć swojego podpisu, ale może także dowieść, że podpis jest fałszywy (jeśli jest).
73 14.7 Niezaprzeczalne podpisy cyfrowe Podpis niezaprzeczalny nie może być sprawdzony bez zgody osoby podpisującej. Podpisujący nie może się wyprzeć swojego podpisu, ale może także dowieść, że podpis jest fałszywy (jeśli jest).
74 Niezaprzeczalny podpis oparty na logarytmach dyskretnych Przypuśćmy, że stroną podpisującą dokument jest Alicja. Generacja klucza Alicja posiada klucz prywatny {a, g, p} oraz klucz publiczny {b, g, p} wygenerowany jak w algorytmie ElGamala. Podpisywanie Alicja oblicza z = M a (mod p) i to jest jej podpis dla dokumentu M
75 Niezaprzeczalny podpis oparty na logarytmach dyskretnych Przypuśćmy, że stroną podpisującą dokument jest Alicja. Generacja klucza Alicja posiada klucz prywatny {a, g, p} oraz klucz publiczny {b, g, p} wygenerowany jak w algorytmie ElGamala. Podpisywanie Alicja oblicza z = M a (mod p) i to jest jej podpis dla dokumentu M
76 Niezaprzeczalny podpis oparty na logarytmach dyskretnych Przypuśćmy, że stroną podpisującą dokument jest Alicja. Generacja klucza Alicja posiada klucz prywatny {a, g, p} oraz klucz publiczny {b, g, p} wygenerowany jak w algorytmie ElGamala. Podpisywanie Alicja oblicza z = M a (mod p) i to jest jej podpis dla dokumentu M
77 Weryfikacja 1. Bolek wybiera dwie liczby losowe r i s mniejsze od p, oblicza w = z r b s (mod p) i przesyła Alicji 2. Alicja oblicza t = a 1 (mod p 1) v = w t (mod p) i przesyła Bolkowi v 3. Bolek sprawdza czy v = M r g s (mod p) Uzasadnienie Zauważmy, że v = w t = z rt b st = (z t ) r (b t ) s = (M at ) r (g at ) s = M r g s (mod p)
78 Weryfikacja 1. Bolek wybiera dwie liczby losowe r i s mniejsze od p, oblicza w = z r b s (mod p) i przesyła Alicji 2. Alicja oblicza t = a 1 (mod p 1) v = w t (mod p) i przesyła Bolkowi v 3. Bolek sprawdza czy v = M r g s (mod p) Uzasadnienie Zauważmy, że v = w t = z rt b st = (z t ) r (b t ) s = (M at ) r (g at ) s = M r g s (mod p)
79 Weryfikacja 1. Bolek wybiera dwie liczby losowe r i s mniejsze od p, oblicza w = z r b s (mod p) i przesyła Alicji 2. Alicja oblicza t = a 1 (mod p 1) v = w t (mod p) i przesyła Bolkowi v 3. Bolek sprawdza czy v = M r g s (mod p) Uzasadnienie Zauważmy, że v = w t = z rt b st = (z t ) r (b t ) s = (M at ) r (g at ) s = M r g s (mod p)
80 Weryfikacja 1. Bolek wybiera dwie liczby losowe r i s mniejsze od p, oblicza w = z r b s (mod p) i przesyła Alicji 2. Alicja oblicza t = a 1 (mod p 1) v = w t (mod p) i przesyła Bolkowi v 3. Bolek sprawdza czy v = M r g s (mod p) Uzasadnienie Zauważmy, że v = w t = z rt b st = (z t ) r (b t ) s = (M at ) r (g at ) s = M r g s (mod p)
81 Weryfikacja 1. Bolek wybiera dwie liczby losowe r i s mniejsze od p, oblicza w = z r b s (mod p) i przesyła Alicji 2. Alicja oblicza t = a 1 (mod p 1) v = w t (mod p) i przesyła Bolkowi v 3. Bolek sprawdza czy v = M r g s (mod p) Uzasadnienie Zauważmy, że v = w t = z rt b st = (z t ) r (b t ) s = (M at ) r (g at ) s = M r g s (mod p)
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 11 Spis treści 16 Zarządzanie kluczami 3 16.1 Generowanie kluczy................. 3 16.2 Przesyłanie
BSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie
Bezpieczeństwo systemów komputerowych Podpis cyfrowy Podpisy cyfrowe i inne protokoły pośrednie Polski Komitet Normalizacyjny w grudniu 1997 ustanowił pierwszą polską normę określającą schemat podpisu
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 5
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 5 Spis treści 9 Algorytmy asymetryczne RSA 3 9.1 Algorytm RSA................... 4 9.2 Szyfrowanie.....................
