Historia π (czyt. Pi)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Historia π (czyt. Pi)"

Transkrypt

1 Historia liczby π

2 Historia π (czyt. Pi) Już w czasach zamierzchłych starożytni rachmistrze zauważyli, że wszystkie koła mają ze sobą coś wspólnego, że ich średnica i obwód pozostają wobec siebie w takim samym stosunku, a liczba ta bliska jest 3.

3 Kiedy liczba π została po raz pierwszy użyta? Symbol π został pierwszy raz użyty w 1706 roku przez matematyka angielskiego Wiliama Jonesa. W powszechne użycie wszedł dopiero w połowie XVIII wieku po wydaniu Analizy L. Eulera. Najważniejszą w historii liczby π, prawdziwie przełomową datą był rok 1882, w którym matematyk niemiecki F. Lindemann wykazał ostatecznie, że liczba π jest liczbą przestępną (to znaczy, że nie może ona być pierwiastkiem równania algebraicznego o współczynnikach całkowitych). Wykazał on w ten sposób nierozwiązalność słynnego w starożytności zagadnienia kwadratury koła.

4 Pi fascynująca liczba Liczba π nazywana bywa często ludolfiną. Nazwa ludolfina pochodzi od imienia matematyka holenderskiego Ludolfa van Ceulena, który w 1610 roku obliczył wartość liczby π z dokładnością do 35 cyfr po przecinku. Interesująca jest historia tej liczby. Liczba π przechodziła wiele przemian i odmian. Od ustalonej przez Archimedesa wartości 22/7, która dawała dwa rzędy dziesiętne po przecinku, dochodzi do rozwinięcia dziesiętnego z 707 cyframi po przecinku, danego przez Shanksa. Poniższa tabela wskazuje przebieg tego postępu, z pominięciem jednak drobnych zmian od roku 250 przed naszą erą do roku 1464 naszej ery.

5 Dawne przybliżenia liczby π Babilończycy (ok r. p.n.e.): π 3 Egipcjanie (ok r. p.n.e.): π (16/9)² 3, Archimedes (III w. p.n.e.): π 22/7 3,14 Chiński matematyk Chang Hing (I w. n. e.): π 142/45 3, Klaudiusz Ptolomeusz (II w. n.e.): π 3+8/60+3/360 3,1416

6 hinduski matematyk Ariabhata (V w. n.e.): π ,1416 hinduski matematyk Bhasakara (VII w. n.e.): π 754/240=3, włoski matematyk Leonardo Fibonacci (XIII w.): π 864/275 3, holenderski matematyk Piotr Metius (XVI w.): π 355/113 3,

7 Wyznaczenie obwodu koła Obwód koła jest proporcjonalny do jego średnicy. Współczynnikiem proporcjonalności jest liczba π. Zależność tą wyrażamy wzorem: L=2* π *r r - promień koła π - współczynnik proporcjonalny, liczba pi, która w przybliżeniu równa jest wartości 3,14

8 Ciekawostki na temat liczby π

9 Znak π jest oznaczeniem matematycznym wywodzącym się z litery alfabetu greckiego powszechnie używanym do oznaczenia liczby, której wartością jest stosunek długości obwodu koła do długości jego średnicy. Jej pierwszego utożsamienia z wartością 3,14159 dokonał to w 1706 William Jones, walijski matematyk i pisarz.

10 Z liczbą π, jakkolwiek pojawia się ona w wielu wzorach z różnych dziedzin, ludzie zetknęli się już w starożytności, zauważając, że stosunek obwodu koła do jego średnicy jest wartością stałą. Babilończycy przyjmowali, że jest on równy w przybliżeniu 3. Pierwsze źródła świadczące o świadomym korzystaniu z własności liczby π pochodzą ze starożytnego Babilonu. Na jednej z kamiennych tablic, pojawia się opis wartości obwodu koła o średnicy 1, przybliżony przez wartość 3.125

11 W piramidzie Cheopsa stosunek sumy dwóch boków podstawy do wysokości wynosi 3,1416, czyli przybliżenie pi z dokładnością do czterech miejsc po przecinku! Dziś nie można stwierdzić czy był to zadziwiający przypadek, czy wynik geniuszu nieznanych nam z imienia uczonych. Uczeni szukając kontaktu z cywilizacjami pozaziemskimi, wysłali w kosmos drogą radiową informację o wartości liczby π. Wierzą, że inteligentne istoty spoza Ziemi znają tę liczbę i rozpoznają nasz komunikat.

