Anna Szewczyk. Wydział Geodezji Górniczej i InŜynierii środowiska AGH

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Anna Szewczyk. Wydział Geodezji Górniczej i InŜynierii środowiska AGH"

Transkrypt

1 Anna Szewczyk Wydział Geodezji Górniczej i InŜynierii środowiska AGH

2 Zastosowania biblioteki Genetics programu R

3 The genetics Package Tytuł: Populacja genetyczna Wersja:1.2.0 Data utworzenia: Autorzy: Gregory Warnes i Friedrich Leisch

4 Do zainstalowania biblioteki potrzeba dodatkowych bibliotek od których jest zaleŝna: combinat gdata ( gtools) MASS mvtnorm

5 Funcje dostępne w bibliotece Genetics: HWE.chisq gregorius HWE.exact homozygote HWE.test locus LD makegenotypes binsearch plot.genotype ci.balance power.casectrl diseq Print.LD expectedgenotypes Summary.genotype genotype Write.pop.file

6 Zakres prezentacji: HWE.chisq gregorius HWE.exact homozygote HWE.test locus LD makegenotypes binsearch plot.genotype ci.balance power.casectrl diseq Print.LD expectedgenotypes Summary.genotype genotype Write.pop.file

7 Testy statystyczne w bibliotece Genetics sprawdzające czy rozkład alleli jest zgodny z prawem Hardy Weinberga (HWE) HWE.chisq test na równowagę Hardy Weinberg a metodą chi 2 HWE.exact test dokładności dla markerów dwuallelicznych. Jest stosowany do sprawdzenia, czy dane pasują do równowagi Hardy-Weinberga, kiedy w populacji niektóre allele i genotypy są rzadkie. WaŜnym zastosowaniem tego testu jest szacowanie stopnia wsobności i sprzęŝenia w populacjach ludzkich, dla sprawdzenia załoŝeń o częstości genotypów w dochodzeniach sądowych. HWE.test oszacowanie parametru równowagowego (współczynnika korelacji)

8 Prawo Hardy - Weinberga ZałoŜenia Hardy Weinberga: Organizmy są diploidalne RozmnaŜają się płciowo Pokolenia nie zachodzą na siebie Osobniki kojarzą się losowo (populacja jest panmiktyczna) Populacja jest bardzo duŝa (nieskończenie wielka) Nie ma migracji Nie ma mutacji Dobór naturalny nie wpływa na badany locus JeŜeli spełnione są powyŝsze załoŝenia to proporcje dla locus o dwóch allelach A i a, których frekwencje wynoszą odpowiednio p i q będą odpowiadały rozwinięciu dwumiany (gdy są dwa allele, trójmianu, gdy są trzy allele itd..): faa = p 2, faa = 2pq, faa = q 2

9 Inaczej mówiąc równowaga Hardy ego Weinberga oznacza, Ŝe proporcja alleli w kolejnych pokoleniach w stanie równowagi genetycznej jest taka sama (czyli to czego moŝna się spodziewać gdy populacja nie będzie ulegała ewolucji)

10 Przykładowe genotypy Kolor oczu Kolor włosów Kolor skóry A/a B/b C/c a/a B/b C/c a/a B/B C/C a/a B/b C/c A/a B/b C/C a/a B/b C/c a/a B/b C/c A/a B/b C/c a/a B/b C/c a/a B/B C/C A/a B/b C/c A/A B/B c/c a/a B/b C/c A/a B/b c/c A/a B/b C/c a/a B/B C/C a/a B/b C/c A/a B/b C/c A/a B/b C/c a/a b/b c/c p 2 2pq q 2

11 Przykład na HWE.chisq p-value - graniczny poziom istotności; jest to poziom prawdopodobieństwa a odpowiadający takiej wartości t a, która jest równa zrealizowanej wartości t i. Dla dowolnego wyŝszego poziomu istotności t a się zmniejszy, czyli zajdzie t i >t a, dla dowolnego niŝszego poziomu t a się zwiększy, czyli zajdzie t i <t a. Wartość p-value sumaryzuje wszystkie wyniki testu tej samej pary hipotez na dowolnym poziomie istotności. JeŜeli p-value badanej hipotezy wynosi 0,1 lub więcej, to świadczy to raczej przeciwko hipotezie alternatywnej; p-value około 0,01 lub mniejsze świadczy raczej za hipotezą alternatywną i przeciw hipotezie zerowej.

