Karta pracy M+ do multipodręcznika dla klasy 2 gimnazjum. Niewymierna liczba
|
|
- Wanda Stasiak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Karta pracy M+ do multipodręcznika dla klasy 2 gimnazjum Niewymierna liczba Część A. Sprawdź, czy rozumiesz film. 1. Skreśl w tekście niewłaściwe słowa i sformułowania. Kręgi i średnice W czasach późnego neolitu/paleolitu, czyli około 4000/5000 lat temu, ludy zamieszkujące Europę/Azję budowały z kamieni uporządkowane figury. Kamienny krąg Sunkenkirk w Cambrii/Umbrii jest jedną z wieluset tego typu konstrukcji zbudowanych przez pradawnych mieszkańców Wielkiej Brytanii/Francji. Nie wiemy, do czego dawni ludzie używali kamiennych kręgów. Wiemy natomiast, że każdy z nich zawiera ciekawą matematyczną własność. Jeżeli podzielimy obwód/pole powierzchni konstrukcji przez promień/średnicę, zawsze otrzymamy liczbę bardzo bliską liczbie 2/3. Im dokładniejszy jest ten pomiar, tym wynik jest bliższy 2,14/3,14. Iloraz pola powierzchni/obwodu każdego koła przez jego promień/średnicę jest zatem zależny od jego wielkości/stały. Oznaczono go grecką literą π. Liczba π (czytamy pi/hi) jest wymierna/niewymierna, to znaczy, że jej rozwinięcie dziesiętne ma skończoną/nieskończoną sekwencję cyfr po przecinku. Ponieważ liczba π ma nieskończone/skończone rozwinięcie dziesiętne, nigdy nie/wkrótce poznamy wszystkich cyfr/wszystkie cyfry, które ją tworzą. Żeby obliczyć obwód okręgu o rozmiarze całego widzialnego wszechświata z dokładnością do długości promienia pojedynczego atomu wodoru, wystarczy znajomość liczby π do 39/139 miejsca po przecinku.
2 2. Wykorzystując tekst zadania 1. oraz wiadomości z filmu, ustal, które z poniższych zdań są prawdziwe, a które ywe. Zaznacz odpowiednie pola. Dawne plemiona budowały setki kamiennych konstrukcji w kształcie dużych kwadratów. Zmierzono obwód pewnego koła. Obwód podzielono przez długość średnicy tegoż koła. Otrzymano liczbę niewymierną π. Pierwsze pięć cyfr rozwinięcia dziesiętnego liczby π po przecinku to: 1, 4, 1, 5, 9. Istnieją okręgi, w których stosunek obwodu do średnicy nie wynosi π. W okresie neolitu ludzie wytwarzali narzędzia z kamieni. Litera π jest szóstą literą greckiego alfabetu. Bez liczby π nie można obliczyć wymiarów wszechświata. 3. Dopasuj pytania do kadrów. Wpisz w okienkach właściwe numery. Odpowiedz na wszystkie pytania. 1. Jakiego rodzaju miejsca wybierano na budowę kamiennych kręgów? 4. Ile wynosi różnica między wynikiem tego działania a liczbą π? 2. Ile wynosi czterdziesta cyfra po przecinku liczby π? 5. Taśmę mierniczą nawinięto na szpulkę o obwodzie 40,2 cm. Jaka jest średnica szpulki? 3. Ciąg których czterech liczb rozwinięcia liczby π należałoby podkreślić, aby zaznaczyć rok urodzenia Ignacego Krasickiego? 6. Jaki jest obwód talerza o średnicy 26,4 cm? 2....
3 Część B. Rozwiąż poniższe zadania. Zadanie 1. Podobno, jeżeli podzielimy obwód kwadratowej podstawy piramidy Cheopsa przez jej wysokość, to otrzymamy liczbę dwukrotnie większą od liczby π. Znajdź np. w internecie wymiary wspomnianej piramidy i sprawdź prawdziwość tej informacji. Dowiedz się, jakie były pierwotne wymiary piramidy Cheopsa Odp Zadanie 2. I. Wykonaj starannie następującą konstrukcję, używając wyłącznie cyrkla i linijki. P3 P1 P4 a P6 P2 P7 P8 P9 P5 a) Narysuj okrąg o środku w punkcie P1 i średnicy P2P3. b) Narysuj prostą a prostopadłą do odcinka P2P3 w punkcie P2. c) Narysuj okrąg o tym samym promieniu co pierwszy o środku w P2. Przetnie on dany okrąg w punkcie P4. d) Narysuj okrąg o środku w punkcie P4 i tym samym promieniu, co poprzednio. Ten okrąg i nakreślony w podpunkcie c) przetną się w punkcie P5. e) Narysuj odcinek P1P5. Odcinek ten ma jeden punkt wspólny z prostą a punkt P6. Z tego punktu na prostej a odłóż trzykrotnie długość promienia okręgu o środku P1. Powstaną punkty P7, P8 i P9. f) Narysuj odcinek P3P9. II. Zmierz odcinek P3P9. Podziel jego długość przez długość promienia okręgu narysowanego w podpunkcie a) opisu konstrukcji. Zapisz wniosek. Wniosek: Powyższą konstrukcję w roku 1685 opracował polski matematyk Adam Adamandy Kochański. 3
4 Zadanie 3. W tabeli podano kilka przybliżonych wartości liczby π, z których korzystali matematycy i budowniczowie na przestrzeni wieków. Porównaj te wartości ze znaną nam dzisiaj wartością liczby π i uporządkuj je w kolejności od najmniej do najbardziej dokładnej. Wpisz w ostatniej kolumnie odpowiednie numery. Korzystający Wartość Kolejność Babilończycy (około 1900 r. p.n.e.) Egipcjanie (1650 r. p.n.e.) Archimedes (III w. p.n.e) liczba większa od i mniejsza od Liu Hui (III w.) 3,1415 Zu Chongzhi (500 r.) 22 7, Brahmagupta (600 r.) 10 Kochański Adam Adamandy (1685 r.) Srinivasa Ramanujan (XX w.) Zadanie 4. I. Przeczytaj tekst i wykonaj polecenia umieszczone pod nim. Liczby wymierne nie zawsze mają skończoną liczbę cyfr w rozwinięciu dziesiętnym. Takie liczby jak: 8, czy 7, (trzy kropki sugerują, że zapis liczby nigdy się nie kończy) są liczbami wymiernymi. Mówimy o nich, że mają rozwinięcia dziesiętne okresowe. Liczby te możemy zapisać krócej 8, = 8,(2); 7, = 7,(34). Muszą zatem istnieć też liczby, w których żaden układ cyfr nigdy nie powtarza się nieskończenie wiele razy. Są to właśnie liczby niewymierne. Nie można ich zapisać. Można co najwyżej zapisać ich przybliżone wartości. a) Zapisz w krótszy sposób liczby o rozwinięciach dziesiętnych okresowych. 102, =... 43, =... 0, =... 12, =... b) Zamień ułamki zwykłe na dziesiętne i zapisz je w postaci skróconej (z nawiasami) = =... c) Którym ułamkom zwykłym równe są poniższe ułamki dziesiętne okresowe? 1 19 =... 0,(1) = 0,(142857) = 0,(6) = 0,(09) = 0,(9) = 0,(076923) = 4
5 II. Poszukaj ułamków o liczniku 1 i takim mianowniku, żeby rozwinięcie dziesiętne okresowe miało jak najdłuższy okres (najwięcej cyfr w nawiasie). Zadanie 5. Matematycy odkryli, że między dowolnymi dwiema liczbami wymiernymi leży jakaś liczba niewymierna. Pobawmy się w łowców takich liczb. Np.: między liczbami 1 i 2 leżą takie liczby niewymierne jak 2, 3. Znajdź co najmniej jedną liczbę niewymierną, leżącą między poniższymi parami liczb wymiernych. a) 1 3 i b) 1 6 i c) i Zadanie 6. Starożytnego zadania nakreślenia koła i kwadratu o równych polach nie można, jak wiemy, rozwiązać przy użyciu jedynie cyrkla i linijki. Dysponując jednak przybliżonymi wartościami liczby π, można to zadanie rozwiązać w przybliżeniu. Zaplanuj, opisz i wykonaj tę konstrukcję Część C. Zagadki. 1. Załóżmy, że π 3, Korzystając z tej informacji, ułóż następujące słowa w zdanie, dzięki któremu zapamiętasz wartość liczby π w przybliżeniu do czternastego miejsca po przecinku. wspaniały wszystkim tu pożytek i dla tak i tobie liczba przynosi cudna poznawana mnie ogółu 5
6 2. Matematyk T.E. Lebeck zbudował kwadrat magiczny widoczny z lewej strony. Następnie każdą liczbę w tym kwadracie zastąpił cyfrą rozwinięcia liczby π o numerze wskazanym przez tę liczbę, np.: siedemnastkę zastąpił dwójką, bo dwa jest siedemnastą cyfrą rozwinięcia liczby π. Powstał w ten sposób liczbowy kwadrat (środkowy diagram). Nie jest on kwadratem magicznym, ale gdy dodamy liczby w każdym wierszu i w każdej kolumnie, okaże się, że każda z sum liczb w kolumnie równa jest sumie liczb któregoś z wierszy. Sprawdź, czy własność ta zachodzi dla innych kwadratów magicznych, na przykład dla kwadratu ze słynnej grafiki Albrechta Dürera Melancholia I Część D. O co warto zapytać, o czym warto porozmawiać? 1. Czy istnieją w Polsce kamienne konstrukcje podobne do tych pokazanych na filmie? Do czego mogły służyć? 2. Dlaczego stała π jest taka ważna? Dlaczego fascynuje tak bardzo, że wiele osób obchodzi jej święto (14 marca)? Jakie jeszcze znamy słynne stałe matematyczne? Czy każda z nich ma swoje święto? 3. W których wzorach matematycznych, lub wzorach z innych dziedzin nauki, wystepuje liczba π? 4. W których budynkach i budowlach w okolicy (np. w nowoczesnej wieży lub zabytkowej rotundzie) można doszukać się matematycznych własności? Część E. Propozycje projektów i prac badawczych. 1. Warto dowiedzieć się więcej na temat Adama Adamandego Kochańskiego, polskiego matematyka z XVII wieku. 2. Można zbudować krąg z niewielkich kamieni. W tym celu trzeba: wybrać dość płaski teren wielkości nie mniejszej niż szkolne boisko, opracować metodę rozkładania kamieni po okręgu, zmierzyć promień i obwód okręgu, wyznaczyć z tych pomiarów liczbę π. Czy dawni mieszkańcy Europy, budując swe kręgi, korzystali z podobnej metody? Jak inaczej można projektować te konstrukcje? 6
7 3. Na stronie można znaleźć przybliżenie liczby π z dokładnością do miliona miejsc po przecinku. Można wyszukać w rozwinięciu liczby π liczby coś znaczące, np. daty lub numery PESEL. Cyfra 4 występuje w tym rozwinięciu razy, natomiast zero razy. Jaka cyfra pojawia się najczęściej, a jaka najrzadziej? Jaki jest najdłuższy ciąg jednakowych cyfr w tym rozwinięciu? Jaki jest najdłuższy ciąg kolejnych cyfr (np )? 4. Warto spróbować swoich sił w poetyckiej twórczości związanej z liczbą π i napisać wiersze. Mogą być podobne do słynnego utworu Wisławy Szymborskiej zaczynającego się od słów: Podziwu godna liczba π trzy koma jeden cztery jeden. Inne mogą być podobne do wiersza przytoczonego niżej, w którym liczba liter w kolejnych słowach równa jest odpowiedniej cyfrze po przecinku liczby π. Źle w mgle i snach bolejącym do wiedzy progu iść, wszak ognistym wierzącym jedynie miłującym Bóg do nóg poznania kiść strąca. 5. Warto zorganizować szkolne święto liczby π. Na podstawie zadań z tej karty pracy, ćwiczeń dostępnych w internecie oraz korzystając z innych źródeł, klasy przygotowują stanowiska, na których każdy może zapoznać się z liczbą π i jej własnościami, rozwiązać zadania. Poza tym ktoś może upiec ciasteczka z odpowiednim napisem, a ktoś inny przygotować ciekawe plakaty oraz kubki i koszulki z nadrukami. 6. W Polsce można odwiedzać miejsca z kamiennymi kręgami. Większość kręgów znajduje się na Pomorzu. Pochodzą z pierwszych stuleci naszej ery. Warto dowiedzieć się więcej na ich temat. Może znajdują się niedaleko szkoły. Wtedy warto się wybrać na wycieczkę, zobaczyć je i zbadać. Kamienny krąg w Odrach (Pomorze) 7
Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej
Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej Niewymierna liczba π Część A. Sprawdź, czy rozumiesz film. 1. Skreśl w tekście niewłaściwe słowa i sformułowania. Kręgi i średnice W czasach
Czym jest liczba π? O liczbie π. Paweł Zwoleński. Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska
Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska 200.03.4 Motywacja wprowadzenia π Kluczowym momentem w historii liczby π było zauważenie przez starożytnych Babilończyków
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych
Historia π (czyt. Pi)
Historia liczby π Historia π (czyt. Pi) Już w czasach zamierzchłych starożytni rachmistrze zauważyli, że wszystkie koła mają ze sobą coś wspólnego, że ich średnica i obwód pozostają wobec siebie w takim
Skrypt 2. Liczby wymierne dodatnie i niedodatnie. 3. Obliczanie odległości między dwiema liczbami na osi liczbowej
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Liczby wymierne dodatnie i niedodatnie
PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:
PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,
Liczbę Pi określamy jako stosunek długości okręgu do jego średnicy. Jest to wielkość stała i wynosi w przybliżeniu: π
Liczbę Pi określamy jako stosunek długości okręgu do jego średnicy. Jest to wielkość stała i wynosi w przybliżeniu: π 3,141592653589793238462643383279502884 Używany dzisiaj symbol π wprowadzony został
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej
Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej
Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej Geometria w starożytnym świecie Część A. Sprawdź, czy rozumiesz film. 1. Skreśl w tekście niewłaściwe słowa i sformułowania. Bryły platońskie
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Nauczyciel: Jacek Zoń WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY IV : 1. przeczyta i zapisze liczbę wielocyfrową (do tysięcy) 2. zna nazwy rzędów
Wymagania na poszczególne oceny szkolne. Matematyka
Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny
Przedmiotowe zasady oceniania Matematyka Wymagania edukacyjne na poszczególne oceny Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa IV Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające
Wymagania edukacyjne z matematyki- klasa 4
Wymagania edukacyjne z matematyki- klasa 4 Rozdział Wymagania podstawowe konieczne (ocena dopuszczająca) Podstawowe (ocena dostateczna) rozszerzające (ocena dobra) Wymagania ponadpodstawowe dopełniające
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI DZIAŁ I : LICZBY NATURALNE I UŁAMKI
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI NA OCENĘ DOPUSZCZAJĄCĄ : UCZEŃ zna nazwy działań (K) DZIAŁ I : LICZBY NATURALNE I UŁAMKI zna algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10,
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa 4 Dział 1. Liczby. Uczeń: gromadzi dane; porządkuje dane; przedstawia dane interpretuje dane odczytuje dane w tabelach, na przedstawione w tekstach, przedstawione
Matematyka z kalkulatorem graficznym
I Wojewódzki Konkurs Matematyka z kalkulatorem graficznym ZSDiOŚ im. Jana Zamoyskiego w Zwierzyńcu Finał 206r. DATA: 28 października 206r. GODZINA ROZPOCZĘCIA: 0.00 CZAS PRACY: 60 minut. LICZBA PUNKTÓW:
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość
Wymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca)
SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania Wymagania ponad Dział 1. Liczby. Uczeń: 1. Zbieranie i prezentowanie danych gromadzi dane; odczytuje dane przedstawione w tekstach, tabelach,
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami
Wymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
GSP075 Pakiet. KArty pracy. MateMatyka
GSP075 klasa Pakiet 5 KArty pracy MateMatyka Instrukcja matematyka Uważnie czytaj teksty zadań i polecenia. Rozwiązania wpisuj długopisem lub piórem. Nie używaj długopisu w kolorze czerwonym. W zadaniach,
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Odcinki, proste, kąty, okręgi i skala
Odcinki, proste, kąty, okręgi i skala str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Na którym rysunku przedstawiono odcinek? 2. Połącz figurę z jej nazwą. odcinek łamana prosta półprosta
1. LICZBY (1) 2. LICZBY (2) DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY (1) 2. LICZBY (2) 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne.
SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY
SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY KLASA IV Uczeń otrzymuje ocenę celującą gdy: potrafi samodzielnie wyciągać wnioski,
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro
6 Na dobry start do liceum 8Piotr Drozdowski 6 Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA Zadania Oficyna Edukacyjna * Krzysztof Pazdro Piotr Drozdowski MATEMATYKA. Na dobry
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI Wymagania podstawowe: oceny dopuszczająca i dostateczna Wymagania ponadpodstawowe: oceny dobra, bardzo dobra i celująca Aby uzyskać kolejną, wyższą ocenę,
Sprawdzian kompetencji trzecioklasisty
Imię i nazwisko... Klasa III....Numer w dzienniku... (wypełnia nauczyciel) Sprawdzian kompetencji trzecioklasisty Zestaw matematyczny Grupa A Instrukcja dla ucznia 1. Upewnij się, czy sprawdzian ma 8 kolejnych
Matematyka z plusem Klasa IV
Matematyka z plusem Klasa IV KLASA IV SZCZEGÓŁOWE CELE EDUKACYJNE KSZTAŁCENIE Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych. Stosowanie
Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4
Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Kategorie zostały określone następująco: dotyczy wiadomości uczeń zna uczeń rozumie dotyczy przetwarzania
Powtórka przed klasówką nr 4 - pola wielokątów
Powtórka przed klasówką nr 4 - pola wielokątów MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Plakat informujący o zawodach miał kształt prostokąta o wymiarach 50 cm 60 cm. Oblicz pole prostokąta
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
V Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok V Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych ETAP REJONOWY Rok szkolny 01/016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 1
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV REALIZOWANE WEDŁUG
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV REALIZOWANE WEDŁUG PROGRAMU MATEMATYKA Z PLUSEM Poziom podstawowy Poziom ponadpodstawowy Uczeń potrafi na: Uczeń potrafi na: ocenę dopuszczającą ocenę dostateczną
Wymagania na poszczególne oceny Matematyka wokół nas klasa IV
Wymagania na poszczególne oceny Matematyka wokół nas klasa IV Dział programowy: Działania na liczbach naturalnych rozróżnia pojęcia: cyfra, liczba porównuje liczby naturalne proste dodaje i odejmuje liczby
Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI
Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI Ocena dopuszczająca: - nazwy działań - algorytm mnożenia i dzielenia
Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 4
Wymagania programowe uporządkowane według poziomów wymagań na pierwszy semestr MATEMATYKA 2001 KLASA 4 Na ocenę dopuszczającą uczeń 1. Zapisać słowami podaną cyframi liczbę naturalną, (co najwyżej liczbę
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM
Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę
KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH
...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
ZESTAWY PYTAŃ NA USTNY EGZAMIN SEMESTRALNY Z MATEMATYKI SEMESTR I
ZESTAWY PYTAŃ NA USTNY EGZAMIN SEMESTRALNY Z MATEMATYKI SEMESTR I I 1. Co to jest ułamek? Jakie znasz rodzaje ułamków? 2. Kiedy dwa odcinki są do siebie równoległe? 3. Kiedy dwie figury nazywamy przystającymi?
WYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2016/2017 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod
Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4
Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4 Dział programowy: Działania na liczbach naturalnych Uczeń: 6 5 4 3 2 Opis osiągnięć rozróżnia pojęcia: cyfra, liczba 6 5 4 3 2 porównuje
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Wymagania edukacyjne z matematyki na poszczególne roczne oceny klasyfikacyjne dla klasy IV w roku 2019/2020.
Wymagania edukacyjne z matematyki na poszczególne roczne oceny klasyfikacyjne dla klasy IV w roku 2019/2020. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań edukacyjnych niezbędynych do
MATEMATYKA WOKÓŁ NAS Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4
MATEMATYKA WOKÓŁ NAS Katalog wymagań programowych na poszczególne stopnie szkolne klasa 4 Dział programu: Działania na liczbach naturalnych Rozróżnia pojęcia: cyfra, liczba. Porównuje liczby naturalne
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
KRYTERIA OCENIANIA W KLASACH CZWARTYCH - Matematyka. ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą;
KRYTERIA OCENIANIA W KLASACH CZWARTYCH - Matematyka ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą; ocenę dopuszczającą otrzymuje uczeń, który: porównuje liczby
Egzamin gimnazjalny. Matematyka. Także w wersji online TRENING PRZED EGZAMINEM. Sprawdź, czy zdasz!
Egzamin gimnazjalny Matematyka TRENING PRZED EGZAMINEM Także w wersji online Sprawdź, czy zdasz! Spis treści Zestaw 1: Liczby wymierne dodatnie 5 Zestaw : Liczby wymierne 10 Zestaw 3: Potęgi 17 Zestaw
Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1
Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić
stopień oblicza jeden z czynników, mając iloczyn i drugi czynnik
Liczby i działania zna pojęcie składnika i sumy zna pojęcie odjemnej, odjemnika i różnicy stosuje prawo przemienności pamięciowo dodaje liczby w zakresie 200 bez przekraczani progu dziesiątkowego i z jego
Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015
Lista zadań nr 5 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 05 Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego
Skrypt 23. Przygotowanie do egzaminu Pierwiastki
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Przygotowanie do egzaminu Pierwiastki 1.
Matematyka podstawowa VII Planimetria Teoria
Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma
Matematyka. Klasa IV
Matematyka Klasa IV Ocenę niedostateczną otrzymuje uczeń, który nie opanował umiejętności przewidzianych w wymaganiach na ocenę dopuszczającą Uczeń musi umieć: na ocenę dopuszczającą: odejmować liczby
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Wojewódzki
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2015/2016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 14 stron.
Wymagania edukacyjne z matematyki na poszczególne oceny klasa IV
Wymagania edukacyjne z matematyki na poszczególne oceny klasa IV Ocena dopuszczająca: Rozróżnia pojęcia cyfra liczba Porównuje liczby naturalne-proste przypadki Dodaje i odejmuje liczby naturalne w zakresie
Temat: Koło i okrąg. Pojęcia związane z okręgiem promień, średnica, styczna, sieczna.
Spotkanie 2 Temat: Koło i okrąg. Pojęcia związane z okręgiem promień, średnica, styczna, sieczna. Zajęcia rozpoczynamy od pytania, co oznacza nazwa projektu, w którym uczniowie biorą udział: Pi i sigma.
KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy 31 stycznia 2008 r.
KOD Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Razem Maksym. liczba punktów Liczba zdobytych punktów 3 3 3 3 3 3 3 3 3 3 4 5 4 5 48 Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne, tzn.: 1. posiada i
OGÓLNE KRYTERIA OCENIANIA DLA KLASY IV
OGÓLNE KRYTERIA OCENIANIA DLA KLASY IV LICZBY NATURALNE - umie dodawać i odejmować pamięciowo w zakresie 100 bez przekraczania progu dziesiątkowego, - zna tabliczkę mnożenia i dzielenia w zakresie 100,
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1
Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach
KRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1
KRYTERIA OCEN DLA KLASY VI Zespół Szkolno-Przedszkolny nr 1 2 3 KRYTERIA OCEN Z MATEMATYKI DLA KLASY VI LICZBY NATURALNE I UŁAMKI Na ocenę dopuszczającą uczeń powinien: - znać algorytm czterech
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2011/2012
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMA rok szkolny 2011/2012 Etap I Klasa IV Zastąp znaki zapytania znakami dodawania, odejmowania, mnożenia i dzielenia w taki sposób, aby wyniki obliczeń
MATEMATYKA - KLASA IV. I półrocze
Liczby i działania MATEMATYKA - KLASA IV I półrocze Rozróżnia pojęcia: cyfra, liczba. Porównuje liczby naturalne proste przypadki. Dodaje i odejmuje liczby naturalne w zakresie 100. Mnoży i dzieli liczby
Wymagania edukacyjne z matematyki w klasie IV
Wymagania edukacyjne z matematyki w klasie IV a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie
wymagania programowe z matematyki kl. III gimnazjum
wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny
Klasa 6. Liczby dodatnie i liczby ujemne
Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie
KARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6
KARTY PRACY DLA SŁABYCH UCZNIÓW, CZ.6 Wiesława Janista, Elżbieta Mrożek, Marta Szymańska W tym roku szkolnym kontynuujemy cykl materiałów przeznaczonych dla słabych uczniów. Zadania układają: Elżbieta
Temat: Liczby definicje, oznaczenia, własności. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Liczby definicje, oznaczenia, własności A n n a R a j f u r a, M a t e m a t y k a s e m e s t r, W S Z i M w S o c h a c z e w i e Kody kolorów: pojęcie zwraca uwagę A n n a R a j f u r a, M a
Kryteria ocen z matematyki w klasie IV
Kryteria ocen z matematyki w klasie IV odejmuje liczby w zakresie 100 z przekroczeniem progu dziesiętnego, zna kolejność wykonywania działań, gdy nie występuję nawiasy, odczytuje współrzędne punktu na
Wymagania z matematyki - KLASA IV
Wymagania na ocenę dopuszczającą: Wymagania z matematyki - KLASA IV pamięciowe dodawanie i odejmowanie liczb w zakresie 200 bez przekraczania progu dziesiątkowego i z jego przekraczaniem powiększanie lub
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2017/2018 04.01.2018 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
TABELA ODPOWIEDZI. kod ucznia
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu województwa małopolskiego Rok szkolny 018/019 ETAP SZKOLNY 5 października
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki - klasa 4
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki - klasa 4 6 5 4 3 2 Dział programu: Działania na liczbach naturalnych Rozróżnia pojęcia: cyfra,
Wymagania edukacyjne z matematyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy IV w roku 2019/2020.
Wymagania edukacyjne z matematyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy IV w roku 2019/2020. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań edukacyjnych niezbędynych
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych klasyfikacyjnych z matematyki - klasa 4
Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych klasyfikacyjnych z matematyki - klasa 4 Działania na liczbach naturalnych rozróżnia pojęcia: cyfra, liczba porównuje liczby