12 Zdaniem dr. Badowskiego, choć liczba Pi inspiruje hobbystów, uczonych a nawet artystów, wcale nie musi być tak wyjątkowa, jak może się wydawać. Dowodem na to może być aplikacja, która w rozwinięciu dziesiętnym liczby Pi poszuka naszej daty urodzenia. Jest dowód naukowy na to, że w tym rozwinięciu znajdzie się ciąg liczbowy dowolnej długości. To pokazuje, że nie jest liczbą szczególną. Nie ma żadnego porządku w jej rozwinięciu dziesiętnym. Nie jest w jakikolwiek sposób wybrana - podkreślił Badowski.

13 Do opisania koła wpisanego we wnętrze naszej planety wystarczy liczba π przybliżona do 11 cyfr po przecinku. Obliczenia takie obarczone byłyby błędem do 1 mm. Do opisania koła wpisanego w cały dostrzegalny kosmos wystarczy liczba π podana z dokładnością do 39 miejsc po przecinku, przy czym wartość błędu byłaby porównywalna do promienia atomu wodoru.

14 Liczba π ma swoich licznych wielbicieli. Obchodzą oni dzień π (14 marca) (amerykański sposób zapisu daty 3.14).Tworzone są też wierszyki i opowiadania, w których długość każdego kolejnego słowa jest równa kolejnej cyfrze w rozwinięciu dziesiętnym liczby π. Niemcom w zapamiętaniu aproksymacji π uzyskanej przez van Ceulena może być pomocny wiersz napisany przez Clemensa Brentano, który jest przypuszczalnie pierwszym tego typu tekstem:,,nigdy, o dobry Boże, nie użyczysz mi mocy spamiętania po wsze czasy potężnego, ze sobą trwale sprzężonego szeregu cyfr. Dlatego przyswoiłem sobie ludolfinę w słowach.

15 Światowy potwierdzony rekord w zapamiętywaniu ciągu cyfr liczby π należy aktualnie do Japończyka Akiry Haraguchi, który podał ją z dokładnością do 100 tysięcy miejsc po przecinku bijąc własny rekord cyfr po przecinku z roku Starszy rekord należał do Chińczyka Lu Chao, który powtórzył ponad 67 tysięcy znaków po przecinku.

16 Żródło pl.wikipedia.org/wiki/pi ciekawostki liczby e-kursant.com.pl/aciekawostki/ najciekawszychinformacji-o-licz...

17 KONIEC

Czym jest liczba π? O liczbie π. Paweł Zwoleński. Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska

Czym jest liczba π? O liczbie π. Paweł Zwoleński. Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska 200.03.4 Motywacja wprowadzenia π Kluczowym momentem w historii liczby π było zauważenie przez starożytnych Babilończyków

Bardziej szczegółowo

Krzywe stożkowe Lekcja III: Okrąg i liczba π

Krzywe stożkowe Lekcja III: Okrąg i liczba π Krzywe stożkowe Lekcja III: Okrąg i liczba π Wydział Matematyki Politechniki Wrocławskiej Wzajemne położenie prostej i okręgu Istnieją trzy możliwe wzajemne położenia prostej o równaniu y = ax + b względem

Bardziej szczegółowo

Temat: Liczby definicje, oznaczenia, własności. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Liczby definicje, oznaczenia, własności. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Liczby definicje, oznaczenia, własności A n n a R a j f u r a, M a t e m a t y k a s e m e s t r, W S Z i M w S o c h a c z e w i e Kody kolorów: pojęcie zwraca uwagę A n n a R a j f u r a, M a

Bardziej szczegółowo

Temat: Koło i okrąg. Pojęcia związane z okręgiem promień, średnica, styczna, sieczna.

Temat: Koło i okrąg. Pojęcia związane z okręgiem promień, średnica, styczna, sieczna. Spotkanie 2 Temat: Koło i okrąg. Pojęcia związane z okręgiem promień, średnica, styczna, sieczna. Zajęcia rozpoczynamy od pytania, co oznacza nazwa projektu, w którym uczniowie biorą udział: Pi i sigma.