12 Przykład na HWE.exact c/c=3 Ilość allelu C = 21 C/c=13 Ilość allelu c = 19 C/C=4 Test dokładności jest stosowany do sprawdzenia, czy dane pasują do równowagi Hardy-Weinberga, kiedy w populacji niektóre allele i genotypy są rzadkie. WaŜnym zastosowaniem tego testu jest szacowanie stopnia wsobności i sprzęŝenia w populacjach ludzkich, dla sprawdzenia załoŝeń o częstości genotypów w dochodzeniach sądowych. p-value = Nie ma podstaw do odrzucenia H 0

13 Przykład na HWE.test D bezwzględna róŝnica we frekwencji pomiędzy obserwowaną ilością par alleli a ilością oczekiwaną D D względne (skalowane) w przedziale [-1,1] r współczynnik korelacji dla kaŝdej pary alleli

14 Przykład na HWE.test c.d. CI (confidence interval, przedział ufności): Określa stopień precyzji danego oznaczenia. Zwykle podaje się 95% CI, czyli przedział wartości, w którym z 95% pewnością znajduje się prawdziwa wartość danego parametru w badanej populacji. Jeśli w tym przedziale zawarte jest 0 dla róŝnicy ryzyka lub 1 dla ryzyka względnego albo ilorazu szans, to jest to równoznaczne z brakiem istotności statystycznej danego wyniku (p >0,05). Współczynnik determinajcji definiuje jaki proceny obserwacji jest tłumaczony przez model regresji

15 Inne testy statystyczne LD test na nierównowagę sprzęŝeń (sprawdza, czy allele w analizowanych loci są dziedziczone razem, czy są ze sobą powiązane) Zdarza się wtedy, kiedy poszczególne allele w dwóch związanych loci występują w tym samym haplotypie, częściej niŝ moŝna byłoby oczekiwać biorąc pod uwagę równowagę Hardy Weinberga (HWE) Uwaga: JeŜeli dane(data frame) zawierają obiekty niegenetyczne lub genotypy z liczbą alleli róŝną od 2, dane te zostaną pominięte)

16 Nierównowaga sprzęŝeń wyraŝona jest w postaci współczynników liczonych dla kaŝdej pary alleli: 1. D bezwzględna róŝnica we frekwencji pomiędzy obserwowaną ilością par AB a ilością oczekiwaną (proporcjonalna róŝnica D): D=p AB - p A p B 2. D D odniesione (skalowane) o zasięgu: [-1,1],gdzie D =D/D max Dla D>0: D max =min(p A p b, p a p B ) Dla D<0 D max =max p A p B,-p a p b

17 3. r - współczynnik korelacji pomiędzy markerami r = ( p p p p ) A a D B b gdzie: p A - obserwowane prawdopodobieństwo wystąpienia allela A dla markera 1 P a =1- p A - obserwowane prawdopodobieństwo wystąpienia allela a dla markera 1 p B - obserwowane prawdopodobieństwo wystąpienia allela B dla markera 2 P b =1- p B - obserwowane prawdopodobieństwo wystąpienia allela b dla markera 2

18 Przykład zastosowania LD Badanie nierównowagi sprzęŝeń, sprawdzające czy dane allele są ze sobą powiązane Przykład rozpatrywany dla trzech genotypów: ZaleŜności pomiędzy poszczególnymi genotypami scharakteryzowane za pomocą wskaźników: D D r Chi 2 p-value