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 7
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 7 Spis treści 11 Algorytm ElGamala 3 11.1 Wybór klucza.................... 3 11.2 Szyfrowanie.....................
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 1
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8physdamuedupl/~tanas Wykład 1 Spis treści 1 Kryptografia klasyczna wstęp 4 11 Literatura 4 12 Terminologia 6 13 Główne postacie
Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA
Informatyka, studia dzienne, inż. I st. semestr VI Podstawy Kryptografii - laboratorium 2010/2011 Prowadzący: prof. dr hab. Włodzimierz Jemec poniedziałek, 08:30 Data oddania: Ocena: Marcin Piekarski 150972
Copyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman metoda szyfrowania z kluczem jawnym DSA (Digital Signature Algorithm)
Copyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman
Przewodnik użytkownika
STOWARZYSZENIE PEMI Przewodnik użytkownika wstęp do podpisu elektronicznego kryptografia asymetryczna Stowarzyszenie PEMI Podpis elektroniczny Mobile Internet 2005 1. Dlaczego podpis elektroniczny? Podpis
WSIZ Copernicus we Wrocławiu
Bezpieczeństwo sieci komputerowych Wykład 4. Robert Wójcik Wyższa Szkoła Informatyki i Zarządzania Copernicus we Wrocławiu Plan wykładu Sylabus - punkty: 4. Usługi ochrony: poufność, integralność, dostępność,
Kryptografia systemy z kluczem publicznym. Kryptografia systemy z kluczem publicznym
Mieliśmy więc...... system kryptograficzny P = f C = f 1 P, gdzie funkcja f składała się z dwóch elementów: Algorytm (wzór) np. C = f(p) P + b mod N Parametry K E (enciphering key) tutaj: b oraz N. W dotychczasowej
2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym)
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Zarys algorytmów kryptograficznych
Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................
PuTTY. Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Inne interesujące programy pakietu PuTTY. Kryptografia symetryczna
PuTTY Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby
n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze.
Wykład 2 Temat: Algorytm kryptograficzny RSA: schemat i opis algorytmu, procedura szyfrowania i odszyfrowania, aspekty bezpieczeństwa, stosowanie RSA jest algorytmem z kluczem publicznym i został opracowany
Podstawy systemów kryptograficznych z kluczem jawnym RSA
Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych
Algorytmy asymetryczne
Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VI - semestr III Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2013 c Copyright 2013 Janusz Słupik Podstawowe zasady bezpieczeństwa danych Bezpieczeństwo Obszary:
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe. kradzieŝy! Jak się przed nią bronić?
Bezpieczeństwo Danych Technologia Informacyjna Uwaga na oszustów! Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe czy hasła mogą być wykorzystane do kradzieŝy! Jak się przed nią
Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Marcin Pilarski
Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje
Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 8
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 8 Spis treści 13 Szyfrowanie strumieniowe i generatory ciągów pseudolosowych 3 13.1 Synchroniczne
Szyfrowanie RSA (Podróż do krainy kryptografii)
Szyfrowanie RSA (Podróż do krainy kryptografii) Nie bójmy się programować z wykorzystaniem filmów Academy Khana i innych dostępnych źródeł oprac. Piotr Maciej Jóźwik Wprowadzenie metodyczne Realizacja
Zamiana porcji informacji w taki sposób, iż jest ona niemożliwa do odczytania dla osoby postronnej. Tak zmienione dane nazywamy zaszyfrowanymi.
Spis treści: Czym jest szyfrowanie Po co nam szyfrowanie Szyfrowanie symetryczne Szyfrowanie asymetryczne Szyfrowanie DES Szyfrowanie 3DES Szyfrowanie IDEA Szyfrowanie RSA Podpis cyfrowy Szyfrowanie MD5
SSL (Secure Socket Layer)
SSL --- Secure Socket Layer --- protokół bezpiecznej komunikacji między klientem a serwerem, stworzony przez Netscape. SSL w założeniu jest podkładką pod istniejące protokoły, takie jak HTTP, FTP, SMTP,
Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VIII Kierunek Matematyka - semestr IV Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Egzotyczne algorytmy z kluczem publicznym Przypomnienie Algorytm
Laboratorium nr 3 Podpis elektroniczny i certyfikaty
Laboratorium nr 3 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi
KRYPTOGRAFIA Z KLUCZEM PUBLICZNYM (Ellis 1970)
1 [Wybrane materiały do ćwiczeń 3-7 z podstaw klasycznej kryptografii z elementami kryptografii kwantowej dla studentów IV roku (semestr letni 2008)] KRYPTOGRAFIA Z KLUCZEM PUBLICZNYM (Ellis 1970) (ang.
Zastosowania informatyki w gospodarce Wykład 5
Instytut Informatyki, Automatyki i Robotyki Zastosowania informatyki w gospodarce Wykład 5 Podstawowe mechanizmy bezpieczeństwa transakcji dr inż. Dariusz Caban dr inż. Jacek Jarnicki dr inż. Tomasz Walkowiak
Praktyczne aspekty wykorzystania nowoczesnej kryptografii. Wojciech A. Koszek <dunstan@freebsd.czest.pl>
Praktyczne aspekty wykorzystania nowoczesnej kryptografii Wojciech A. Koszek Wprowadzenie Kryptologia Nauka dotycząca przekazywania danych w poufny sposób. W jej skład wchodzi
Wprowadzenie do PKI. 1. Wstęp. 2. Kryptografia symetryczna. 3. Kryptografia asymetryczna
1. Wstęp Wprowadzenie do PKI Infrastruktura klucza publicznego (ang. PKI - Public Key Infrastructure) to termin dzisiaj powszechnie spotykany. Pod tym pojęciem kryje się standard X.509 opracowany przez
Bezpieczeństwo danych, zabezpieczanie safety, security
Bezpieczeństwo danych, zabezpieczanie safety, security Kryptologia Kryptologia, jako nauka ścisła, bazuje na zdobyczach matematyki, a w szczególności teorii liczb i matematyki dyskretnej. Kryptologia(zgr.κρυπτός
LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.
Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb
Szyfrowanie informacji
Szyfrowanie informacji Szyfrowanie jest sposobem ochrony informacji przed zinterpretowaniem ich przez osoby niepowołane, lecz nie chroni przed ich odczytaniem lub skasowaniem. Informacje niezaszyfrowane
Authenticated Encryption
Authenticated Inż. Kamil Zarychta Opiekun: dr Ryszard Kossowski 1 Plan prezentacji Wprowadzenie Wymagania Opis wybranych algorytmów Porównanie mechanizmów Implementacja systemu Plany na przyszłość 2 Plan
Wprowadzenie ciag dalszy
Wprowadzenie ciag dalszy Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2009/10 Szyfry asymetryczne Wymyślone w latach 70-tych Używaja dwóch różnych (ale pasujacych do siebie ) kluczy do szyfrowania
Plan wykładu. Ochrona zasobów w systemach gospodarki elektronicznej. Usługi ochrony. Klasyfikacja zagrożeń. Wykład: Systemy gospodarki elektronicznej
Ochrona zasobów w systemach gospodarki mgr inż. K. Trybicka-Francik Plan wykładu Rola kryptografii Klasyfikacja usług kryptograficznych Umieszczenie funkcji szyfrującej Generacja i dystrybucja y Złożone
Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki
Matematyka dyskretna Wykład 11: Kryptografia z kluczem publicznym Gniewomir Sarbicki Idea kryptografii z kluczem publicznym: wiadomość f szyfrogram f 1 wiadomość Funkcja f (klucz publiczny) jest znana
Sieci komputerowe. Wykład 11: Podstawy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski
Sieci komputerowe Wykład 11: Podstawy kryptografii Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 11 1 / 35 Spis treści 1 Szyfrowanie 2 Uwierzytelnianie
Recenzja rozprawy doktorskiej mgr Anny Lauks Dutki. pt. Applied Cryptographic Schemes based on Discrete logarithm Problem
Warszawa dn. 20 03 2015 Prof. UW Jacek Pomykała Instytut Matematyki Wydziału Matematyki Informatyki i Mechaniki Uniwersytetu Warszawskiego Recenzja rozprawy doktorskiej mgr Anny Lauks Dutki pt. Applied
Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład IV Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Systemy z kluczem publicznym Klasyczne systemy kryptograficzne
Spis treści. Przedmowa... 9
Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.
INSTRUKCJA INSTALACJI I OBSŁUGI GPG4Win
INSTRUKCJA INSTALACJI I OBSŁUGI GPG4Win Łukasz Awsiukiewicz Solid Security wew 1211 l.awsiukiewicz@solidsecurity.pl wersja 1.0 Pobieramy program gpg4win ze strony http://www.gpg4win.org/download.html.
Bezpiecze ństwo systemów komputerowych.
Ustawa o podpisie cyfrowym. Infrastruktura klucza publicznego PKI. Bezpiecze ństwo systemów komputerowych. Ustawa o podpisie cyfrowym. Infrastruktura klucza publicznego PKI. Autor: Wojciech Szymanowski
Post-kwantowy algorytm podpisu cyfrowego Kryptosystem NTRU
Post-kwantowy algorytm podpisu cyfrowego Kryptosystem NTRU Janusz Szmidt, Marcin Barański Wojskowy Instytut Łączności 13 XII 2018 NTRU - abstract We describe NTRU, a new public key cryptosystem. NTRU
RSA. R.L.Rivest A. Shamir L. Adleman. Twórcy algorytmu RSA
RSA Symetryczny system szyfrowania to taki, w którym klucz szyfrujący pozwala zarówno szyfrować dane, jak również odszyfrowywać je. Opisane w poprzednich rozdziałach systemy były systemami symetrycznymi.
Wykład 4. komputerowych Protokoły SSL i TLS główne slajdy. 26 października 2011. Igor T. Podolak Instytut Informatyki Uniwersytet Jagielloński
Wykład 4 Protokoły SSL i TLS główne slajdy 26 października 2011 Instytut Informatyki Uniwersytet Jagielloński 4.1 Secure Sockets Layer i Transport Layer Security SSL zaproponowany przez Netscape w 1994
Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.
Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści
Kryptografia kwantowa
Kryptografia kwantowa Wykład popularno-naukowy dla młodzieży szkół średnich Ryszard Tanaś http://zon8physdamuedupl/~tanas 20 marca 2002 Enigma niemiecka maszyna szyfrująca Marian Rejewski Jerzy Różycki
Seminarium Ochrony Danych
Opole, dn. 15 listopada 2005 Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Seminarium Ochrony Danych Temat: Nowoczesne metody kryptograficzne Autor: Prowadzący: Nitner
Wykład 4. Metody uwierzytelniania - Bezpieczeństwo (3) wg The Java EE 5 Tutorial Autor: Zofia Kruczkiewicz
Wykład 4 Metody uwierzytelniania - Bezpieczeństwo (3) wg The Java EE 5 Tutorial Autor: Zofia Kruczkiewicz Struktura wykładu 1. Protokół SSL do zabezpieczenia aplikacji na poziomie protokołu transportowego
2 Kryptografia: algorytmy symetryczne
1 Kryptografia: wstęp Wyróżniamy algorytmy: Kodowanie i kompresja Streszczenie Wieczorowe Studia Licencjackie Wykład 14, 12.06.2007 symetryczne: ten sam klucz jest stosowany do szyfrowania i deszyfrowania;
Inne algorytmy z kluczem publicznym
Wykład 6 Temat: Inne algorytmy z kluczem publicznym [Diffiego-Hellmana (zasada działania, bezpieczeństwo), ElGamala, systemy oparte na zagadnieniu krzywych eliptycznych, system Rabina, system podpisów
Inżynieria biomedyczna
Inżynieria biomedyczna Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna studia międzywydziałowe współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.
KAMELEON.CRT OPIS. Funkcjonalność szyfrowanie bazy danych. Wtyczka kryptograficzna do KAMELEON.ERP. Wymagania : KAMELEON.ERP wersja
KAMELEON.CRT Funkcjonalność szyfrowanie bazy danych 42-200 Częstochowa ul. Kiepury 24A 034-3620925 www.wilksoft..pl Wtyczka kryptograficzna do KAMELEON.ERP Wymagania : KAMELEON.ERP wersja 10.10.0 lub wyższa
VIII Festiwal Nauki i Sztuki. Wydziale Fizyki UAM
VIII Festiwal Nauki i Sztuki na Wydziale Fizyki UAM VIII Festiwal Nauki i Sztuki na Wydziale Fizyki UAM Kryptografia kwantowa raz jeszcze Ryszard Tanaś http://zon8physdamuedupl/~tanas 13 października 2005
Wykorzystanie protokołu T=CL w systemach kontroli dostępu
Wykorzystanie protokołu T=CL w systemach kontroli dostępu Agenda Obecne systemy kontroli dostępu Technologia MIFARE Tożsamość cyfrowa i PKI Protokół T=CL w systemach KD Aplikacje PKI w KD Wykorzystanie
Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp.
Bezpieczeństwo w sieci I a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Kontrola dostępu Sprawdzanie tożsamości Zabezpieczenie danych przed podsłuchem Zabezpieczenie danych przed kradzieżą
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Kryptografia Rok akademicki: 2032/2033 Kod: IIN-1-784-s Punkty ECTS: 3 Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Informatyka Specjalność: - Poziom studiów: Studia I stopnia
Bezpieczeństwo systemów komputerowych
Bezpieczeństwo systemów komputerowych Szyfry asymetryczne Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 10 listopada 2015 Na podstawie wykładu Anny Kosieradzkiej z
Sieci komputerowe Wykład 7. Bezpieczeństwo w sieci. Paweł Niewiadomski Katedra Informatyki Stosowanej Wydział Matematyki UŁ niewiap@math.uni.lodz.
Sieci komputerowe Wykład 7. Bezpieczeństwo w sieci Paweł Niewiadomski Katedra Informatyki Stosowanej Wydział Matematyki UŁ niewiap@math.uni.lodz.pl Zagadnienia związane z bezpieczeństwem Poufność (secrecy)
KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE
KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE W ALGORYTMACH KOMUNIKACJI Krzysztof Bartyzel Wydział Matematyki Fizyki i Informatyki, Uniwersytet Marii Curii-Skłodowskiej w Lublinie Streszczenie: Komunikacja
Wykład 7. komputerowych Integralność i uwierzytelnianie danych - główne slajdy. 16 listopada 2011
Wykład 7 Integralność i uwierzytelnianie danych - główne slajdy 16 listopada 2011 Instytut Informatyki Uniwersytet Jagielloński 7.1 Definition Funkcja haszujaca h odwzorowuje łańcuch bitów o dowolnej długości
Laboratorium nr 5 Podpis elektroniczny i certyfikaty
Laboratorium nr 5 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi
Kryptologia. Bezpieczeństwo komunikacji elektronicznej
Kryptologia Bezpieczeństwo komunikacji elektronicznej Kryptologia Kryptografia nauka o o ochronie oraz szyfrowaniu danych Kryptoanaliza sztuka odkodowywania danych bez znajomości odpowiednich kluczy Steganografia
Podstawy Secure Sockets Layer
Podstawy Secure Sockets Layer Michał Grzejszczak 20 stycznia 2003 Spis treści 1 Wstęp 2 2 Protokół SSL 2 3 Szyfry używane przez SSL 3 3.1 Lista szyfrów.................................... 3 4 Jak działa
KUS - KONFIGURACJA URZĄDZEŃ SIECIOWYCH - E.13 ZABEZPIECZANIE DOSTĘPU DO SYSTEMÓW OPERACYJNYCH KOMPUTERÓW PRACUJĄCYCH W SIECI.
Zabezpieczanie systemów operacyjnych jest jednym z elementów zabezpieczania systemów komputerowych, a nawet całych sieci komputerowych. Współczesne systemy operacyjne są narażone na naruszenia bezpieczeństwa
SCHEMAT ZABEZPIECZENIA WYMIANY INFORMACJI POMIĘDZY TRZEMA UŻYTKOWNIKAMI KRYPTOGRAFICZNYM SYSTEMEM RSA
PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie SERIA: Edukacja Techniczna i Informatyczna 2012 z. VII Mikhail Selianinau, Piotr Kamiński Akademia im. Jana Długosza w Częstochowie SCHEMAT ZABEZPIECZENIA
ZESZYTY NAUKOWE WYDZIAŁU ETI POLITECHNIKI GDAŃSKIEJ Nr 4 Seria: Technologie Informacyjne 2006 ANALIZA METODY SZYFROWANIA "ZT-UNITAKOD"
ZESZYTY NAUKOWE WYDZIAŁU ETI POLITECHNIKI GDAŃSKIEJ Nr 4 Seria: Technologie Informacyjne 2006 Zakład Matematyki Dyskretnej, Wydział Fizyki Technicznej i Matematyki Stosowanej, Politechnika Gdańska ANALIZA
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla
Copyright by K. Trybicka-Francik 1
Bezpieczeństwo sy stemów komputerowy ch identyfikacja użytkownika autoryzacja podpis cyfrowy zarządzanie kluczami ochrona karty typowe ataki plan wykładu mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl
Kryptografia na procesorach wielordzeniowych
Kryptografia na procesorach wielordzeniowych Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Kryptografia na procesorach wielordzeniowych p. 1 Plan prezentacji
Scenariusz lekcji. wymienić różnice pomiędzy kryptologią, kryptografią i kryptoanalizą;
Scenariusz lekcji Scenariusz lekcji 1 TEMAT LEKCJI: Kryptografia i kryptoanaliza. 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać definicje pojęć: kryptologia, kryptografia i kryptoanaliza; wymienić
Bezpieczeństwo danych i systemów informatycznych. Wykład 5
Bezpieczeństwo danych i systemów informatycznych Wykład 5 Kryptoanaliza Atak na tekst zaszyfrowany dostępny tylko szyfrogram Atak poprzez tekst częściowo znany istnieją słowa, których prawdopodobnie użyto
Kwalifikowane certyfikaty, podpisy i pieczęcie elektroniczne. po 1 lipca 2018 roku. po 1 lipca 2018 roku. Wersja 1.0
Kwalifikowane certyfikaty, podpisy i pieczęcie elektroniczne po 1 lipca 2018 roku. Kwalifikowane certyfikaty, podpisy i pieczęcie elektroniczne po 1 lipca 2018 roku Wersja 1.0 S t r o n a 2 Spis treści.
Bezpieczeństwo kart elektronicznych
Bezpieczeństwo kart elektronicznych Krzysztof Maćkowiak Karty elektroniczne wprowadzane od drugiej połowy lat 70-tych znalazły szerokie zastosowanie w wielu dziedzinach naszego życia: bankowości, telekomunikacji,
Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Sieci komputerowe. Wykład 9: Elementy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski
Sieci komputerowe Wykład 9: Elementy kryptografii Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 9 1 / 32 Do tej pory chcieliśmy komunikować się efektywnie,
Bezpieczeństwo korespondencji elektronicznej
Marzec 2012 Bezpieczeństwo korespondencji elektronicznej Ochrona przed modyfikacją (integralność), Uniemożliwienie odczytania (poufność), Upewnienie adresata, iż podpisany nadawca jest faktycznie autorem
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES. Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Wprowadzenie Problemy bezpieczeństwa transmisji Rozwiązania stosowane dla
Kryptografia. Wykład z podstaw klasycznej kryptografii z elementami kryptografii kwantowej. dla studentów IV roku. Ryszard Tanaś
Kryptografia Wykład z podstaw klasycznej kryptografii z elementami kryptografii kwantowej dla studentów IV roku Ryszard Tanaś Zakład Optyki Nieliniowej, Instytut Fizyki UAM tanas@kielich.amu.edu.pl Serdecznie
Informatyka na WPPT. prof. dr hab. Jacek Cichoń dr inż. Marek Klonowski
prof. dr hab. Jacek Cichoń jacek.cichon@pwr.wroc.pl dr inż. Marek Klonowski marek.klonowski@pwr.wroc.pl Instytut Matematyki i Informatyki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wybrane zagadnienia teorii liczb
Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja
Protokoªy komunikacyjne
Protokoªy komunikacyjne http://www.mimuw.edu.pl/ sl/teaching/semprot/ 1/18 Podpisy cyfrowe Artur Cichocki Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski email: A.Cichocki@zodiac.mimuw.edu.pl
PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie Informatyka, Inżynieria Bezpieczeństwa
PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie Technika, Informatyka, Inżynieria Bezpieczeństwa 2013, t. I Mikhail Selianinau Akademia im. Jana Długosza Al. Armii Krajowej 13/15, 42-200 Częstochowa,
Ludzie od dawien dawna próbowali utajniać wysyłane do siebie wiadomości. Robili to za pomocą szyfrowania przekazywanych sobie tekstów przy użyciu wymyślanych przez siebie mechanizmów (szyfrów). Jeszcze
Wykład 4. Schematy Identyfikacji
Teoria Protokołów Kryptograficznych 51103 Wykład 4 Schematy Identyfikacji Wykładowca: Stefan Dziembowski Skryba: Paulina Kania, Łukasz Osipiuk Streszczenie Wprowadzamy pojęcie systemu identyfikacji Przedstawiamy
Laboratorium nr 2 Szyfrowanie, podpis elektroniczny i certyfikaty
Laboratorium nr 2 Szyfrowanie, podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny
Wykład 9. komputerowych Głosowanie internetowe - główne slajdy. 23 listopada Igor T. Podolak Instytut Informatyki Uniwersytet Jagielloński
Wykład 9 Głosowanie internetowe - główne slajdy 23 listopada 2011 Instytut Informatyki Uniwersytet Jagielloński 9.1 rodzaje e-voting elektroniczne (tzw kiosk-voting) w wyznaczonym miejscu użycie specjalnych
Bezpieczna poczta i PGP
Bezpieczna poczta i PGP Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2010/11 Poczta elektroniczna zagrożenia Niechciana poczta (spam) Niebezpieczna zawartość poczty Nieuprawniony dostęp (podsłuch)
Kryptografia-0. przykład ze starożytności: około 489 r. p.n.e. niewidzialny atrament (pisze o nim Pliniusz Starszy I wiek n.e.)
Kryptografia-0 -zachowanie informacji dla osób wtajemniczonych -mimo że włamujący się ma dostęp do informacji zaszyfrowanej -mimo że włamujący się zna (?) stosowaną metodę szyfrowania -mimo że włamujący
Czym jest kryptografia?
Szyfrowanie danych Czym jest kryptografia? Kryptografia to nauka zajmująca się układaniem szyfrów. Nazwa pochodzi z greckiego słowa: kryptos - "ukryty", gráphein "pisać. Wyróżniane są dwa główne nurty
Bezpieczeństwo systemów komputerowych
Bezpieczeństwo systemów komputerowych Bezpieczeństwo poczty elektronicznej Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 20 grudnia 2016 Wykorzystano materiały Michała
POLITYKA PCCE DLA CERTYFIKATÓW OID: { } Symbol Dokumentu: P3.032 Data: r. Wersja: 1.6
POLITYKA PCCE DLA CERTYFIKATÓW OID: {1 2 616 1 113560 10 3 1 0} Symbol Dokumentu: P3.032 Data: 04.01.2017 r. Wersja: 1.6 Spis treści 1 Słownik używanych określeń... 4 2 Wprowadzenie... 8 2.1 Ważne informacje
KRYPTOGRAFIA I OCHRONA DANYCH. Krzysztof Kaczmarczyk 150024
KRYPTOGRAFIA I OCHRONA DANYCH Krzysztof Kaczmarczyk 150024 Zadanie 1 Szyfrowanie DES Algorytm DES (Data Encryption Standard) to zastosowanie schematu Feistela. Algorytm operuje na 64-bitowych blokach używając
Wprowadzenie do technologii VPN
Sieci komputerowe są powszechnie wykorzystywane do realizacji transakcji handlowych i prowadzenia działalności gospodarczej. Ich zaletą jest błyskawiczny dostęp do ludzi, którzy potrzebują informacji.
KRAKOWSKA AKADEMIA im. Andrzeja Frycza Modrzewskiego
KRAKOWSKA AKADEMIA im. Andrzeja Frycza Modrzewskiego Wydział Ekonomii i Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: Bezpieczeństwo i kontrola systemów informacyjnych Marcin Prządło PODPIS