Zofia MIECHOWICZ, Zielona Góra. v 1. v 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zofia MIECHOWICZ, Zielona Góra. v 1. v 2"

Transkrypt

1 Jest to zapis odczytu wygłoszonego na XLVIII Szole atematyi Poglądowej, Sojarzenia i analogie, Otwoc Śródborów, styczeń 22. W przestrzeni Zofia IECHOWICZ, Zielona Góra Naturalna analogia? Nie mylił się, z pewnością, Stefan Banach, mówiąc, że dobry matematy potrafi dostrzegać analogie między twierdzeniami, matematy wybitny analogie między teoriami, zaś matematy genialny analogie między analogiami. Jeżeli jesteś Czytelniu, matematyiem wybitnym bądź genialnym i analogia, tórej chcemy poświęcić ten artyuł będzie wydawać Ci się oczywista, bardzo prosimy, żebyś mimo wszysto nie poprzestawał na leturze tego wstępu. Być może uda nam się przeonać Cię, że ma ona znacznie głębsze onsewencje, niż to się może na pierwszy rzut oa wydawać. Analogia między zwyłym zbiorem a przestrzenią liniową wydaje się być naturalna. Zbiór jest ze swej natury obietem prostszym do badania niż przestrzeń i wiemy o nim więcej. Soro już dostrzegliśmy więc tę naturalną analogię możemy spróbować pozbierać znane faty na temat zbiorów i brutalnie zastąpić słowo zbiór słowem przestrzeń, słowo podzbiór słowem podprzestrzeń a słowo moc słowem wymiar. Oazuje się, że w bardzo wielu przypadach faty i twierdzenia na temat zbiorów literalnie przeładają się na twierdzenia dotyczące przestrzeni liniowych (choć te drugie są zazwyczaj o wiele trudniejsze do udowodnienia)! Spróbujmy przyjrzeć się bliżej, ja mocno są związane ze sobą te dwa obiety matematyczne. Ile tego jest? Jedno z pierwszych pytań, tóre zadajemy sobie, iedy zaczynamy badać struturę zbiorów brzmi: Ile jest -elementowych podzbiorów n-elementowego zbioru? Już na wczesnym etapie przygody z matematyą dowiadujemy się, że liczba ta wraża się poprzez współczynni dwumianowy Newtona ( n ). Ja będzie wyglądało analogiczne pytanie w świecie przestrzeni? Soro moc zbioru ma być odpowiedniiem wymiaru, załóżmy, że poruszamy się po n-wymiarowej przestrzeni nad sończonym, -elementowym ciałem F. Pytanie zadane wcześniej będzie teraz brzmiało: Ile jest -wymiarowych podprzestrzeni przestrzeni n-wymiarowej? ożemy liczbę tę oznaczyć roboczo przez ( ) n. Podprzestrzeń -wymiarową jednoznacznie wyznacza wetorów niezależnych {v,..., v }. Ponieważ poruszamy się po przestrzeni nad ciałem sończonym, to wyznaczenie liczby taich -te sprowadza się do prostego przeliczenia. Wybierzmy najpierw wetor v. Jedyne, o co musimy się zatroszczyć, to żeby był on różny od wetora zerowego. Ze wszystich n wetorów, tóre są dostępne musimy wyluczyć tylo ten jeden. amy więc: v n Na wetor v 2 mamy już odrobinę mniej andydatów. Nie może on należeć do podprzestrzeni rozpinanej przez wetor v. Elementów tej podprzestrzeni jest tyle, na ile sposobów możemy pomnożyć ten wetor przez element ciała F, więc: v 2 n Wetor v 3 z olei nie może należeć do podprzestrzeni rozpiętej przez oba wcześniej wybrane. Wyluczamy więc doładnie 2 wetorów. v 3 n 2 Kiedy wybraliśmy już l wetorów, olejny po prostu nie może być ombinacją liniową poprzednich, w związu z czym mamy już tylo n l możliwości. v l+ n l 29