Bardziej szczegółowo

Tajemnicza liczba π. d d d

Tajemnicza liczba π. d d d Tajemnicza liczba π Każdy z Was na pewno już słyszał o liczbie π. Występuje ona w wielu wzorach matematycznych, np. na pole koła, objętość walca, jest przykładem liczby niewymiernej. Większość osób pamięta,

Bardziej szczegółowo

Dlaczego liczba Π ma swoje święto?

Dlaczego liczba Π ma swoje święto? Dlaczego liczba Π ma swoje święto? 14 marca 2016 Szkolne Święto Matematyki w Gimnazjum nr 2 w Skawinie Liczba Pi jest wykorzystywana prawie w każdej sytuacji, w której musimy dokonać pomiarów przy pomocy

Bardziej szczegółowo

3. Liczba Pi. 1. Cele lekcji. a. 2. Metoda i forma pracy. b. 3. Środki dydaktyczne

3. Liczba Pi. 1. Cele lekcji. a. 2. Metoda i forma pracy. b. 3. Środki dydaktyczne 1. 2. 3. Liczba Pi 1. Cele lekcji Cel ogólny lekcji: Poznanie zależności pomiędzy długością okręgu a jego średnicą. Poznanie liczby niewymiernej π. a) Wiadomości Uczeń Zna liczbę niewymierną π. b) Umiejętności

Bardziej szczegółowo

Ciekawostki matematyczne i nie tylko!!! Nieskończoność i googol

Ciekawostki matematyczne i nie tylko!!! Nieskończoność i googol Ciekawostki matematyczne i nie tylko!!! Nieskończoność i googol "Istnieje liczba największa, ale dosięgnąć jej nie zdoła człowiek. Tylko bogowie mają tę moc i oni jedni potrafią policzyć gwiazdy na niebie"

Bardziej szczegółowo

Karta pracy M+ do multipodręcznika dla klasy 2 gimnazjum. Niewymierna liczba

Karta pracy M+ do multipodręcznika dla klasy 2 gimnazjum. Niewymierna liczba Karta pracy M+ do multipodręcznika dla klasy 2 gimnazjum Niewymierna liczba Część A. Sprawdź, czy rozumiesz film. 1. Skreśl w tekście niewłaściwe słowa i sformułowania. Kręgi i średnice W czasach późnego

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

Funkcje trygonometryczne

Funkcje trygonometryczne Funkcje trygonometryczne Piotr Rzonsowski Teoria Definicja. Sinusem kąta ostrego nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej sin = b c. Cosinusem kąta ostrego nazywamy

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych.

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych. 1. Systemy liczbowe 1.1. System liczbowy zbiór reguł jednolitego zapisu, nazewnictwa i działao na liczbach. Do zapisywania liczb zawsze używa się pewnego skooczonego zbioru znaków, zwanych cyframi. Cyfry

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Mini tablice matematyczne. Figury geometryczne

Mini tablice matematyczne. Figury geometryczne Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. WYKŁAD 6 1 8. TRYGONOMETRIA. 8.1. FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. SINUSEM kąta nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej w trójkącie prostokątnym : =. COSINUSEM

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendystki: mgr Jerzy Mil 1 Działania na ułamkach Wyłączanie całości z dodatnich ułamków niewłaściwych Formuła

Bardziej szczegółowo

O liczbach niewymiernych

O liczbach niewymiernych O liczbach niewymiernych Agnieszka Bier Spotkania z matematyką jakiej nie znacie ;) 8 stycznia 0 Liczby wymierne i niewymierne Definicja Liczbę a nazywamy wymierną, jeżeli istnieją takie liczby całkowite

Bardziej szczegółowo

Zajęcia dodatkowe z matematyki dla klasy II i III gimnazjum

Zajęcia dodatkowe z matematyki dla klasy II i III gimnazjum 183 - Zajęcia dodatkowe z matematyki - kółko matematyczne dla klasy II i III gimnazjum Jesteś zalogowany(a) jako Recenzent (Wyloguj) Kreatywna szkoła ZP_183 Osoby Uczestnicy Certificates Fora dyskusyjne

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era POTĘGI I PIERWIASTKI POTĘGI Na ocenę dopuszczającą uczeń: zna i rozumie pojęcie

