Liczby babilońskie są kombinacją trzech znaków;

Wielkość: px
Rozpocząć pokaz od strony:

Download "Liczby babilońskie są kombinacją trzech znaków;"

Transkrypt

1 Cyfry różnych narodów i epok 1 Człowiek potrafił liczyć już w epoce pierwotnej. Liczba 55 jest pierwsza liczbą, której zapis zachował się do tego czasu. W 1937 r. znaleziono w Czechach kość wilka, pochodzącą sprzed około lat, na której znajduje się 55 karbów ułożonych po 5. Trudno jest ustalić dokładną metrykę cyfry i metrykę pochodzenia pierwszego alfabetu. Cyframi posługiwały się zamierzchłej przeszłości i narody Azji (Hindusi, Chińczycy, Babilończycy), i narody Ameryki (np. Majowie), i narody Afryki (Egipcjanie). Dla nas najważniejsze są te cyfry, z którymi związane są dzieje naszej kultury; babilońskie, egipskie, fenickie, greckie, rzymskie i przede wszystkim hinduskie (arabskie). Babilon Pierwsze cyfry wymyślili Sumerowie, mieszkańcy krainy między dwiema rzekami wpadającymi do Zatoki Perskiej, którą Grecy nazywali Mezopotamią. Stolicą Mezopotamii był Babilon. Sumero-Babilńczycy posługiwali się dwoma znakami: pionowym (1oraz 60) i poziomym(10) klinem Kliny otrzymywano przez od ciśnięcie ostrza trójkątnej pałeczki w wilgotnej tabliczce. Liczbę 58 przedstawiali za pomocą pięciu pionowych i ośmiu poziomych klinów. Liczbę 60 pisano za pomocą jednego poziomego klina (jak liczbę 1). Matematycy babilońscy pierwsi odkryli zasadę numeracji pozycyjnej. Stworzyli pierwszy pozycyjny system liczenia, przy pomocy którego w oparciu o swoistą kombinacje układu dziesiątkowego z sześćdziesiątkowym z systemem pozycyjnym potrafili pisać dowolną liczbę. Liczby babilońskie są kombinacją trzech znaków; Za pomocą tych znaków pisano liczby, posługując się zasadą mnożenia i dodawania(większa liczba zawsze poprzedza mniejszą) To jest 42, czyli Stanisław Kowal Przez rozrywkę do wiedzy 1 2

2 Ten sposób zapisu liczb nazywa się addytywny; polega na dodawaniu poszczególnych składników. Tak tworzono i zapisywano liczby mniejsze od 60. Liczby większe od 60 składały się z dwóch części: pierwszą część pisano na zasadzie pozycyjnej, a drugą na zasadzie addytywnej. To jest 85, czyli =92 Początkowo Babilończycy nie używali zera. Później dla wyrażenia brakującego miejsca pisali dwa pochyłe znaki jedynki. Zero stawiano tylko wewnątrz liczby. Liczby: 13, 130, 1300, miały jednakowy zapis(można je odróżnić na podstawie warunków zadania). Babiloński system liczenia powstał w XXX XXVIII w. p.n.e. i obecnie posługujemy się nim przy mierzeniu kątów i czasu. Liczbę 20 Majowie zapisywali za pomocą jedności i umieszczonego pod nim zera(0-przypomina przymknięte oko) Cały naród Majów, pomniki piśmiennictwa zostały zniszczone przez odkrywców Ameryki. Wraz z ludem w płomieniach zginęły bezcenne dzieła tej zadziwiającej kultury. Cyfry Azteków W XI-XVI w. Indianie z plemienia Azteków(Meksyk) posługiwali się system liczbowy, w którym liczenie odbywało się grupami po pięć przedmiotów. Jedynkę zapisano za pomocą kropki, dwójkę dwóch kropek, itd., do pięciu. Sześć oznaczono pięcioma kropkami oddzielonymi kreską od szóstej. Kreska nie oznaczała liczby. Cyfry Majów W V-XIII w. Na półwyspie Jukatan Indianie z plemienia Majów stworzyli dwudziestkowy i piątkowy system liczenia. System ten był systemem pozycyjnym, w którym posługiwano się trzema symbolami: kropką-1, poziomą kreską-1, stylizowaną muszlą-0 Cyfry Majów przedstawiają się następująco: 3 4

3 Egipt Prawie tak samo stare jak babilońskie są cyfry egipskie. Podstawowymi cyframi egipskimi są: Liczby od 1do 9 to pionowe kreski( znak nacięcia lub karb), 10 pętla do krępowania zwierząt, 100 sznurek do pomiarów, kwiat lotosu, palec wskazujący, kijanka, człowiek w stanie ekstazy, promienie wschodzącego Słońca. W systemie tym liczby oznaczano hieroglifami. Był to system oparty na zasadzie dziesiętnej, ale bez zera. Egipcjanie pisali najpierw liczby wyższego rzędu a później niższego. Aby odczytać całą liczbę należy sumować liczby = Starożytni Egipcjanie posługiwali się również ułamkami(typu 1/n ułamkami alikwotnymi), które zapisywano jak liczby naturalne umieszczając nad nimi kropkę. Dla oznaczenia ułamków ½, ¼, 2/3, ¾ stosowano oddzielne hieroglify. Rzym Cyfry rzymskie są znane i używane obecnie np.: na tarczach zegarów, na tablicach pamiątkowych, w numeracji kart książek. W rzymskim systemie liczbowym używano następującej numeracji: I=1, V=5, X=10, L=50, C=100(łac.centum), 500=D, M=1000(łac.mille).Jest to system addytywny, niepozycyjnym, bez zera, w którym znaki specjalne to V, L, D. Rzymianie liczby pisali za pomocą cyfr stosując zasadę dodawania LX=60 (50+10) MC=1100 ( ) lub odejmowania XL=40 (50-10=40) CM=900 (1000-!00=900). Dla zapisania dużych licz stosowano: mnożenia przez 100 X =1000, mnożenie przez 1000 X =

4 Grecja Grecy posługiwali się dwoma rodzajami znaków cyfrowych: ateńskimi i jońskimi. Cyfr ateńskich używał Pitagoras, Platon i Arystoteles. Znaki Π,, H, X, M są początkowymi literami odpowiednich słów: pente (5), deka (10), hekaton (100), chilios (1000) i myrias (10000). Grecy stosowali również skróty: Numeracja hieroglificzna i alfabetyczna ma wady: - zapisywanie dużych liczb wymaga stosowania nowych znaków, - wykonywanie działań na liczbach jest trudne. Cyfry hinduskie Używane współcześnie cyfry powstały ok lat temu w Indii. Nasze cyfry nazywamy arabskimi, dlatego że cyfry i dziesiątkowy system pozycyjny został przeniesiony przez Arabów z Indii do Europy. Jońskimi cyframi były litery alfabetu: Cyfry indyjskie zostały wypracowane przez ludzi i przyjęły kształt zbliżony do współczesnego. Do oznaczenia liczb 6, 90 i 900 stosowano dodatkowe znaki. System ten oparty jest na zasadzie dziesiętnej, ale bez zer. Aby napisaną liczbę odróżnić od słowa, stawiano nad nią kreskę. Cyframi jońskimi posługiwał się Euklides, Heron, Diofantos Archimedes,... Obecnie po zmianie kształtu cyfr, cyfry arabskie wyglądają następująco: 7 8

5 Cyfry arabskie zostały wprowadzone do kultury europejskiej pod koniec X w. Przez francuskiego mnicha Gerberta (papieża Sylwestra II). Papież za przychylność do numeracji indyjskiej poniósł tragiczna klęskę. Oskarżono go o zaprzedanie duszy diabłu. Polska pod względem adaptacji hinduskiego systemu przodowała w Europie(rozprawka matematyczna z 1397r.) Zygmunt August używał już cyfr arabskich. Nasi przodkowie-słowianie(wpływ kultury z Bizancjum) posługiwali się słowiańską dziesiętną numeracja alfabetyczną, podobną do jońskiej. Nad literami(liczbami) stawiali specjalny znak tytło woron kołoda Do oznaczenia innych liczb korzystano z liter alfabetu cyrylicy, który oparty jest na alfabecie greckim Słowianie wschodni, Rusowie, mieli dwa rachunki: małą liczbę ćma legion, leader dużą liczbę tysiacza, ćma legion leader 9 10

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000 SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości

Bardziej szczegółowo

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych.

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych. 1. Systemy liczbowe 1.1. System liczbowy zbiór reguł jednolitego zapisu, nazewnictwa i działao na liczbach. Do zapisywania liczb zawsze używa się pewnego skooczonego zbioru znaków, zwanych cyframi. Cyfry

Bardziej szczegółowo

RÓŻNE SPOSOBY ZAPISU LICZB. Zapraszamy do obejrzenia naszej prezentacji

RÓŻNE SPOSOBY ZAPISU LICZB. Zapraszamy do obejrzenia naszej prezentacji RÓŻNE SPOSOBY ZAPISU LICZB Zapraszamy do obejrzenia naszej prezentacji SYSTEMY LICZBOWE *binarny- do zapisu potrzebne są cyfry zero i jeden *trójkowy- do zapisu potrzebne są cyfry zero, jeden i dwa *czwórkowy-

Bardziej szczegółowo

SCENARIUSZE ZAJĘĆ DO KLASY II realizowane w ciągu pięciu dni. OPRACOWAŁA: BOŻENA GŁÓWCZYK

SCENARIUSZE ZAJĘĆ DO KLASY II realizowane w ciągu pięciu dni. OPRACOWAŁA: BOŻENA GŁÓWCZYK SCENARIUSZE ZAJĘĆ DO KLASY II realizowane w ciągu pięciu dni. OPRACOWAŁA: BOŻENA GŁÓWCZYK BLOK TEMATYCZNY: CYFRY RZYMSKIE OD I DO XII CELE: poznanie cyfr rzymskich, rozumienie pojęć: cyfra liczba, doba,

Bardziej szczegółowo

Jak liczono dawniej?

Jak liczono dawniej? Jak liczono dawniej? Kinga Lużyńska 2a Strona 0 Praca długoterminowa z matematyki System karbowy Ludzie gdy jeszcze prowadzili koczowniczy tryb życia czyli jedli to co znaleźli bądź upolowali, nie musieli

Bardziej szczegółowo

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN): 1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej 1. Pozycyjne systemy liczbowe 2. Zasady zapisu liczb w pozycyjnych systemach liczbowych 3. Podstawowe działania na liczbach binarnych 4. Liczby

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

ZAMIANA SYSTEMÓW LICZBOWYCH

ZAMIANA SYSTEMÓW LICZBOWYCH SZKOŁA PODSTAWOWA NR 109 IM. KORNELA MAKUSZYŃSKIEGO W KRAKOWIE UL. MACKIEWICZA 15; 31-214 KRAKÓW; TEL. 0 12 415 27 59 sp109krakow.w.w.interia.pl ; e-mail: sp109krakow@wp.pl; Krakowskie Młodzieżowe Towarzystwo

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Spis treści. Wstęp... 11 CZĘŚĆ I SYSTEM EDUKACYJNY MARII MONTESSORI PODSTAWY PEDAGOGICZNE

Spis treści. Wstęp... 11 CZĘŚĆ I SYSTEM EDUKACYJNY MARII MONTESSORI PODSTAWY PEDAGOGICZNE Spis treści TOM PIERWSZY Wstęp... 11 CZĘŚĆ I SYSTEM EDUKACYJNY MARII MONTESSORI PODSTAWY PEDAGOGICZNE 1. Znaczenie aktywności dziecka w procesie jego rozwoju i uczenia się... 17 2. Pedagogicznie przygotowane

Bardziej szczegółowo

Opracował: Piotr Wachowiak wykorzystując materiał Adama Wolańskiego

Opracował: Piotr Wachowiak wykorzystując materiał Adama Wolańskiego Opracował: Piotr Wachowiak wykorzystując materiał Adama Wolańskiego ZASADY EDYCJI TEKSTÓW NAUKOWYCH Wskazówki pomocne przy pisaniu pracy dyplomowej, magisterskiej i doktorskiej I. Formatowanie tekstu:

Bardziej szczegółowo

Materiał nauczania matematyki w klasie IV na podstawie programu Liczę z Pitagorasem

Materiał nauczania matematyki w klasie IV na podstawie programu Liczę z Pitagorasem Materiał nauczania matematyki w klasie IV na podstawie programu Liczę z Pitagorasem Lp. Dział Wymagania programowe programu podstawowe ponadpodstawowe I Działania w zbiorze liczb naturalnych - rachunek

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego

Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki 2007-2013 CZŁOWIEK NAJLEPSZA INWESTYCJA Publikacja

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Z HISTORII W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Z HISTORII W KLASIE IV historia i czym zajmuje się historyk. WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Z HISTORII W KLASIE IV Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Uczeń umie krotko Uczeń wyjaśnia,

Bardziej szczegółowo

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że

Bardziej szczegółowo

Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 4

Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 4 Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 4 Na ocenę dopuszczającą uczeń 1. Zapisać słowami podaną cyframi liczbę naturalną, (co najwyżej liczbę

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Lista zadań. Babilońska wiedza matematyczna

Lista zadań. Babilońska wiedza matematyczna Lista zadań Babilońska wiedza matematyczna Zad. 1 Babilończycy korzystali z tablicy dodawania - utwórz w arkuszu kalkulacyjnym EXCEL tablicę dodawania liczb w układzie sześćdziesiątkowym, dla liczb ze

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Pytania z HM1. Jakub Sygnowski. 23 stycznia a) Kepler b) Ptolemeusz c) Kopernik. a) Kepler b) Kartezjusz c) Fermat

Pytania z HM1. Jakub Sygnowski. 23 stycznia a) Kepler b) Ptolemeusz c) Kopernik. a) Kepler b) Kartezjusz c) Fermat Pytania z HM1 Jakub Sygnowski 23 stycznia 2013 1. Najstarsze świadectwo uprawiania geometrii to a) piramidy egipskie b) labirynt na Krecie c) rytm ornamentów wstęgowych 2. Świadectwa o najdawniejszej działalności

Bardziej szczegółowo

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż. Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby

Bardziej szczegółowo

Systemy liczbowe. 1. System liczbowy dziesiętny

Systemy liczbowe. 1. System liczbowy dziesiętny Systemy liczbowe 1. System liczbowy dziesiętny System pozycyjny dziesiętny to system, który używa dziesięciu cyfr, a jego podstawą jest liczba 10, nazywany jest pozycyjnym, bo pozycja cyfry w liczbie rozstrzyga

Bardziej szczegółowo

Historia i społeczeństwo. Wymagania edukacyjne - klasa IV

Historia i społeczeństwo. Wymagania edukacyjne - klasa IV Historia i społeczeństwo. Wymagania edukacyjne - klasa IV Temat lekcji Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra 1. Historia Co to takiego? historia jako dzieje, przeszłość,

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Plan wynikowy. Klasa 4

Plan wynikowy. Klasa 4 Plan wynikowy. Klasa 4 Gwiazdką oznaczono tematy spoza. Wymagania dotyczące dodatkowych zależą od tego, czy nauczyciel wyznaczy dany temat ten jako obowiązkowy, czy jako nadobowiązkowy wówczas wymagania

Bardziej szczegółowo

Chronologia historyczna. chronić źródła historyczne. Uczeń rozumie, dlaczego. kształtowanie się przyszłej. Rozumie, dlaczego należy

Chronologia historyczna. chronić źródła historyczne. Uczeń rozumie, dlaczego. kształtowanie się przyszłej. Rozumie, dlaczego należy Plan wynikowy. Klasa 4 Temat 1. Historia Co to takiego? historia jako dzieje, przeszłość, epoki historyczne. 2. Wśród starych ksiąg, obrazów i budowli źródła historyczne. 3. Historia zegara i nie tylko

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

MATEMATYKA. JEDNOSTKI DŁUGOŚCI kilometr hektometr metr decymetr centymetr milimetr mikrometr km hm m dm cm mm µm

MATEMATYKA. JEDNOSTKI DŁUGOŚCI kilometr hektometr metr decymetr centymetr milimetr mikrometr km hm m dm cm mm µm MATEMATYKA Spis treści 1 jednostki miar 2 wzory skróconego mnożenia 3 podzielność liczb 3 przedrostki 4 skala 4 liczby naturalne 5 ułamki zwykłe 9 ułamki dziesiętne 9 procenty 10 geometria i stereometria

Bardziej szczegółowo

XXI Krajowa Konferencja SNM

XXI Krajowa Konferencja SNM 1 XXI Krajowa Konferencja SNM AKTYWNOŚCI MATEMATYCZNE Ewa Szelecka (Częstochowa) ewaszel@poczta.onet.pl Małgorzata Pyziak (Rzeszów) mmpskarp@interia.pl Projekty, gry dydaktyczne i podręcznik interaktywny

Bardziej szczegółowo

Edukacja matematyczna

Edukacja matematyczna Edukacja matematyczna 1 Klasa 1 Klasa 2 Klasa3 I półrocze I półrocze I półrocze posługuje się określeniami: mniej, więcej, tyle samo; porównuje liczby, wpisuje znaki , = wykonuje obliczenia z okienkami

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z HISTORII I SPOŁECZEŃSTWA DLA KL. IVA, IVB, IVC w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z HISTORII I SPOŁECZEŃSTWA DLA KL. IVA, IVB, IVC w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z HISTORII I SPOŁECZEŃSTWA DLA KL. IVA, IVB, IVC w roku szkolnym 2015/2016 OCENA: CELUJĄĆA Posiadł 100% wiedzy i umiejętności określonej w podstawie programowej kształcenia ogólnego

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH

O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb Carl Friedrich Gauss O CIEKAWYCH WŁAŚCIWOŚCIACH LICZB TRÓJKĄTNYCH OPRACOWANIE: MATEUSZ OLSZAMOWSKI KL 6A, ALEKSANDER SUCHORAB

Bardziej szczegółowo

Matematyka. Klasa IV

Matematyka. Klasa IV Matematyka Klasa IV Ocenę niedostateczną otrzymuje uczeń, który nie opanował umiejętności przewidzianych w wymaganiach na ocenę dopuszczającą Uczeń musi umieć: na ocenę dopuszczającą: odejmować liczby

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

Wymagania na poszczególne oceny - klasa 4

Wymagania na poszczególne oceny - klasa 4 Wymagania na poszczególne oceny - klasa 4 ***Gwiazdką oznaczono tematy spoza podstawy programowej. Wymagania dotyczące lekcji dodatkowych zależą od tego, czy nauczyciel wyznaczy dany temat ten jako obowiązkowy,

Bardziej szczegółowo

Propozycja rocznego rozkładu materiału Historia dla liceum i technikum, część 1.

Propozycja rocznego rozkładu materiału Historia dla liceum i technikum, część 1. Propozycja rocznego rozkładu materiału Historia dla liceum i technikum, część 1. Przygotowano na podstawie publikacji: J. Choińska-Mika, W. Lengauer, M. Tymowski, K. Zielińska, Historia 1. Kształcenie

Bardziej szczegółowo

DZIELENIE SIĘ WIEDZĄ I POMYSŁAMI SPOTKANIE ZESPOŁU SAMOKSZTAŁCENIOWEGO

DZIELENIE SIĘ WIEDZĄ I POMYSŁAMI SPOTKANIE ZESPOŁU SAMOKSZTAŁCENIOWEGO DZIELENIE SIĘ WIEDZĄ I POMYSŁAMI SPOTKANIE ZESPOŁU SAMOKSZTAŁCENIOWEGO Mariusz Pielucha nauczyciel nauczania początkowego Szkoła Podstawowa w Kaźmierzu. CEL: Wykorzystanie szablonów kratkowych do wprowadzenia

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

Grafika inżynierska i rysunek geodezyjny

Grafika inżynierska i rysunek geodezyjny Akademia Górniczo-Hutnicza Grafika inżynierska i rysunek geodezyjny Mgr inż. Aleksandra Szabat-Pręcikowska Normalizacja w rysunku technicznym i geodezyjnym W Polsce istnieją następujące rodzaje norm: polskie

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo

Justyna Klimczyk j_klimczyk@poczta.onet.pl Nauczyciel informatyki Szkoła Podstawowa im. Janusza Korczaka w Kleszczowie

Justyna Klimczyk j_klimczyk@poczta.onet.pl Nauczyciel informatyki Szkoła Podstawowa im. Janusza Korczaka w Kleszczowie Justyna Klimczyk j_klimczyk@poczta.onet.pl Nauczyciel informatyki Szkoła Podstawowa im. Janusza Korczaka w Kleszczowie Scenariusz lekcji informatyki klasa V Temat : Zbieramy i opracowujemy dane Cel lekcji:

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Matematyka, kl. 4. Uczeń:

Matematyka, kl. 4. Uczeń: Matematyka, kl. 4 Liczby i działania Program Matematyka z plusem Ocena Uczeń: Zna: pojęcia składnika, sumy, odjemnej, odjemnika, różnicy, czynnika, iloczynu, dzielnej, dzielenia, ilorazu, niewykonalność

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV

Wymagania edukacyjne z matematyki w klasie IV Wymagania edukacyjne z matematyki w klasie IV a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

Sprawdzian umiejętności matematycznych po klasie V szkoły podstawowej

Sprawdzian umiejętności matematycznych po klasie V szkoły podstawowej Sprawdzian Sprawdzian umiejętności matematycznych po klasie V szkoły podstawowej Grupa A Powodzenia!... imi i nazwisko ucznia 1 a) Zapisz liczby cyframi arabskimi. XIX XXIV b) Zapisz liczby cyframi rzymskimi.

Bardziej szczegółowo

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Kategorie zostały określone następująco: dotyczy wiadomości uczeń zna uczeń rozumie dotyczy przetwarzania

Bardziej szczegółowo

Wymagania programowe na poszczególne stopnie szkolne klasa 4

Wymagania programowe na poszczególne stopnie szkolne klasa 4 Wymagania programowe na poszczególne stopnie szkolne klasa 4 Nauczyciel matematyki ocenia osiągnięcia ucznia, wykorzystując następujące formy: prace pisemne (prace klasowe, sprawdziany, kartkówki) odpowiedzi

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE W KLASIE III

WYMAGANIA PROGRAMOWE W KLASIE III WYMAGANIA PROGRAMOWE W KLASIE III EDUKACJA POLONISTYCZNA 6 WSPANIALE Uważnie słucha innych; Wypowiada się chętnie na dany temat, stosuje bogate słownictwo, w wypowiedziach stosuje zdania złożone; Potrafi

Bardziej szczegółowo

Dzieje pisma. czyli. Polacy nie gęsi i swój język mają ( i znają)

Dzieje pisma. czyli. Polacy nie gęsi i swój język mają ( i znają) Dzieje pisma czyli Polacy nie gęsi i swój język mają ( i znają) Pierwsze znane nam pismo to malowidła naskalne. Malowidła te możemy nazwać pismem piktograficznym (obrazkowym) - jeden znak-obrazek symbolizował

Bardziej szczegółowo

Uwagi dotyczące techniki pisania pracy

Uwagi dotyczące techniki pisania pracy Uwagi dotyczące techniki pisania pracy Każdy rozdział/podrozdział musi posiadać przynajmniej jeden akapit treści. Niedopuszczalne jest tworzenie tytułu rozdziału którego treść zaczyna się kolejnym podrozdziałem.

Bardziej szczegółowo

CO DWIE GŁOWY TO NIE JEDNA

CO DWIE GŁOWY TO NIE JEDNA II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 1. Organizatorem konkursu jest Zespół Szkół nr 4 w Kościanie, nauczyciele Jolanta Niklas, Jolanta Jąder,

Bardziej szczegółowo

DZIESIĘTNY SYSTEM LICZBOWY

DZIESIĘTNY SYSTEM LICZBOWY DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca

Bardziej szczegółowo

Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22.

Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22. Omnibus matematyczny 1. Cele lekcji a) Wiadomości Uczeń: zna pojęcia matematyczne z zakresu szkoły podstawowej i gimnazjum. b) Umiejętności Uczeń: potrafi podać odpowiednie pojęcie matematyczne na podstawie

Bardziej szczegółowo

Leonardo Fibonacci (circa 1170 circa 1240)

Leonardo Fibonacci (circa 1170 circa 1240) Leonardo Fibonacci (circa 1170 circa 1240) to sympatycznie brzmiące nazwisko kryje w sobie łacińskie filius Bonacci, czyli syn Bonacciego; z kolei Bonaccio możnaby (z grubsza) tłumaczyć jako: poczciwiec.

Bardziej szczegółowo

Wskazówki redakcyjne w procesie pisania prac magisterskich:

Wskazówki redakcyjne w procesie pisania prac magisterskich: Dr hab. Robert Grzeszczak Wskazówki redakcyjne w procesie pisania prac magisterskich: I. Budowa pracy magisterskiej (dyplomowej) struktura pracy powinna mieć następującą kolejność: pierwsza strona strona

Bardziej szczegółowo

Historia π (czyt. Pi)

Historia π (czyt. Pi) Historia liczby π Historia π (czyt. Pi) Już w czasach zamierzchłych starożytni rachmistrze zauważyli, że wszystkie koła mają ze sobą coś wspólnego, że ich średnica i obwód pozostają wobec siebie w takim

Bardziej szczegółowo

SZKOŁA PODSTAWOWA WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

SZKOŁA PODSTAWOWA WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA IV Liczby naturalne SZKOŁA PODSTAWOWA WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI 1. Ocenę dopuszczającą otrzymuje uczeń, który: zna pojęcie składnika i sumy, odjemnej, odjemnika i różnicy, czynnika

Bardziej szczegółowo

Opracowała: Joanna Wieczorek

Opracowała: Joanna Wieczorek I. Starożytny Egipt odczytuje informacje ze źródła kartograficznego (zaznacza na mapie Egipt Góry, Egipt Dolny, Morze Śródziemne, Morze Czerwone, Pustynię Libijską i deltę Nilu) analizuje źródło kartograficzne

Bardziej szczegółowo

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendystki: mgr Jerzy Mil 1 Działania na ułamkach Wyłączanie całości z dodatnich ułamków niewłaściwych Formuła

Bardziej szczegółowo

Wprowadzenie do informatyki ćwiczenia

Wprowadzenie do informatyki ćwiczenia Podstawowe działania na liczbach binarnych dr inż. Izabela Szczęch WSNHiD 2010/2011 Ćwiczenia z wprowadzenia do informatyki Dodawanie Odejmowanie Mnoż enie Dzielenie Plan zajęć 2 Izabela Szczęch 1 Dodawanie

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VII

Pracownia Komputerowa wyk ad VII Pracownia Komputerowa wyk ad VII dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Notacja szesnastkowa - przypomnienie Szesnastkowy

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

LICZENIE NA LICZYDLE

LICZENIE NA LICZYDLE www..pl LICZENIE NA LICZYDLE Liczydło polskie i zapis liczb Zaokrąglanie liczb na liczydle Dodawanie na liczydle Odejmowanie na liczydle Mnożenie na liczydle Dzielenie na liczydle Bibliografia LICZYDŁO

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV

Wymagania edukacyjne z matematyki w klasie IV edukacyjne z matematyki w klasie IV Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań na ocenę dopuszczającą. Do uzyskania oceny dostatecznej uczeń musi spełniać kryteria wymagane na ocenę

Bardziej szczegółowo

II. Kryteria oceniania z matematyki w klasie IV. Uczeń musi umieć:

II. Kryteria oceniania z matematyki w klasie IV. Uczeń musi umieć: Przedmiot: Matematyka Typ szkoły: szkoła podstawowa Nauczyciel: Elżbieta Sosińska Klasa: IV - VI Rok szkolny: 2014-2015 I. Obszar sprawdzania i oceniania. 1. Sprawdzaniu i ocenianiu podlegają: - wiadomości;

Bardziej szczegółowo

ZASADY REDAGOWANIA PRACY LICENCJACKIEJ

ZASADY REDAGOWANIA PRACY LICENCJACKIEJ 1 ZASADY REDAGOWANIA PRACY LICENCJACKIEJ ZASADY OGÓLNE Praca licencjacka pisana jest samodzielnie przez studenta. Format papieru: A4. Objętość pracy: 40-90 stron. Praca drukowana jest dwustronnie. Oprawa:

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie

Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie dziesiątkowego systemu liczenia, rozumie pojęcie pozycyjnego

Bardziej szczegółowo

Matematyka z klasą 4. wymagania na poszczególne oceny

Matematyka z klasą 4. wymagania na poszczególne oceny Matematyka z klasą wymagania na poszczególne Warunkiem otrzymania celującej jest spełnienie wymagań otrzymania bardzo dobrej, dobrej, dostatecznej i dopuszczającej. Uczeń otrzymuje ocenę bardzo dobrą,

Bardziej szczegółowo

Matematyka Majów, Azteków, Inków. Kowalska Wioleta, Latoch Weronika, Łubniewska Julia

Matematyka Majów, Azteków, Inków. Kowalska Wioleta, Latoch Weronika, Łubniewska Julia Matematyka Majów, Azteków, Inków Kowalska Wioleta, Latoch Weronika, Łubniewska Julia MAJOWIE Kim byli Majowie? Indiańskie plemię Majów zamieszkiwało południowo-wschodnią część Meksyku, Gwatemalę, Belize

Bardziej szczegółowo

Wymagania programowe z matematyki w klasie 4 sp. PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV

Wymagania programowe z matematyki w klasie 4 sp. PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV Wymagania programowe z matematyki w klasie 4 sp. Program nauczania: Matematyka z plusem, numer dopuszczenia programu DKOW 5002-37/08 Liczba godzin nauki w tygodniu: 4 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

CENTRUM ZESPOŁÓW ANALITYCZNO STRATEGICZNYCH Od 2004. Szkolenia i doradztwo Projekty/programy dotyczące grup defaworyzowanych Partnerstwo z Polskim

CENTRUM ZESPOŁÓW ANALITYCZNO STRATEGICZNYCH Od 2004. Szkolenia i doradztwo Projekty/programy dotyczące grup defaworyzowanych Partnerstwo z Polskim CENTRUM ZESPOŁÓW ANALITYCZNO STRATEGICZNYCH Od 2004. Szkolenia i doradztwo Projekty/programy dotyczące grup defaworyzowanych Partnerstwo z Polskim Związkiem Głuchych Współpraca z sektorem pozarządowym

Bardziej szczegółowo

SPRAWDZIAN UMIEJĘTNOŚCI MATEMATYCZNYCH

SPRAWDZIAN UMIEJĘTNOŚCI MATEMATYCZNYCH SPRAWDZIAN UMIEJĘTNOŚCI MATEMATYCZNYCH PO KLASIE 3 SZKOŁY PODSTAWOWEJ Autor: Grażyna Wójcicka Konsultacje: Weronika Janiszewska, Joanna Zagórska, Maria Zaorska, Tomasz Zaorski imię i nazwisko 1 Zapisz

Bardziej szczegółowo

Historia kwadratów magicznych

Historia kwadratów magicznych Kwadraty magiczne Magiczne kwadraty to liczby tak ułożone, że suma każdej kolumny i rzędu jest równa tej samej liczbie. Składają się one z czterech lub więcej pól. Najpopularniejsze maja 9 lub 16 pól.

Bardziej szczegółowo

Klasa 5. Liczby i działania

Klasa 5. Liczby i działania Klasa 5. Liczby i działania gr. A str. 1/3... imię i nazwisko...... klasa data 1. Ilu cyfr potrzeba do zapisania liczby siedem miliardów trzysta tysięcy osiemnaście? Ile wśród nich jest zer? Ile zer będzie

Bardziej szczegółowo

Wyższej Szkoły Przedsiębiorczości i Marketingu w Chrzanowie

Wyższej Szkoły Przedsiębiorczości i Marketingu w Chrzanowie ZASADY PRZYGOTOWANIA PRACY KOŃCOWEJ NA STUDIACH PODYPLOMOWYCH PEDAGOGIKA KWALIFIKACYJNA DLA NAUCZYCIELI PRZEDMIOTÓW ZAWOWOWYCH PROWADZONYCH W RAMACH PROJEKTU "NAUCZYCIEL NA 6+" Wyższej Szkoły Przedsiębiorczości

Bardziej szczegółowo

Spis treêci. I. Wprowadzenie do historii. II. Początki cywilizacji. Od autorów... 8

Spis treêci. I. Wprowadzenie do historii. II. Początki cywilizacji. Od autorów... 8 Od autorów....................................... 8 I. Wprowadzenie do historii 1. Dzieje historia historiografia...................... 12 Czym jest historia?............................... 12 Przedmiot

Bardziej szczegółowo

Matematyka klasa 4 Wymagania edukacyjne na ocenę śródroczną.

Matematyka klasa 4 Wymagania edukacyjne na ocenę śródroczną. Matematyka klasa 4 Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające

Bardziej szczegółowo

Przedmiotowy System Oceniania z matematyki dla klasy IV i V szkoły podstawowej

Przedmiotowy System Oceniania z matematyki dla klasy IV i V szkoły podstawowej Zespół Szkół w Karpaczu Szkoła Podstawowa w Karpaczu Przedmiotowy System Oceniania z matematyki dla klasy IV i V szkoły podstawowej (wg programu Matematyka wokół nas ) Opracowała: Lucyna Krawiec Jest to

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki

Wymagania edukacyjne na poszczególne oceny z matematyki Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej położenia w liczbie, Zna kolejność działań bez użycia nawiasów, Zna algorytmy

Bardziej szczegółowo

b) na obszarze Żyznego Półksiężyca rozwinęła się cywilizacja Mezopotamii

b) na obszarze Żyznego Półksiężyca rozwinęła się cywilizacja Mezopotamii TEST POWTÓRZENIOWY KLASA III od starożytności do XVI wieku. 1.Określ czy poniższe zdania są prawdziwe czy fałszywe a) proces przeobrażania się gatunków to rewolucja b) na obszarze Żyznego Półksiężyca rozwinęła

Bardziej szczegółowo

ZMIERZYĆ SIĘ Z KALKULATOREM

ZMIERZYĆ SIĘ Z KALKULATOREM ZMIERZYĆ SIĘ Z KALKULATOREM Agnieszka Cieślak Wyższa Szkoła Informatyki i Zarządzania z siedzibą w Rzeszowie Streszczenie Referat w prosty sposób przedstawia niekonwencjonalne sposoby mnożenia liczb. Tematyka

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY IV

ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY IV ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY IV Program nauczania: Matematyka z plusem, numer dopuszczenia podręcznika 340/1/2011 Liczba godzin nauki w tygodniu: 4 Planowana liczba godzin w ciągu

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE CZWARTEJ. rok szkolny 2016/2017

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE CZWARTEJ. rok szkolny 2016/2017 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE CZWARTEJ rok szkolny 2016/2017 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2) P podstawowy - ocena dostateczna (3) R rozszerzający - ocena

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY IV

ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY IV ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY IV Program nauczania: Matematyka z plusem, numer dopuszczenia programu DKW 4014 138/99 Liczba godzin nauki w tygodniu: 4 Planowana liczba godzin w ciągu

Bardziej szczegółowo

Wszystkie znaki występujące w tekście są zastrzeżonymi znakami firmowymi bądź towarowymi ich właścicieli.

Wszystkie znaki występujące w tekście są zastrzeżonymi znakami firmowymi bądź towarowymi ich właścicieli. Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest zabronione. Wykonywanie kopii metodą kserograficzną, fotograficzną,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI DLA KLASY IV

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI DLA KLASY IV WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI DLA KLASY IV Program nauczania: Matematyka z plusem, numer dopuszczenia podręcznika 340/1/2011 Liczba godzin nauki w tygodniu: 4 Planowana liczba

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV I SEMESTR a) Wymagania konieczne (na ocenę dopuszczającą) Obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie 5 Matematyka z plusem DKOW /08

Kryteria ocen z matematyki w klasie 5 Matematyka z plusem DKOW /08 Matematyka z plusem DKOW-5002-37/08 DZIAŁ LICZBY NATURALNE WŁASNOŚCI LICZB NATURALNYCH KONIECZNE ocena dopuszczająca rozumie dziesiątkowy system pozycyjny umie zapisywać i odczytywać liczby cyframi i słownie

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo