Liczbę Pi określamy jako stosunek długości okręgu do jego średnicy. Jest to wielkość stała i wynosi w przybliżeniu: π
|
|
- Mateusz Orzechowski
- 6 lat temu
- Przeglądów:
Transkrypt
1
2 Liczbę Pi określamy jako stosunek długości okręgu do jego średnicy. Jest to wielkość stała i wynosi w przybliżeniu: π 3,
3 Używany dzisiaj symbol π wprowadzony został dopiero w roku przez Wiliama Jonesa, a spopularyzował go Leonhard Euler używając tego zapisu w dziale Analiza. Swą nazwę zawdzięcza pierwszej literze greckiego słowa perimetron oznaczającego obwód.
4 (ur. 1675, zm. 3 lipca 1749) walijski matematyk. Był bliskim przyjacielem Isaaca Newtona i Edmunda Halleya. Jones początkowo służył na morzu i nauczał matematyki na pokładzie okrętów. Studiował metody obliczania pozycji na morzu. Po jego podróży na morzu został nauczycielem matematyki w Londynie. (ur. 15 kwietnia 1707, zm. 18 września 1783) szwajcarski matematyk i fizyk. Wniósł duży wkład w rozwój terminologii i notacji matematycznej, szczególnie trwały w dziedzinie analizy matematycznej. Jako pierwszy w historii użył na przykład pojęcia i oznaczenia funkcji.
5 Liczbę Pi próbowano wyliczyć już na wiele lat przed naszą erą lat p.n.e. Babilończycy szacowali, że liczba Pi jest równa 3, a Egipcjanie (4/3) 4. Archimedes żyjący w III wieku p.n.e. ustalił, że Pi w przybliżeniu wynosi 22/7. Ptolemeusz Klaudiusz żyjący w II wieku p.n.e. przyjmował że pi wynosi 11/90/3600.
6 14 marca obchodzimy Międzynarodowy Dzień π. Data jest nieprzypadkowa, ponieważ według amerykańskiego zapisu daty 14 marca to 3.14, czyli zaokrąglenie liczby π do dwóch miejsc po przecinku. W Europie inaczej zapisujemy daty, dlatego europejska wersja święta (Dzień Aproksymacji Pi) obchodzony jest tu 22 lipca (22/7 3,1428).
7 Wielbiciele liczby π, zwłaszcza dotyczy to amerykańskich naukowców, w dniu święta zajadają się specjalnymi okrągłymi ciastami, które wewnątrz udekorowane jest liczbą Pi, a na obwodzie podane ma jej rozwinięcie dziesiętne.
8 W piramidzie Cheopsa stosunek sumy dwóch boków podstawy do wysokości wynosi 3,1416, czyli przybliżenie π z dokładnością do czterech miejsc po przecinku. Dziś nie można stwierdzić czy był to zadziwiający przypadek, czy wynik geniuszu nieznanych nam z imienia uczonych.
9 Fascynacja liczbą π oraz chęć bicia rekordów zachęca niektórych do prób zapamiętania jak największej ilości cyfr wchodzących w jej skład. 14 marca 2004 roku Daniel Tammet wyrecytował z pamięci cyfr rozwinięcia liczby π. Obecny Światowy Rekord Guinnesa to cyfr. Lu Chao z Chin recytował je 24 godziny i 4 minuty.