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 4A/15 Liczby Fibonacciego Spośród ciągów zdefiniowanych rekurencyjnie, jednym z najsłynniejszych jest ciąg Fibonacciego (z roku 1202)

Bardziej szczegółowo

Liczba. Wisława Szymborska 1

Liczba. Wisława Szymborska 1 Liczba Podziwu godna liczba Pi trzy koma jeden cztery jeden. Wszystkie jej dalsze cyfry też są początkowe, pięć dziewięć dwa, ponieważ nigdy się nie kończy. Nie pozwala się objąć sześć pięć trzy spojrzeniem,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

2. Kryteria oceniania

2. Kryteria oceniania 2. Kryteria oceniania OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe Umiejętności ponadpodstawowe Konieczne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011 W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 1A, 1B, 1C GIMNAZJUM ROK SZK.2016/2017

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 1A, 1B, 1C GIMNAZJUM ROK SZK.2016/2017 WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 1A, 1B, 1C GIMNAZJUM ROK SZK.2016/2017 Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytywać informacje przedstawione w tabelach

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Gazetka matematyczna wykonana w ramach projektu edukacyjnego.

Gazetka matematyczna wykonana w ramach projektu edukacyjnego. π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π-mania π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π

Bardziej szczegółowo

1. Michał Hadzik - Gimnazjum nr 27 2. Wojciech Wysoczaoski - Gimnazjum nr 39 3. Agnieszka Wiatrak - Gimnazjum nr 11, Dominka Gaweł - Gimnazjum nr 48

1. Michał Hadzik - Gimnazjum nr 27 2. Wojciech Wysoczaoski - Gimnazjum nr 39 3. Agnieszka Wiatrak - Gimnazjum nr 11, Dominka Gaweł - Gimnazjum nr 48 W Zespole Szkół Integracyjnych we Wrocławiu w dniach 14-18 marca odbył się festiwal matematyczny. Początek festiwalu przypadł na Międzynarodowy Dzieo liczby π. W tym dniu odbyła się uroczysta gala wręczenia

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie I gimnazjum

Kryteria ocen z matematyki w klasie I gimnazjum 1. Zbieranie, porządkowanie i prezentowanie danych 1. Liczby naturalne 1. Cechy podzielności 1. Działania na liczbach naturalnych 1. Algorytmy działań pisemnych odczytywać informacje przedstawione w tabelach

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS IA I IB NA ROK SZKOLNY 2014/2015

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS IA I IB NA ROK SZKOLNY 2014/2015 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS IA I IB NA ROK SZKOLNY 2014/2015 UŁAMKI ZWYKŁE I DZIESIĘTNE Rozpoznaje ułamki właściwe i niewłaściwe Rozszerza ułamek zwykły Skraca ułamek zwykły Zapisuje ułamek

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV

Wymagania edukacyjne z matematyki w klasie IV Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

Liczby babilońskie są kombinacją trzech znaków;

Liczby babilońskie są kombinacją trzech znaków; Cyfry różnych narodów i epok 1 Człowiek potrafił liczyć już w epoce pierwotnej. Liczba 55 jest pierwsza liczbą, której zapis zachował się do tego czasu. W 1937 r. znaleziono w Czechach kość wilka, pochodzącą

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 014/015 ZĘŚĆ. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-M1X, GM-M, GM-M4, GM-M5, GM-M1L, GM-M1U KWIEIEŃ 015 Zadanie 1. (0 1) I. Wykorzystanie

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny Matematyka na czasie dla klasy 2

Wymagania edukacyjne na poszczególne oceny Matematyka na czasie dla klasy 2 Wymagania edukacyjne na poszczególne oceny Matematyka na czasie dla klasy Prezentowane wymagania edukacyjne są zintegrowane z planem wynikowym autorstwa Agnieszki amińskiej, Doroty Ponczek, będącym propozycją

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

MATEMATYKA: (tak to ja, jestem tu, nie dam Ci spokoju, taka ze mnie stara zrzęda)

MATEMATYKA: (tak to ja, jestem tu, nie dam Ci spokoju, taka ze mnie stara zrzęda) Liczba Pi Bardzo lubię liczbę Pi, Kiedy ona na tablicy śpi. Liczba pi jest międzynarodowa, Więc każdy o niej mówi, że jest przebojowa. Gdy 3,14 uczeń zna Z matematyki 6 ma. Matematyka to nie muzyka, Z

Bardziej szczegółowo

Osiągnięcia przedmiotowe

Osiągnięcia przedmiotowe 1. Zbieranie, porządkowanie i prezentowanie danych przedstawione w tabelach przedstawione na przedstawiać dane w tabelach przedstawiać dane na przedstawione w tabelach przedstawione na porównywać informacje

Bardziej szczegółowo

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1 KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1 Przedstawiamy, jakie umiejętności z danego działu powinien zdobyć uczeń, aby uzyskać poszczególne stopnie. Na ocenę dopuszczający uczeń

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

wymagania programowe z matematyki kl. II gimnazjum

wymagania programowe z matematyki kl. II gimnazjum wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Marcin Różański Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendysty: mgr Jerzy Mil

Marcin Różański Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendysty: mgr Jerzy Mil Marcin Różański Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendysty: mgr Jerzy Mil 1 Działania na ułamkach Włączanie całości w dodatnich liczbach Obliczania licznika ułamka

Bardziej szczegółowo

Wymagania programowe w porządku związanym z realizacją programu

Wymagania programowe w porządku związanym z realizacją programu Wymagania programowe w porządku związanym z realizacją programu Nazwa umiejętności UCZEŃ POTRAFI: Poziom wymagań Kategoria celu 1. Porównać dwie liczby całkowite. K C 2. Uporządkować liczby całkowite.

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny

Matematyka wykaz umiejętności wymaganych na poszczególne oceny Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz

Bardziej szczegółowo

Wymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa

Wymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa ymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa Oznaczenia: wymagania konieczne (ocena dopuszczająca), wymagania podstawowe (ocena dostateczna), wymagania rozszerzające (ocena dobra) D wymagania

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

trygonometria Trygonometria to dział matematyki, który bada związki między bokami i kątami trójkątów.

trygonometria Trygonometria to dział matematyki, który bada związki między bokami i kątami trójkątów. Trygonometria to dział matematyki, który bada związki między bokami i kątami trójkątów. Funkcje trygonometryczne dla kątów ostrych to stosunki długości odpowiednich dwóch boków trójkąta prostokątnego.

Bardziej szczegółowo

PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001

PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001 Bożena Bakiewicz, Bożena Pindral PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001 Poziom wymagań: K - konieczny P - podstawowy R - rozszerzający D - dopełniający POTĘGI,

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych. z matematyki dla uczniów klasy I LO poziom podstawowy

Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych. z matematyki dla uczniów klasy I LO poziom podstawowy Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych Nauczyciel: mgr Karolina Bębenek z matematyki dla uczniów klasy I LO poziom podstawowy 1. Wprowadzenie do matematyki.

Bardziej szczegółowo

Semestr Pierwszy Liczby i działania

Semestr Pierwszy Liczby i działania MATEMATYKA KL. I 1 Semestr Pierwszy Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej podać odwrotność liczby porównać

Bardziej szczegółowo

Kiedy w zadaniu widzę liczbę Pi. Wtedy bardzo wesoło mi. Pi poradę zawsze da. Nawet gdy się lenia ma. Pi nam daje dużo otuchy

Kiedy w zadaniu widzę liczbę Pi. Wtedy bardzo wesoło mi. Pi poradę zawsze da. Nawet gdy się lenia ma. Pi nam daje dużo otuchy Kiedy w zadaniu widzę liczbę Pi Wtedy bardzo wesoło mi Pi poradę zawsze da Nawet gdy się lenia ma Pi nam daje dużo otuchy Byśmy nie stali się leniuchy Kto chce mocny być z rachunków Niech pamięta o stosunku

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

1 LICZBY I ZBIORY Znajdź NW D i NW W liczb: 112 i 210.

1 LICZBY I ZBIORY Znajdź NW D i NW W liczb: 112 i 210. LIZBY I ZBIORY Liczby i zbiory. Jakim działaniem można opisać zbiór wyróżniony na diagramie?. Zbiory. Działania na zbiorach d) A B A B A B A B. Oceń, który ze zbiorów jest skończony, a który nieskończony:

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka

PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6 Rok szkolny 2012/2013 Tamara Kostencka 1 LICZBY NA CO DZIEŃ LICZBY NATURALNE I UŁAMKI Wymagania programowe dla klasy VI szkoły podstawowej DZIAŁ WYMAGANIA

Bardziej szczegółowo

Orientacyjnie 140 godzin lekcyjnych, tj. 35 tygodni po 4 godziny lekcyjne tygodniowo.