2 Różnych -te wetorów niezależnych mamy więc: ( n )( n )( n 2 )... ( n ) Oczywiście część z nich generuje te same podprzestrzenie. Każdą podprzestrzeń wymiaru możemy uzysać na tyle sposobów, ile różnych -te wetorów niezależnych w niej znajdziemy, a wiemy doładnie ile jest taich -te (przed chwilą właśnie to policzyliśmy!): ( )( )( 2 )... ( ) Zliczając różne zbiory wetorów niezależnych, ażdą podprzestrzeń dostaliśmy doładnie tyle razy. Ostatecznie szuana przez nas liczba -wymiarowych podprzestrzeni przestrzeni n-wymiarowej wyraża się następująco: ( n ) = (n )( n )... ( n ) ( )( )... ( ). Wzór ten nie jest nowy, a dobór oznaczenia nie jest przypadowy. Formuła ta nazywana jest współczynniiem dwumianowym Gaussa, a pierwszy raz została użyta przez tego słynnego matematya do znalezienia wzoru na ta zwane sumy Gaussa. Ale czy ma ona, oprócz nazwy, jaiś bliższy związe ze współczynniiem dwumianowym Newtona? Przyjrzyjmy się bliżej. Jeżeli potratujemy ( ) n ja funcję zmiennej rzeczywistej i zaczniemy ją badać, bardzo szybo, stosując chociażby regułę de l Hospitala, odryjemy, że ( ) ( n n lim = Widzimy więc wyraźnie, że coś jest na rzeczy. Tylo, po analitycznym podejściu do sprawy trudno nam powiedzieć coś oprócz tego, że zależność (tórej z resztą się spodziewaliśmy) istnieje. A gdybyśmy chcieli poczuć jej istotę? Zrozumieć charater? usimy się wtedy udać po pomoc do Donalda Knutha, tóry podszedł do sprawy z zupełnie innej strony. Spróbujmy jeszcze raz zliczyć podprzestrzenie wymiaru, tym razem innym sposobem. Po pierwsze umieśćmy wetory v,..., v w macierzy, jao jej wiersze. Taą macierz możemy, poprzez elementarne operacje na wierszach, sprowadzić do ta zwanej zreduowanej postaci schodowej (rysune ). ). æ ç ç è v ö... elementarne v ø operacje na wierszach æ ç ç è ö ø Rysune : Zreduowana postać schodowa Zreduowana postać schodowa ma następujące cechy charaterystyczne: pierwszy niezerowy element od lewej w ażdym wierszu to (będziemy nazywać ją wiodącą) wszystie pozostałe elementy w olumnie, w tórej jest jedyna wiodąca to zera w ażdym wierszu jedyna wiodąca pojawia się na prawo od jedyni wiodącej w poprzednim wierszu ożemy przyjąć, że jeżeli wiersze dwóch taich macierzy generują tę samą przestrzeń, to macierze te są sobie równe. Zliczenie wszystich interesujących nas podprzestrzeni sprowadza się więc do policzenia, ile jest różnych zreduowanych macierzy schodowych. Żeby to policzyć, spróbujmy usunąć z taiej macierzy wszysto, co zbędne. Z pewnością zbędne są wszystie zera, na lewo od jedyne wiodących. ożemy je więc bezarnie usunąć (rysune 2). 3

3 Rysune 2: Usunięcie elementów zerowych na lewo od jedyne wiodących Kolumny zawierające wiodące jedyni również nie będą miały dla nas znaczenia. Pozbądźmy się więc ich brutalnie (rysune 3) Rysune 3: Usunięcie olumn zawierających jedyni wiodące Została nam w tej chwili macierz zawierająca puste pola, oraz pewne liczby. Ta naprawdę nie interesuje nas jaie to są liczby. ożemy więc ażdą liczbę zastąpić gwiazdą. n- Rysune 4: Diagram λ Otrzymaliśmy pewien diagram o wymiarach na n (rysune 4). Oznaczmy pojedynczy diagram przez λ, a liczbę gwiazde w nim, przez λ i spróbujmy ten proces odwrócić. Kolumny z jedynami wiodącymi wstawiamy w sposób jednoznaczny. Ta samo możliwości manewru nie mamy, przy umieszczaniu zer po ich lewej stronie. Natomiast gwiazdi możemy zastąpić elementami ciała F na wszystie możliwe sposoby, tórych jest doładnie λ (rysune 5). dowolnie Rysune 5: Powrót do macierzy 3

4 I ta oto dochodzimy do wniosu, że różnych zreduowanych macierzy schodowych, a więc również podprzestrzeni -wymiarowych przestrzeni n-wymiarowej jest: ( ) n = λ λ n Pozostało nam jeszcze tylo policzyć ile jest różnych diagramów o λ gwiazdach. Jeżeli przyjrzymy się doładnie pojedynczemu diagramowi (i wyonamy obrót o 9 ), to zobaczymy, że w istocie jest to to samo co ta zwany diagram Ferrersa. Obiety te są znane matematyom od dawna i doładnie zbadane. Diagramy Ferrersa reprezentują podziały liczby naturalnej n na sładniów n = a + a a (przy czym liczby a i są nierozróżnialne) i służą do wyznaczania liczby taich podziałów (rysune 6). n a a 2 a 3 Rysune 6: Diagram Ferrersa dla n = 7 Ile jest taich diagramów, policzyć jest łatwo. ożemy diagram utożsamić z linią łamaną stanowiącą jego prawostronny obrys (rysune 6). Żeby dostać taą linię, z n rese, tóre musimy postawić musimy wybrać doładnie rese poziomych, możemy więc to zrobić na ( n ) sposobów. Soro już potrafimy policzyć ile jest różnych diagramów o mocy λ, to możemy śmiało przejść, do interesującej nas granicy. ( ) n lim = lim λ = ( ) n = Ramsey w przestrzeni λ n λ n Każdy, to pragnie zgłębiać tajemnice matematyi, iedy już przebrnie przez pierwsze ombinatoryczne ursy, natnie się z pewnością na doniosłe twierdzenie Ramseya. Żeby je dobrze zrozumieć zacznijmy od prostej obserwacji. Obserwacja. Kolorując dowolnie dwoma olorami rawędzie grafu pełnego K 6 zawsze znajdziemy jednoolorową induowaną lię K 3. Dowód. Przyjmijmy, że olory, tórych używamy, to czerwony i niebiesi. Popatrzmy na dowolny wierzchołe lii K 6. Ponieważ wychodzi z niego doładnie 5 rawędzi, co najmniej 3 z nich muszą otrzymać ten sam olor (powiedzmy czerwony). Ponieważ wszystie te rawędzie są czerwone, więc ich ońce nie mogą być połączone rawędzią w tym olorze, gdyż otrzymalibyśmy czerwony trójąt. Soro ta, trzy wierzchołi na drugich ońcach czerwonych rawędzi muszą być połączone rawędziami w olorze niebiesim, co daje nam trójąt niebiesi (rysune 7). 32

5 ? niebiesi czerwony Rysune 7: Kawałe grafu K 6 i częściowe olorowanie Z drugiej strony wiemy, że rawędzie lii K 5 możemy poolorować dwoma olorami ta, żeby nie otrzymać jednobarwnego trójąta (możesz to, Czytelniu, potratować jao proste ćwiczenie). Widzimy więc, że 6 jest najmniejszą taą liczbą, że przy dowolnym dwuolorowaniu rawędzi grafu pełnego na tyluż wierzchołach otrzymamy monochromatyczny trójąt. Stąd już bardzo bliso do twierdzenia Ramseya. Twierdzenie. Dla ażdego istnieje taa liczba n, że przy dowolnym dwuolorowaniu rawędzi grafu pełnego K n znajdziemy jednoolorową induowaną lię K. Najmniejsze taie n oznaczamy przez R() i nazywamy -tą liczbą Ramseya. Wbrew temu, co może się wydawać po prześledzeniu wcześniejszego, prostego przyładu znajdowanie liczb Ramseya nie jest wcale proste. Do tej pory matematyom udało się wyznaczyć doładne wartości jedynie dla trzech pierwszych. R(2) = 4 R(3) = 6 R(4) = 8 Problem pojawia się już przy R(5). Potrafimy obecnie jedynie podać wąsi przedział, w tórym się ona znajduje (43 R(5) 49) i nie zanosi się na to, żeby w najbliższym czasie ten stan rzeczy miał ulec zmianie. Tym co nas interesuje nie jest jedna samo twierdzenie Ramseya, a przeniesienie go w przestrzeń (zgodnie z obietnicą ja najbardziej dosłowne). żeby to zrobić musimy jedna twierdzenie przeformułować z języa grafów, na języ zbiorów. Twierdzenie 2. Dla ażdej liczby naturalnej s istnieje taa liczba naturalna n = R(s), że dla dowolnego dwuolorowania dwuelementowych podzbiorów zbioru {,..., n} istnieje s-elementowy podzbiór {,..., n}, tórego wszystie dwuelementowe podzbiory są w tym samym olorze. 33

6 Tym razem zamiast rawędzi grafu olorujemy dwuelementowe podzbiory raty podzbiorów zbioru n-elementowego (rysune 8). {,2,3,4} {,2,3} {,2,4} {,3,4} {2,3,4} {,2} {,3} {,4} {2,3} {2,4} {3,4} {} {2} {3} {4} { } Rysune 8: Krata podzbiorów zbioru {, 2, 3, 4} Ameryańsi matematy włosiego pochodzenia Gian-Carlo Rota wyraził przypuszczenie, że twierdzenie to pozostanie prawdziwe, jeżeli ratę podzbiorów zastąpimy przez ratę podprzestrzeni przestrzeni wetorowej. Twierdzenie przyjmie wtedy postać: Twierdzenie 3. Dla dowolnych liczb naturalnych s, t, istnieje taa liczba naturalna n, że dla dowolnego -olorowania t-wymiarowych podprzestrzeni przestrzeni n-wymiarowej znajdziemy s-wymiarową przestrzeń, tórej wszystie t-wymiarowe podprzestrzenie są jednobarwne. W 97 rou twierdzenie to udowodnili Ronald Graham i Bruce Rothschild (za co dostali nagrodę Polyi). Zgodnie z oczeiwaniami, mimo że twierdzenie Ramseya w oryginalnej wersji ma dowód, tóry bez problemu mogą przyswoić studenci na pierwszych ursach matematyi, twierdzenie w wersji przestrzennej jest dużo trudniejsze do udowodnienia. Wymaga zaawansowanego aparatu matematycznego, natomiast liczby Ramsey a-grahama (odpowiednii liczb Ramsey a) są pratycznie niemożliwe do wyznaczenia. Dość powiedzieć, że najlepsze w tej chwili znane oszacowanie najmniejszej z nich jest dane przez Liczbę Grahama, tóra została oficjalnie wpisana do sięgi reordów Guinnessa jao najwięsza liczba na świecie. nożąc przyłady Z pewnością ażdy matematy, niezależnie od specyfii dziedziny jaą się zajmuje, natnął się na tego typu przyłady. Twierdzenia i faty, tóre zupełnie dosłownie przenoszą się ze świata zbiorów w świat przestrzeni. Gdybyśmy chcieli szuać przyczyn taiego zachowania, prawdopodobnie winą za te faty obarczymy ratową struturę obu obietów. Gdyby toś jedna nie chciał poprzestawać na speulacjach i miał ochotę poznać dogłębnie istotę tego zjawisa, to pozostał jeszcze cały szereg podobnych twierdzeń do udowodnienia w przestrzeni (dla przyładu, hipoteza wymienionego wcześniej Gian Carlo Roty o bazach). O ile nie przeraża Cię, Czytelniu, domniemana sala trudności problemów w przestrzeni, zachęcamy do badań i poszuiwań. 34

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Inducja matematyczna Inducja jest taą metodą rozumowania, za pomocą tórej od tezy szczegółowej dochodzimy do tezy ogólnej. Przyład 1 (o zanurzaniu ciał w wodzie) 1. Kawałe żelaza, tóry zanurzyłem w wodzie,

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną

Algebra liniowa z geometrią analityczną WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór

Bardziej szczegółowo

Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy:

Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy: Matematya dysretna - wyład 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produtu artezjańsiego X Y, tórego elementami są pary uporządowane (x, y), taie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 17 marca 2003 roku

Matematyka Dyskretna. Andrzej Szepietowski. 17 marca 2003 roku Matematya Dysretna Andrzej Szepietowsi 17 marca 2003 rou Rozdział 1 Kombinatorya 1.1 Zasada podwójnego zliczania Zasada podwójnego zliczania jest bardzo prosta. Oto ona: Jeżeli elementy jaiegoś zbioru

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy 3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja

Bardziej szczegółowo

P k k (n k) = k {O O O} = ; {O O R} =

P k k (n k) = k {O O O} = ; {O O R} = Definicja.5 (Kombinacje bez powtórzeń). Każdy -elementowy podzbiór zbioru A wybrany (w dowolnej olejności) bez zwracania nazywamy ombinacją bez powtórzeń. Twierdzenie.5 (Kombinacje bez powtórzeń). Liczba

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1 Prognozowanie notowań paietów acji poprzez ortogonalizację szeregów czasowych Andrzej Kasprzyci. WSĘP Dynamię rynu finansowego opisuje się indesami agregatowymi: cen, ilości i wartości. Indes giełdowy

Bardziej szczegółowo

Równania rekurencyjne 1 RÓWNANIA REKURENCYJNE

Równania rekurencyjne 1 RÓWNANIA REKURENCYJNE Równania reurencyjne 1 RÓWNANIA REKURENCYJNE 1 Ciągi arytmetyczne i geometryczne Z najprostszymi równaniami reurencyjnymi zetnęliśmy się już w szole Zacznijmy od przypomnienia definicji ciągu arytmetycznego

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

n(n + 1) 2 k = k = 1, P = 1 (1 + 1)/2 = 2/2 = 1 = L. n(n + 1) 2 + (n + 1) = n(n + 1)(2n + 1) 6 k 2 = n(n + 1)(2n + 1) 6 + (n + 1) 2 = n + 1

n(n + 1) 2 k = k = 1, P = 1 (1 + 1)/2 = 2/2 = 1 = L. n(n + 1) 2 + (n + 1) = n(n + 1)(2n + 1) 6 k 2 = n(n + 1)(2n + 1) 6 + (n + 1) 2 = n + 1 Materiały do zajęć wyrównawczych z matematyi da studentów informatyi, ro aademici 013/14 Zestaw zadań 5 odpowiedzi uwaga: nieco inna oejność zadań 1. Udowodnij, że 1 n(n 1 (1a Odpowiedź: Da n 1 mamy L

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś

Bardziej szczegółowo

Koła rowerowe malują fraktale

Koła rowerowe malują fraktale Koła rowerowe malują fratale Mare Berezowsi Politechnia Śląsa Rozważmy urządzenie sładającego się z n ół o różnych rozmiarach, obracających się z różnymi prędościami. Na obręczy danego oła, obracającego

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

Matematyka Dyskretna, informatyka, 2008/2009, W. Broniowski

Matematyka Dyskretna, informatyka, 2008/2009, W. Broniowski Matematya Dysretna, informatya, 2008/2009, W. Broniowsi Zestaw 2 z częściowymi odpowiedziami (ja toś nie chce, niech nie patrzy! Kombinatorya i rachune prawdopodobieństwa. Z pomocą wzoru Stirlinga dla

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

Wojciech Kordecki. Matematyka dyskretna. dla informatyków

Wojciech Kordecki. Matematyka dyskretna. dla informatyków Wojciech Kordeci Matematya dysretna dla informatyów Wrocław 2005 Spis treści 1. Relacje, funcje i rozmieszczenia 1 1.1. Zbiory częściowo uporządowane 1 1.2. Funcje i rozmieszczenia 2 1.3. Zadania 4 2.

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

Matematyka Dyskretna Zadania

Matematyka Dyskretna Zadania Matematya Dysretna Zadania Jace Cichoń Politechnia Wrocławsa, WPPT Wrocław 015 1 Wstęp 11 Oznaczenia [n] = {1,, n} [] = {X P ( : X = } (x = 1 j=0 (x j, (x = 1 (x + j Zadanie 1 j=0 Poaż za pomocą inducji

Bardziej szczegółowo

Colloquium 3, Grupa A

Colloquium 3, Grupa A Colloquium 3, Grupa A 1. Z zasobów obliczeniowych pewnego serwera orzysta dwóch użytowniów. Każdy z nich wysyła do serwera zawsze trzy programy naraz. Użytowni czea, aż serwer wyona obliczenia dotyczące

Bardziej szczegółowo

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery Reprezentacje grup puntowych związi pomiędzy h i n a jednoznacznie wyznaczają wymiary wszystich reprezentacji grup puntowych, a związi ortogonalności jednoznacznie wyznaczają ich charatery oznaczenia:

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Rozwiązania, seria 5.

Rozwiązania, seria 5. Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Rozwiązaniem jest zbiór (, ] (5, )

Rozwiązaniem jest zbiór (, ] (5, ) FUNKCJE WYMIERNE Definicja Miech L() i M() będą niezerowymi wielomianami i niech D { R : M( ) 0 } Funkcję (*) D F : D R określoną wzorem F( ) L( ) M( ) nazywamy funkcją wymierną Funkcja wymierna, to iloraz

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

3 k a 2k + 3 k b 2k = φ((a k ) k=1 ) + φ((b k) k=1 ). a 2k p 3 q (1 3 q ) 1 (a k ) k=1 p,

3 k a 2k + 3 k b 2k = φ((a k ) k=1 ) + φ((b k) k=1 ). a 2k p 3 q (1 3 q ) 1 (a k ) k=1 p, Zadanie 1. Sprawdzić, czy formuła φa ) ) = 3 a 2 zadaje funcjonał liniowy na l p dla p [1, ] i na c, jeśli ta, to czy zadaje funcjonał ciągły, i jeśli ta, policzyć normę. Dowód. Sprawdzam liniowość: φλa

Bardziej szczegółowo

METODY GENERACJI I SELEKCJI CECH GRAFU W ROZPOZNAWANIU ZDJĘĆ SATELITARNYCH *)

METODY GENERACJI I SELEKCJI CECH GRAFU W ROZPOZNAWANIU ZDJĘĆ SATELITARNYCH *) Wojciech CZECH METODY GENERACJI I SELEKCJI CECH GRAFU W ROZPOZNAWANIU ZDJĘĆ SATELITARNYCH *) STRESZCZENIE W pracy tej przedstawiona została nowa metoda rozpoznawania zdjęć satelitarnych i lotniczych w

Bardziej szczegółowo

A4: Filtry aktywne rzędu II i IV

A4: Filtry aktywne rzędu II i IV A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową

Bardziej szczegółowo

Praca domowa - seria 6

Praca domowa - seria 6 Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna Metody omputerowe i obliczeniowe Metoda Elementów Soczonych Element jednowymiarowy i jednoparametrowy : spryna Jest to najprostszy element: współrzdne loalne i globalne jego wzłów s taie same nie potrzeba

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław OŁOŃSI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy PLAN WYKŁADU Algorytm mrówowy OPTYMALIZACJA GLOBALNA Wyład 8 dr inż. Agniesza Bołtuć (ANT SYSTEM) Inspiracja: Zachowanie mrówe podczas poszuiwania żywności, Zachowanie to polega na tym, że jeśli do żywności

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

12 Stereometria Podstawy geometrii przestrzennej Graniastosłupy Wielościany

12 Stereometria Podstawy geometrii przestrzennej Graniastosłupy Wielościany 12 STEREOMETRI 1 12 Stereometria 12.1 Podstawy geometrii przestrzennej Prostopadłościan jest utworzony z dwóch sześcianów, tóre mają wspólną ścianę P QRT. (Rys. 8.9) Sorzystaj z rysunu w zadaniach 1, 2,

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e.

Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Filip Piękniewski Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika http://www.mat.umk.pl/ philip 17 grudnia 2009 Filip Piękniewski,

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny: Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA ZBIORY Z POWTÓRZENIAMI W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie. Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze X = { x,..., x n } - zbiór k,..., k n - krotności

Bardziej szczegółowo

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy

Bardziej szczegółowo

Koła rowerowe kreślą fraktale

Koła rowerowe kreślą fraktale 26 FOTON 114, Jesień 2011 Koła rowerowe reślą fratale Mare Berezowsi Politechnia Śląsa Od Redacji: Fratalom poświęcamy ostatnio dużo uwagi. W Fotonach 111 i 112 uazały się na ten temat artyuły Marcina

Bardziej szczegółowo

Metoda rozwiązywania układu równań liniowych z symetryczną, nieokreśloną macierzą współczynników ( 0 )

Metoda rozwiązywania układu równań liniowych z symetryczną, nieokreśloną macierzą współczynników ( 0 ) MATEMATYKA STOSOWANA 7, 2006 Izabella Czochralsa (Warszawa) Metoda rozwiązywania uładu równań liniowych z symetryczną, nieoreśloną macierzą współczynniów ( 0 ) Streszczenie. W pracy zaadaptowano opracowaną

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Ćwiczenie 4 - Badanie wpływu asymetrii obciążenia na pracę sieci Strona 1/13 Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Spis treści 1.Cel ćwiczenia...2 2.Wstęp...2 2.1.Wprowadzenie

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,

Bardziej szczegółowo

Zajęcia nr. 6: Równania i układy równań liniowych

Zajęcia nr. 6: Równania i układy równań liniowych Zajęcia nr. 6: Równania i układy równań liniowych 13 maja 2005 1 Podstawowe pojęcia. Definicja 1.1 (równanie liniowe). Równaniem liniowym będziemy nazwyać równanie postaci: ax = b, gdzie x oznacza niewiadomą,

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Wyszukiwanie binarne

Wyszukiwanie binarne Wyszukiwanie binarne Wyszukiwanie binarne to technika pozwalająca na przeszukanie jakiegoś posortowanego zbioru danych w czasie logarytmicznie zależnym od jego wielkości (co to dokładnie znaczy dowiecie

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

Macierze symetryczne i nasycone grupy permutacji

Macierze symetryczne i nasycone grupy permutacji Maria Donten 03.02.2009 Macierze symetryczne i nasycone grupy permutacji projekt w ramach laboratorium programowania w logice 1 Wstęp Główny cel projektu to napisanie programu, pomagającego wyznaczyć nasycone

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe

Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe Zadanie Zbadać czy wektor v mażna przedstawić jako kombinację liniową wektorów e i

Bardziej szczegółowo

Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26

Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26 Rozdział 4 Macierze szyfrujące Opiszemy system kryptograficzny oparty o rachunek macierzowy. W dalszym ciągu przypuszczamy, że dany jest 26 literowy alfabet, w którym utożsamiamy litery i liczby tak, jak

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski:

Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski: Przykład 2 odwrotność macierzy 4x4 Odwrócimy macierz o wymiarach 4x4, znajdującą się po lewej stronie kreski: Będziemy dążyli do tego, aby po lewej stronie kreski pojawiła się macierz jednostkowa. Na początek

Bardziej szczegółowo

opracował: Patryk Besler

opracował: Patryk Besler opracował: Patryk Besler Aby poprawnie uzupełnić szachownicę potrzebna nam będzie do tego funkcja Złącz teksty. Pamiętaj o zaznaczeniu odpowiedniej komórki Aby ją wybrać należy przejść do zakładki Formuły.

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

WPŁYW SZUMÓW KOLOROWYCH NA DZIAŁANIE FILTRU CZĄSTECZKOWEGO

WPŁYW SZUMÓW KOLOROWYCH NA DZIAŁANIE FILTRU CZĄSTECZKOWEGO ELEKTRYKA 2012 Zeszyt 3-4 (223-224) Ro LVIII Piotr KOZIERSKI Instytut Automatyi i Inżynierii Informatycznej, Politechnia Poznańsa Marcin LIS Instytut Eletrotechnii i Eletronii Przemysłowej, Politechnia

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Wersja wstępna 22 listopada 2017

Wersja wstępna 22 listopada 2017 Notati do wyładu Algebra liniowa (urs zaawansowany) Instytut Matematyi Uniwersytetu Jagiellońsiego zimowy 2017/2018 Sławomir Cyn e-mail: slawomir.cyn@uj.edu.pl ROZDZIAŁ I Podstawowe strutury algebraiczne

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych i ich charakterystyki

Wybrane rozkłady zmiennych losowych i ich charakterystyki Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:

Bardziej szczegółowo

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2 Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =

Bardziej szczegółowo

Liczby pierwsze. Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku.

Liczby pierwsze. Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku. Liczby pierwsze Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku. Liczbą pierwszą nazywany każdą taką liczbę naturalną, która posiada dokładnie dwa dzielniki naturalne, czyli jest podzielna

Bardziej szczegółowo

TWIERDZENIE TALESA W PRZESTRZENI

TWIERDZENIE TALESA W PRZESTRZENI TWIERDZENIE TALESA W PRZESTRZENI PRACA BADAWCZA autor Agnieszka Duszeńko Uniwersytet Wrocławski Wydział Matematyki i Informatyki 2005 Na płaszczyźnie: Najpopularniejsza, powszechnie znana wersja twierdzenia

Bardziej szczegółowo