19 Graficzne przedstawienie LD

20 Graficzne przedstawienie LD

21 Graficzne przedstawienie LD

22 Graficzne przedstawienie LD Im więcej markerów, tym ciekawsze wyniki

23 Graficzne przedstawienie LD

ZARZĄDZANIE POPULACJAMI ZWIERZĄT

ZARZĄDZANIE POPULACJAMI ZWIERZĄT ZARZĄDZANIE POPULACJAMI ZWIERZĄT Ćwiczenia 1 mgr Magda Kaczmarek-Okrój magda_kaczmarek_okroj@sggw.pl 1 ZAGADNIENIA struktura genetyczna populacji obliczanie frekwencji genotypów obliczanie frekwencji alleli

Bardziej szczegółowo

WSTĘP. Copyright 2011, Joanna Szyda

WSTĘP. Copyright 2011, Joanna Szyda BIOINFORMATYKA 1. Wykład wstępny 2. Struktury danych w badaniach bioinformatycznych 3. Bazy danych: projektowanie i struktura 4. Bazy danych: projektowanie i struktura 5. Równowaga Hardyego-Weinberga,

Bardziej szczegółowo

GENETYKA POPULACJI. Ćwiczenia 1 Biologia I MGR /

GENETYKA POPULACJI. Ćwiczenia 1 Biologia I MGR / GENETYKA POPULACJI Ćwiczenia 1 Biologia I MGR 1 ZAGADNIENIA struktura genetyczna populacji obliczanie frekwencji genotypów obliczanie frekwencji alleli przewidywanie struktury następnego pokolenia przy

Bardziej szczegółowo

ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI. Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt

ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI. Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI Fot. W. Wołkow Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt POPULACJA Zbiór organizmów żywych, które łączy

Bardziej szczegółowo

GENETYKA POPULACJI. Fot. W. Wołkow

GENETYKA POPULACJI. Fot. W. Wołkow GENETYKA POPULACJI Fot. W. Wołkow GENETYKA POPULACJI Nauka która respektując zasady dziedziczenia z zakresu genetyki klasycznej bada mechanizmy dziedziczenia w odniesieniu do populacji Struktura genetyczna:

Bardziej szczegółowo

Bliskie Spotkanie z Biologią. Genetyka populacji

Bliskie Spotkanie z Biologią. Genetyka populacji Bliskie Spotkanie z Biologią Genetyka populacji Plan wykładu 1) Częstości alleli i genotypów w populacji 2) Prawo Hardy ego-weinberga 3) Dryf genetyczny 4) Efekt założyciela i efekt wąskiego gardła 5)

Bardziej szczegółowo

1 Genetykapopulacyjna

1 Genetykapopulacyjna 1 Genetykapopulacyjna Genetyka populacyjna zajmuje się badaniem częstości występowania poszczególnych alleli oraz genotypów w populacji. Bada także zmiany tych częstości spowodowane doborem naturalnym

Bardziej szczegółowo

Genetyka Populacji http://ggoralski.com

Genetyka Populacji http://ggoralski.com Genetyka Populacji http://ggoralski.com Frekwencje genotypów i alleli Frekwencja genotypów Frekwencje genotypów i alleli Zadania P AA = 250/500 = 0,5 P Aa = 100/500 = 0,2 P aa = 150/500 = 0,3 = 1 Frekwencje

Bardziej szczegółowo

Wprowadzenie do genetyki medycznej i sądowej

Wprowadzenie do genetyki medycznej i sądowej Genetyka medyczno-sądowa Wprowadzenie do genetyki medycznej i sądowej Kierownik Pracowni Genetyki Medycznej i Sądowej Ustalanie tożsamości zwłok Identyfikacja sprawców przestępstw Identyfikacja śladów

Bardziej szczegółowo

Zadania maturalne z biologii - 7

Zadania maturalne z biologii - 7 Koło Biologiczne Liceum Ogólnokształcące nr II w Gliwicach 2015-2016 Zadania maturalne z biologii - 7 Zadania: Zad.1 (Jesika Stępień, Natalia Świetlak, Daniela Schwedka 3D) Przeczytaj tekst i na jego podstawie

Bardziej szczegółowo

Zmienność. środa, 23 listopada 11

Zmienność.  środa, 23 listopada 11 Zmienność http://ggoralski.com Zmienność Zmienność - rodzaje Zmienność obserwuje się zarówno między poszczególnymi osobnikami jak i między populacjami. Różnice te mogą mieć jednak różne podłoże. Mogą one

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, Biomatematyka

EGZAMIN MAGISTERSKI, Biomatematyka Biomatematyka 90...... Zadanie 1. (8 punktów) Załóżmy, że w diploidalnej populacji, dla której zachodzi prawo Hardy ego- Weinberga dla loci o dwóch allelach A i a proporcja osobników o genotypie AA wynosi

Bardziej szczegółowo

2. CZYNNIKI ZABURZAJĄCE RÓWNOWAGĘ GENETYCZNĄ

2. CZYNNIKI ZABURZAJĄCE RÓWNOWAGĘ GENETYCZNĄ ZARZĄDZANIE POPULACJAMI ZWIERZĄT 2. CZYNNIKI ZABURZAJĄCE RÓWNOWAGĘ GENETYCZNĄ POPULACJI Fot. W. Wołkow Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt MIGRACJE Zmiana frekwencji

Bardziej szczegółowo

Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice

Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne Adam Bobrowski, IM PAN Katowice 1 Tematyka cyklu referatów Dryf genetyczny Matematyczne modele równowagi między mutacja

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Podstawy genetyki populacji. Genetyka mendlowska i ewolucja - wsobność, dryf, układy wielogenowe

Podstawy genetyki populacji. Genetyka mendlowska i ewolucja - wsobność, dryf, układy wielogenowe Podstawy genetyki populacji Genetyka mendlowska i ewolucja - wsobność, dryf, układy wielogenowe Egzamin 30.01.2017 o 14:00 (sala 9) Wsobność Częstsze krzyżowanie osobników spokrewnionych Jedna z form krzyżowania

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka Biomatematyka 80...... Zadanie 1. (8 punktów) Rozpatrzmy prawo Hardy ego Weinberga dla loci związanej z chromosomem X o dwóch allelach A 1 i A 2. Załóżmy, że początkowa częstość allelu A 2 u kobiet jest

Bardziej szczegółowo

Genetyka ekologiczna i populacyjna W8

Genetyka ekologiczna i populacyjna W8 Genetyka ekologiczna i populacyjna W8 Genetyka populacji: Treść wykładów Zmienność genetyczna i środowiskowa Mutacje i rekombinacje Kojarzenie krewniacze Częstość genów i genotypów w populacji i prawdopodobieństwo

Bardziej szczegółowo

GENETYKA POPULACJI. Ćwiczenia 4 Biologia I MGR

GENETYKA POPULACJI. Ćwiczenia 4 Biologia I MGR GEETYKA POPULACJI Ćwiczenia 4 Biologia I MGR Ad. Ćwiczenia Liczba możliwych genotypów w locus wieloallelicznym Geny sprzężone z płcią Prawo Hardy ego-weinberga p +pq+q = p+q= m( m ) p P Q Q P p AA Aa wszystkich_

Bardziej szczegółowo

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r Statystyka matematyczna Test χ 2 Wrocław, 18.03.2016r Zakres stosowalności Testowanie zgodności Testowanie niezależności Test McNemara Test ilorazu szans Copyright 2014, Joanna Szyda ZAKRES STOSOWALNOŚCI

Bardziej szczegółowo

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1 Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.

Bardziej szczegółowo

Genetyka populacyjna. Populacja

Genetyka populacyjna. Populacja Genetyka populacyjna Populacja 1 Populacja Populacja jest to zbiór osobników jednego gatunku żyjących na danym terytorium w danym czasie. Genetykę populacyjną interesuje tzw. populacja panmiktyczna (mendlowska),

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?

Bardziej szczegółowo

Badania asocjacyjne w skali genomu (GWAS)

Badania asocjacyjne w skali genomu (GWAS) Badania asocjacyjne w skali genomu (GWAS) Wstęp do GWAS Część 1 - Kontrola jakości Bioinformatyczna analiza danych Wykład 2 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Badania

Bardziej szczegółowo

Podstawy genetyki populacji. Populacje o skończonej liczebności. Dryf. Modele wielogenowe.

Podstawy genetyki populacji. Populacje o skończonej liczebności. Dryf. Modele wielogenowe. Podstawy genetyki populacji Populacje o skończonej liczebności. Dryf. Modele wielogenowe. Dryf genetyczny a ewolucja } Dobór naturalny nie jest jedynym mechanizmem kształtującym zmiany ewolucyjne } Losowe

Bardziej szczegółowo

Podstawy genetyki populacji. Genetyka mendlowska i ewolucja

Podstawy genetyki populacji. Genetyka mendlowska i ewolucja Podstawy genetyki populacji Genetyka mendlowska i ewolucja Syntetyczna teoria ewolucji } Pierwsza synteza: połączenie teorii ewolucji Darwina z genetyką mendlowską na poziomie populacji } W naturalnych

Bardziej szczegółowo

Spokrewnienie prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami IBD. IBD = identical by descent, geny identycznego pochodzenia

Spokrewnienie prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami IBD. IBD = identical by descent, geny identycznego pochodzenia prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami ID. Relationship Relatedness Kinship Fraternity ID = identical by descent, geny identycznego pochodzenia jest miarą względną. Przyjmuje

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny?

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Gdy: badana cecha jest mierzalna (tzn. posiada rozkład ciągły); badana cecha posiada rozkład normalny; dysponujemy pojedynczym wynikiem;

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

GENETYCZNE PODSTAWY ZMIENNOŚCI ORGANIZMÓW ZASADY DZIEDZICZENIA CECH PODSTAWY GENETYKI POPULACYJNEJ

GENETYCZNE PODSTAWY ZMIENNOŚCI ORGANIZMÓW ZASADY DZIEDZICZENIA CECH PODSTAWY GENETYKI POPULACYJNEJ GENETYCZNE PODSTAWY ZMIENNOŚCI ORGANIZMÓW ZASADY DZIEDZICZENIA CECH PODSTAWY GENETYKI POPULACYJNEJ ZMIENNOŚĆ - występowanie dziedzicznych i niedziedzicznych różnic między osobnikami należącymi do tej samej

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Podstawy genetyki populacji. Genetyka mendlowska i ewolucja

Podstawy genetyki populacji. Genetyka mendlowska i ewolucja Podstawy genetyki populacji Genetyka mendlowska i ewolucja Informacja ujęcie matematyczne Entropia miara niepewności dotyczącej stanu zmiennej losowej N H(X) = p log p i i i=1 Podstawa logarytmu definiuje

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Prawdopodobeństwo, test χ 2

Prawdopodobeństwo, test χ 2 Prawdopodobeństwo, test χ 2 Autor: Grzegorz Góralski ggoralski.com Co to jest prawdopodobieństwo? Prawdopodobieństwo = Liczba interesujących nas zdarzeń Liczba wszystkich zdarzeń Jakie jest prawdopodobieństwo

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

Wprowadzenie do genetyki sądowej. Materiały biologiczne. Materiały biologiczne: prawidłowe zabezpieczanie śladów

Wprowadzenie do genetyki sądowej. Materiały biologiczne. Materiały biologiczne: prawidłowe zabezpieczanie śladów Wprowadzenie do genetyki sądowej 2013 Pracownia Genetyki Sądowej Katedra i Zakład Medycyny Sądowej Materiały biologiczne Inne: włosy z cebulkami, paznokcie możliwa degradacja - tkanki utrwalone w formalinie/parafinie,

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ Choroby genetyczne o złożonym

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Podstawy genetyki. ESPZiWP 2010

Podstawy genetyki. ESPZiWP 2010 Podstawy genetyki ESPZiWP 2010 Genetyka - nauka o dziedziczności i zmienności organizmów, wyjaśniająca prawa rządzące podobieństwami i różnicami pomiędzy osobnikami spokrewnionymi przez wspólnego przodka

Bardziej szczegółowo

Ocena zmienności genetycznej jesionu wyniosłego w Polsce. Jarosław Burczyk

Ocena zmienności genetycznej jesionu wyniosłego w Polsce. Jarosław Burczyk Ocena zmienności genetycznej jesionu wyniosłego w Polsce Jarosław Burczyk Zmienność genetyczna W naturalnych zbiorowiskach, zróżnicowanie genetyczne jest wynikiem doboru naturalnego i historii demograficznej

Bardziej szczegółowo

STATYSTYKA INDUKCYJNA. O sondażach i nie tylko

STATYSTYKA INDUKCYJNA. O sondażach i nie tylko STATYSTYKA INDUKCYJNA O sondażach i nie tylko DWA DZIAŁY ESTYMACJA Co na podstawie wyników z próby mogę powiedzieć o wynikach w populacji? WERYFIKACJA HIPOTEZ Czy moje przypuszczenia uczynione przed badaniami

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Analiza sprzężeń u człowieka. Podstawy

Analiza sprzężeń u człowieka. Podstawy Analiza sprzężeń u człowieka Podstawy Geny i chromosomy Allele genów zlokalizowanych na różnych chromosomach segregują niezależnie (II prawo Mendla) Dla 2 genów: 4 równoliczne klasy gamet W. S Klug, M.R

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Wykład 8 Dane kategoryczne

Wykład 8 Dane kategoryczne Wykład 8 Dane kategoryczne Wrocław, 19.04.2017r Zmienne kategoryczne 1 Przykłady zmiennych kategorycznych 2 Zmienne nominalne, zmienne ordynalne (porządkowe) 3 Zmienne dychotomiczne kodowanie zmiennych

Bardziej szczegółowo

Biologia molekularna z genetyką

Biologia molekularna z genetyką Biologia molekularna z genetyką P. Golik i M. Koper Konwersatorium 2: Analiza genetyczna eukariontów Drosophilla melanogaster Makrokierunek: Bioinformatyka i Biologia Systemów; 2016 Opracowano na podstawie

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

Elementy teorii informacji w ewolucji

Elementy teorii informacji w ewolucji Elementy teorii informacji w ewolucji Teoria informacji Zmienna losowa X obiekt mogący przyjąć skończoną liczbę stanów x1,,xn, z określonymi prawdopodobieństwami p1,,pn Przykład x1; p1=0,5 x2; p2=0,5 Informacja

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).

Bardziej szczegółowo

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe?

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe? 2 Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia czy pomiędzy zmiennymi istnieje związek/zależność. Stosujemy go w sytuacji, kiedy zmienna zależna mierzona jest na skali

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,

Bardziej szczegółowo

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej, Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (punktowa, przedziałowa) Weryfikacja

Bardziej szczegółowo

Teoria ewolucji. Dobór płciowy i krewniaczy. Altruizm. Adaptacjonizm i jego granice.

Teoria ewolucji. Dobór płciowy i krewniaczy. Altruizm. Adaptacjonizm i jego granice. Teoria ewolucji Dobór płciowy i krewniaczy. Altruizm. Adaptacjonizm i jego granice. Szczególne rodzaje doboru } Dobór płciowy } Dobór krewniaczy } Dobór grupowy? 2 Dobór i złożone zachowania } Nie istnieje

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ gamety matczyne Genetyka

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

Genetyka populacyjna

Genetyka populacyjna Genetyka populacyjna analizuje strukturę genetyczną całych populacji oraz wyniki kojarzeń wewnątrz populacji lub pomiędzy różnymi populacjami, opiera się na modelach matematycznych Prawo równowagi Hardy

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Ekologia ogólna. wykład 4. Metody molekularne Genetyka populacji

Ekologia ogólna. wykład 4. Metody molekularne Genetyka populacji Ekologia ogólna wykład 4 Metody molekularne Genetyka populacji Kalosze vs. fartuchy wykład 4/2 Techniki molekularne DNA mitochondrialne / chloroplastowe Konserwowane ewolucyjne, wiele kopii w komórce Wykorzystanie

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH

TESTOWANIE HIPOTEZ STATYSTYCZNYCH TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15 VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją

Bardziej szczegółowo

Teoria Estymacji. Do Powyżej

Teoria Estymacji. Do Powyżej Teoria Estymacji Zad.1. W pewnym przedsiębiorstwie wylosowano niezależnie próbę 25 pracowników. Staż pracy (w latach) tych pracowników w 1996 roku był następujący: 37; 34; 0*; 5; 17; 17; 0*; 2; 24; 33;

Bardziej szczegółowo

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1).

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1). PRZYKŁADY TESTÓW NIEPARAMETRYCZNYCH. Test zgodności χ 2. Ten test służy testowaniu hipotezy, czy rozważana zmienna ma pewien ustalony rozkład, czy też jej rozkład różni się od tego ustalonego. Tym testem

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP

PODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP PODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP WSTĘP 1. SNP 2. haplotyp 3. równowaga sprzężeń 4. zawartość bazy HapMap 5. przykłady zastosowań Copyright 2013, Joanna Szyda HAPMAP BAZA DANYCH HAPMAP - haplotypy

Bardziej szczegółowo

Zarządzanie populacjami zwierząt. Efektywna wielkość populacji Wykład 3

Zarządzanie populacjami zwierząt. Efektywna wielkość populacji Wykład 3 Zarządzanie populacjami zwierząt Efektywna wielkość populacji Wykład 3 DRYF GENETYCZNY Przypadkowe zmiany częstości alleli szczególnie ważne w małych populacjach DRYF GENETYCZNY Wybieramy z dużej populacji

Bardziej szczegółowo

Dobór naturalny i dryf

Dobór naturalny i dryf Dobór naturalny i dryf Efekty działania doboru Adaptacje Dostosowania do środowiska Egzaptacje Cechy, ktorych obecna funkcja jest inna niż pierwotna Np. pióra ptaków (kiedyś do zatrzymywania ciepła, obecnie

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Podstawy genetyki populacji SYLABUS A. Informacje ogólne

Podstawy genetyki populacji SYLABUS A. Informacje ogólne Podstawy genetyki populacji A. Informacje ogólne Elementy sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Rodzaj Rok studiów /semestr

Bardziej szczegółowo

BIOINFORMATYKA 8. Analiza asocjacyjna - teoria

BIOINFORMATYKA 8. Analiza asocjacyjna - teoria IOINFORMTYK 1. Wykład wstępny 2. Struktury danych w adaniach ioinformatycznych 3. azy danych: projektowanie i struktura 4. azy danych: projektowanie i struktura 5. Powiązania pomiędzy genami: równ. Hardyego-Weinerga,

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Hipotezą statystyczną jest dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia

Bardziej szczegółowo

Metodologia badań psychologicznych. Wykład 12. Korelacje

Metodologia badań psychologicznych. Wykład 12. Korelacje Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

Drzewa Decyzyjne, cz.2

Drzewa Decyzyjne, cz.2 Drzewa Decyzyjne, cz.2 Inteligentne Systemy Decyzyjne Katedra Systemów Multimedialnych WETI, PG Opracowanie: dr inŝ. Piotr Szczuko Podsumowanie poprzedniego wykładu Cel: przewidywanie wyniku (określania

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

2. CZYNNIKI ZABURZAJĄCE RÓWNOWAGĘ GENETYCZNĄ

2. CZYNNIKI ZABURZAJĄCE RÓWNOWAGĘ GENETYCZNĄ ZARZĄDZANIE POPULACJAMI ZWIERZĄT 2. CZYNNIKI ZABURZAJĄCE RÓWNOWAGĘ GENETYCZNĄ POPULACJI Fot. W. Wołkow Prowadzący: dr Wioleta Drobik-Czwarno; mgr Magdalena Kaczmarek-Okrój Katedra Genetyki i Ogólnej Hodowli

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne Czyli jak bardzo jesteśmy pewni że parametr oceniony na podstawie próbki jest

Bardziej szczegółowo