10 Czy liczba π ma nieskończenie wiele cyfr po przecinku? Liczba π jest liczbą niewymierną, co oznacza, że nie może być zapisana jako iloraz dwóch liczb całkowitych. Udowodnił to w roku 1761 Johann Heinrich Lambert. Co więcej, jest ona liczbą przestępną, co w 1882 roku wykazał Ferdinand Lindemann. Oznacza to, że nie istnieje wielomian o współczynnikach całkowitych, którego π jest pierwiastkiem. W rezultacie nie jest możliwe zapisanie π za pomocą skończonego zapisu złożonego z liczb całkowitych, działań arytmetycznych, ułamków oraz potęg i pierwiastków. Jak wyliczyć obwód i pole okręgu o podanym promieniu? Obwód okręgu to iloczyn średnicy okręgu (czyli podwojonego promienia) i liczby π. Wzór: Obw = 2*π*r Pole okręgu liczymy poprzez podniesienie promienia do kwadratu i pomnożenie go przez liczbę π. Wzór: P = r 2 *π
11 Promień Okręgu Obwód Okręgu Pole Okręgu
12
Historia π (czyt. Pi)
Historia liczby π Historia π (czyt. Pi) Już w czasach zamierzchłych starożytni rachmistrze zauważyli, że wszystkie koła mają ze sobą coś wspólnego, że ich średnica i obwód pozostają wobec siebie w takim
Czym jest liczba π? O liczbie π. Paweł Zwoleński. Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska
Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska 200.03.4 Motywacja wprowadzenia π Kluczowym momentem w historii liczby π było zauważenie przez starożytnych Babilończyków
PREZENTACJA LICZBA π (Pi) Kacper Dąbrowski III a
PREZENTACJA LICZBA π (Pi) Kacper Dąbrowski III a Czym jest liczba π? Jest to stosunek długości okręgu do długości jego średnicy. Jej stosunek dziesiętny nigdy si ę nie kończy. Jest liczb ą niewymiern ą
Liczba. Prezentacje przygotowała: Agata Charkiewicz IIIa
Liczba Prezentacje przygotowała: Agata Charkiewicz IIIa Czym jest π? Liczba Pi jest jedną z pierwszych odkrytych przez człowieka liczb niewymiernych. Jej skrócona wartość wynosi 3,14 i oznacza stosunek
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Osiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji
Osiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu
Temat: Liczby definicje, oznaczenia, własności. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1
Temat: Liczby definicje, oznaczenia, własności A n n a R a j f u r a, M a t e m a t y k a s e m e s t r, W S Z i M w S o c h a c z e w i e Kody kolorów: pojęcie zwraca uwagę A n n a R a j f u r a, M a
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej
Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej Niewymierna liczba π Część A. Sprawdź, czy rozumiesz film. 1. Skreśl w tekście niewłaściwe słowa i sformułowania. Kręgi i średnice W czasach
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę
Do zbioru liczb rzeczywistych zaliczane są wszystkie liczby, które znamy, oznaczamy je symbolem i dzielimy na dwie największe podgrupy:
HISTORIA Do zbioru liczb rzeczywistych zaliczane są wszystkie liczby, które znamy, oznaczamy je symbolem i dzielimy na dwie największe podgrupy: Liczby wymierne (w tym całkowite i naturalne) Liczby niewymierne
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami
Krzywe stożkowe Lekcja III: Okrąg i liczba π
Krzywe stożkowe Lekcja III: Okrąg i liczba π Wydział Matematyki Politechniki Wrocławskiej Wzajemne położenie prostej i okręgu Istnieją trzy możliwe wzajemne położenia prostej o równaniu y = ax + b względem
Indukcja matematyczna. Matematyka dyskretna
Indukcja matematyczna Matematyka dyskretna Indukcja matematyczna Indukcja matematyczna będzie przez nas używana jako metoda dowodzenia twierdzeń. Zazwyczaj są to twierdzenia dotyczące liczb naturalnych,
Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2 Proponujemy, by omawiając dane zagadnienie programowe lub rozwiązując
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Jak dobrze znacie Ludolfinę?
Jak dobrze znacie Ludolfinę? Mikołaj Bobruk, Małgorzata Piątkowska, Barbara Boczoń kl. V Opiekun pracy: mgr Katarzyna Jabcoń Kraków, 22 lutego 2018 roku Spis treści Wstęp... 3 Rozdział 1... 4 Co to Ludolfnaa...
Ludolfina. Dlaczego w marcu obchodzimy Święto Liczby Pi? Liczba Pi w księdze rekordów Guinnessa. Wydanie specjalne
Michał Chmara, Grzegorz Mazur (I GA) Gimnazjum nr 25 z Oddziałami Dwujęzycznymi im. Stanisława Staszica w Sosnowcu Wydanie specjalne Dlaczego w marcu obchodzimy Święto Liczby Pi? W dniu 14 marca będziemy
LUBELSKA PRÓBA PRZED MATUR MATEMATYKA - poziom rozszerzony LO
1 MATEMATYKA - poziom rozszerzony LO MAJ 2017 KLASA 2 Instrukcja dla zdaj cego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 16). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7
Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane
O liczbach niewymiernych
O liczbach niewymiernych Agnieszka Bier Spotkania z matematyką jakiej nie znacie ;) 8 stycznia 0 Liczby wymierne i niewymierne Definicja Liczbę a nazywamy wymierną, jeżeli istnieją takie liczby całkowite
wymagania programowe z matematyki kl. III gimnazjum
wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 2/15 Funkcje Funkcja o dziedzinie X i przeciwdziedzinie Y to dowolna relacja f XG Y taka, że: Dziedzinę i przeciwdziedzinę funkcji
W planie dydaktycznym założono 172 godziny w ciągu roku. Treści podstawy programowej. Propozycje środków dydaktycznych. Temat (rozumiany jako lekcja)
Ramowy plan nauczania (roczny plan dydaktyczny) dla przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego uwzględniający kształcone i treści podstawy programowej W planie
WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA V Wymagania konieczne i podstawowe - na ocenę dopuszczającą i dostateczną. Uczeń powinien umieć: dodawać i odejmować w pamięci liczby dwucyfrowe
Temat: Koło i okrąg. Pojęcia związane z okręgiem promień, średnica, styczna, sieczna.
Spotkanie 2 Temat: Koło i okrąg. Pojęcia związane z okręgiem promień, średnica, styczna, sieczna. Zajęcia rozpoczynamy od pytania, co oznacza nazwa projektu, w którym uczniowie biorą udział: Pi i sigma.
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych
Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych Ocena dopuszczająca (wymagania konieczne) Ocena dostateczna
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
Wymagania na poszczególne oceny z matematyki do klasy IV na rok 2017/2018
Wymagania na poszczególne oceny z matematyki do klasy IV na rok 2017/2018 Dział I Liczby naturalne część 1 odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki) odczytuje i zapisuje
Potęgi str. 1/6. 1. Oblicz. d) Potęgę 3 6 można zapisać jako: A. 36 B C D. 3 6
Potęgi str. 1/6 1. Oblicz. a) 8 2 8 b) ( 2)7 2 c) 9 ( 9) 2 d) 34 27 2. Potęgę 3 6 można zapisać jako: A. 36 B. 3 3 3 3 3 3 C. 6 6 6 D. 3 6 3. Po obliczeniu wartości 3 2 3 otrzymamy liczbę: A. 3 8 B. 9
WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII
WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI DZIAŁ I : LICZBY NATURALNE I UŁAMKI
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI NA OCENĘ DOPUSZCZAJĄCĄ : UCZEŃ zna nazwy działań (K) DZIAŁ I : LICZBY NATURALNE I UŁAMKI zna algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10,
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV DOBRY DZIAŁ 1. LICZBY NATURALNE
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY DZIAŁ 1. LICZBY NATURALNE dodaje liczby bez przekraczania progu dziesiątkowego, odejmuje liczby w zakresie
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej
Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie
Matematyka z kluczem
Matematyka z kluczem Wymagania edukacyjne z matematyki Klasa 4 rok szkolny 2017/2018 Danuta Górak Dział I Liczby naturalne część 1 Wymagania na poszczególne oceny 1. odczytuje współrzędne punktów zaznaczonych
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY IV Dział I Liczby naturalne część 1 Uczeń otrzymuje ocenę dopuszczającą, jeśli: 1. odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki)
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV Ocena Dopuszczający Osiągnięcia ucznia odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki) odczytuje i zapisuje słownie liczby zapisane
Tajemnicza liczba π. d d d
Tajemnicza liczba π Każdy z Was na pewno już słyszał o liczbie π. Występuje ona w wielu wzorach matematycznych, np. na pole koła, objętość walca, jest przykładem liczby niewymiernej. Większość osób pamięta,
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn
Wymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych
Zakres tematyczny - PINGWIN. Klasa IV szkoły podstawowej 1. Zakres treści programowych z I etapu kształcenia. 2. Liczby naturalne i działania:
Zakres tematyczny - PINGWIN Klasa IV szkoły podstawowej 1. Zakres treści programowych z I etapu kształcenia. 2. Liczby naturalne i działania: zapisywanie i porównywanie liczb rachunki pamięciowe porównywanie
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne
MATEMATYKA klasa IV wymagania edukacyjne na poszczególne oceny
MATEMATYKA klasa IV wymagania edukacyjne na poszczególne oceny Wymagania konieczne (ocena dopuszczająca) Dział I - Liczby naturalne część 1 Wymagania podstawowe (ocena dostateczna) Wymagania rozszerzające
3.1. Obliczanie obwodu koła.
#3. Należy wykonać zestaw komponentów pozwalających na wyliczenia: obwodu, pola powierzchni dla figur geometrycznych: koło, kwadrat, prostokąt, trójkąt równoramiennego. 3.1. Obliczanie obwodu koła. Jako
Matematyka z kluczem
Matematyka z kluczem Przedmiotowe zasady oceniania Klasa 4 Poziomy wymagań a ocena szkolna Wymagania konieczne (K) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń
dobry (wymagania rozszerzające) dodaje i odejmuje w pamięci liczby naturalne z przekraczaniem progu dziesiątkowego
dopuszczający (wymagania konieczne) odczytuje współrzędne punktów zaznaczonych na osi liczbowej (proste przypadki) odczytuje i zapisuje słownie liczby zapisane cyframi (w zakresie 1 000 000) zapisuje cyframi
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,
Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł
Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY
Matematyka w klasie 4
I. Wymagania na poszczególne oceny Dział I Liczby naturalne część 1 Matematyka w klasie 4 Tatiana Pałka - Witowska Agnieszka Wołoszyn Korczyk Katarzyna Czembor-Pękal 1. odczytuje współrzędne punktów zaznaczonych
Jeśli lubisz matematykę
Witold Bednarek Jeśli lubisz matematykę Część 3 Opole 011 1 Wielokąt wypukły i kąty proste Pewien wielokąt wypukły ma cztery kąty proste. Czy wielokąt ten musi być prostokątem? Niech n oznacza liczbę wierzchołków
Wymagań edukacyjne z matematyki dla klasy VII Szkoły Podstawowej
Wymagań edukacyjne z matematyki dla klasy VII Szkoły Podstawowej Ocena celująca Uczeń spełnia wymagania na ocenę bardzo dobrą oraz ponadto: potrafi rozwiązać zadania na kilka sposobów; umie rozwiązywać
WYMAGANIA EDUKACYJNE matematyka klasa IV
WYMAGANIA EDUKACYJNE matematyka klasa IV I. Poziomy wymagań a ocena szkolna Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
Matematyka z kluczem
Matematyka z kluczem Szkoła podstawowa, klasy 4 8 Przedmiotowe zasady oceniania Klasa 4 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie
wymagania programowe z matematyki kl. II gimnazjum
wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania
Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
Wymagania na poszczególne oceny z matematyki w klasie IV
Wymagania na poszczególne oceny z matematyki w klasie IV 1. Wymagania konieczne (na ocenę dopuszczająca ) obejmują wiadomości i umiejętności umożliwiające uczniowi dalsza naukę, bez których nie jest on
dodaje liczby bez przekraczania progu dziesiątkowego, zapisuje słownie godziny przedstawione na zegarze,
MATEMATYKA KLASA 4 Wymagania na poszczególne oceny Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie
KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII
KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą
Liczby. Wymagania programowe kl. VII. Dział
Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej
SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem
SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające
nazwa zadania/ nr grupy realizowanych w Publicznym Gimnazjum w Janowcu Wielkopolskim nazwa i adres szkoły
88-430 Janowiec Wielkopolski, pokój nr, tel. 5 30 3 034 wew. 4 PROGRAM TEMATYCZNY ZAJĘĆ ZAJĘCIA ROZWIJAJĄCE Z MATEMATYKI/GRUPA nazwa zadania/ nr grupy realizowanych w Publicznym Gimnazjum w Janowcu Wielkopolskim
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne
MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. DZIAŁ Potęgi
MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wymagań na wszystkie oceny niższe.) DZIAŁ Potęgi DOPUSZCZAJĄCY
Wymagania edukacyjne z matematyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy IV w roku 2019/2020.
Wymagania edukacyjne z matematyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy IV w roku 2019/2020. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań edukacyjnych niezbędynych
Ad maiora natus sum III nr projektu RPO /15
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego, realizowanego w ramach Regionalnego Programu Operacyjnego Województwa Podlaskiego na lata 2014-2020. SCENARIUSZ
Marcin Binkiewicz Przedmiotowy System Oceniania Matematyki w Gimnazjum MOS Kąt
I. Szczegółowe kryteria oceniania: Marcin Binkiewicz Przedmiotowy System Oceniania Matematyki w Gimnazjum MOS Kąt Stopień celujący otrzymuje uczeń, który: a) posiadł wiedzę i umiejętności znacznie wykraczające
Skrypt 23. Przygotowanie do egzaminu Pierwiastki
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Przygotowanie do egzaminu Pierwiastki 1.
Matematyka z kluczem, Szkoła podstawowa, klasy 4
Matematyka z kluczem, Szkoła podstawowa, klasy 4 Przedmiotowe zasady oceniania Wymagania konieczne (K) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza
Matematyka z kluczem. Wymagania edukacyjne Klasa 4
Matematyka z kluczem Wymagania edukacyjne Klasa 4 LICZBY NATURALNE CZĘŚĆ I I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których
PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001
Bożena Bakiewicz, Bożena Pindral PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001 Poziom wymagań: K - konieczny P - podstawowy R - rozszerzający D - dopełniający POTĘGI,
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
MATEMATYKA Z KLUCZEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY SIÓDMEJ
MATEMATYKA Z KLUCZEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY SIÓDMEJ ocena dopuszczająca (wymagania konieczne), : rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie 3000, porównuje
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i
Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)
Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o