Orientacyjnie 140 godzin lekcyjnych, tj. 35 tygodni po 4 godziny lekcyjne tygodniowo. 6 Orientacyjnie 40 godzin lekcyjnych, tj. 35 tygodni po 4 godziny lekcyjne tygodniowo.. Śmietankowe ponad wszystko Statystyka. Powtórzenie wiadomości ze statystyki 3 Czytanka. O języku matematyki, czyli

Bardziej szczegółowo

STRONA DO WSTAWIENIA: STR_TYT\MEPGI1_001tyt.pdf

STRONA DO WSTAWIENIA: STR_TYT\MEPGI1_001tyt.pdf STRONA DO WSTAWIENIA: STR_TYT\MEPGI1_001tyt.pdf STRONA DO WSTAWIENIA: STR_RED\MEPGI1_002red.pdf Spis treści Od autorek (s. 7) 1. Statystyka (s. 9) 1.1. Wędrówki po krajach Unii Europejskiej. Wyszukiwanie

Bardziej szczegółowo

Podstawy programowania w języku Visual Basic dla Aplikacji (VBA)

Podstawy programowania w języku Visual Basic dla Aplikacji (VBA) Podstawy programowania w języku Visual Basic dla Aplikacji (VBA) Instrukcje Język Basic został stworzony w 1964 roku przez J.G. Kemeny ego i T.F. Kurtza z Uniwersytetu w Darthmouth (USA). Nazwa Basic jest

Bardziej szczegółowo

Opis wymagań do programu Matematyka klasa VI

Opis wymagań do programu Matematyka klasa VI Opis wymagań do programu Matematyka 2001- klasa VI Cele ogólne wytyczają kierunki pracy z uczniami, zaś cele szczegółowe są opisem osiągnięć uczniów w wyniku kształcenia na danym przedmiocie i etapie edukacji.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Logarytmy. Historia. Definicja

Logarytmy. Historia. Definicja Logarytmy Historia Logarytmy po raz pierwszy pojawiły się w książce szkockiego matematyka - Johna Nepera "Opis zadziwiających tablic logarytmów" z 1614 roku. Szwajcarski astronom i matematyk Jost Burgi

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 8

Bardziej szczegółowo

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,

Bardziej szczegółowo

Dookoła koła. Zastosowania koła i okręgu w różnych dziedzinach życia. Karol Duszczyk

Dookoła koła. Zastosowania koła i okręgu w różnych dziedzinach życia. Karol Duszczyk Dookoła koła Zastosowania koła i okręgu w różnych dziedzinach życia. Karol Duszczyk Prezentacja stworzona na potrzeby projektu stypendialnego,,mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu

Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12 P.

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. I. Liczby rzeczywiste oś liczbowa i przedziały liczbowe. 1. Definicja liczb: naturalnych całkowitych wymiernych niewymiernych

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 8

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Nauczyciel: Jacek Zoń WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY IV : 1. przeczyta i zapisze liczbę wielocyfrową (do tysięcy) 2. zna nazwy rzędów

Bardziej szczegółowo

Blok I: Wyrażenia algebraiczne. dla xy = 1. (( 7) x ) 2 ( 7) 11 7 x c) x ( x 2) 4 (x 3 ) 3 dla x 0 d)

Blok I: Wyrażenia algebraiczne. dla xy = 1. (( 7) x ) 2 ( 7) 11 7 x c) x ( x 2) 4 (x 3 ) 3 dla x 0 d) Blok I: Wyrażenia algebraiczne I. Obliczyć a) 9 9 9 9 ) 7 y y dla y = z, jeśli = 0 4, y = 0 0.7 i z = y 64 7) ) 7) 7 7 I. Uprościć wyrażenia a) 48 6 4 dla 0 5) 4 dla 0 ) 4 ) dla 0 45 4 y ) dla yz 0 I.

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo