Klasyczne zdania kategoryczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Klasyczne zdania kategoryczne"

Transkrypt

1 Klasyczne zdania kategoryczne Elementy logiki i metodologii nauk spotkanie III Bartosz Gostkowski Poznań, 20 X 09

2 Plan wykładu: Podział zdań z uwagi na funkcję logiczną operatora jest Zdania kategoryczne Kwadrat logiczny Konwersja, Obwersja, Kontrapozycja

3 PODZIAŁ ZDAŃ Z UWAGI NA FUNKCJĘ LOGICZNĄ OPERATORA JEST Słówko jest funkcjonuje w zdaniach na trzy różne sposoby: (i) ZDANIA EGZYSTENCJALNE: stwierdza istnienie jakiegoś obiektu; Oto jestem! Nie ma prostego sposobu rozwiązania Konfliktu Bliskowschodniego.

4 PODZIAŁ ZDAŃ Z UWAGI NA FUNKCJĘ LOGICZNĄ OPERATORA JEST Słówko jest funkcjonuje w zdaniach na trzy różne sposoby: (i) ZDANIA EGZYSTENCJALNE: stwierdza istnienie jakiegoś obiektu; Oto jestem! Nie ma prostego sposobu rozwiązania Konfliktu Bliskowschodniego. (ii) ZDANIA ATOMICZNE: orzeka przynależność elementu do kategorii; Leokadia jest słonicą. Didier Drogba jest wspaniałym napastnikiem.

5 PODZIAŁ ZDAŃ Z UWAGI NA FUNKCJĘ LOGICZNĄ OPERATORA JEST Słówko jest funkcjonuje w zdaniach na trzy różne sposoby: (i) ZDANIA EGZYSTENCJALNE: stwierdza istnienie jakiegoś obiektu; Oto jestem! Nie ma prostego sposobu rozwiązania Konfliktu Bliskowschodniego. (ii) ZDANIA ATOMICZNE: orzeka przynależność elementu do kategorii; Leokadia jest słonicą. Didier Drogba jest wspaniałym napastnikiem. (iii) ZDANIA KATEGORYCZNE: określa rodzaj relacji między klasami przedmiotów; Każdy superbohater jest na czarnej liście jakiegoś superłotra. Niektóre wieloryby są samotnikami. Żaden jedwabnik nie jest ssakiem. Niektóre zabawki nie są niebezpieczne dla dzieci.

6 PODZIAŁ ZDAŃ Z UWAGI NA FUNKCJĘ LOGICZNĄ OPERATORA JEST Cechą wyróżniającą zdań kategorycznych jest ich struktura. Każde zdanie kategoryczne można przekształcić do postaci pasującej do schematu: [K] S jest P Gdzie: (i) za S i P podstawiamy nazwy (niepuste!) (ii) zaś w miejscu [K] pojawia się któreś z następujących słówek: Każdy [każda/ każde] Niektóry [niektóra/ niektóre] Żaden [żadna/ żadne/ żadni/ żadne]

7 Plan wykładu: Podział zdań z uwagi na funkcję logiczną operatora jest Zdania kategoryczne Kwadrat logiczny Konwersja, Obwersja, Kontrapozycja

8 ZDANIA KATEGORYCZNE Podział zdań kategorycznych: z uwagi na kryterium jakości, wyróżniamy twierdzące lub przeczące z uwagi na kryterium ilości, wyróżniamy ogólne lub szczegółowe zdania kategoryczne.

9 ZDANIA KATEGORYCZNE Podział zdań kategorycznych: z uwagi na kryterium jakości, wyróżniamy twierdzące lub przeczące z uwagi na kryterium ilości, wyróżniamy ogólne lub szczegółowe zdania kategoryczne. ogólno-twierdzące AFFIRMO - twierdzę OTRZYMUJEMY ZATEM ZDANIA ogólno-przeczące szczegółowotwierdzące szczegółowoprzeczące NEGO- przeczę

10 ZDANIA KATEGORYCZNE ogólno-twierdzące ogólno-przeczące szczegółowo- twierdzące szczegółowoprzeczące

11 ZDANIA KATEGORYCZNE ogólno-twierdzące Każde S jest P. Niektóre S są P. ogólno-przeczące Żadne S nie jest P. szczegółowo- twierdzące szczegółowoprzeczące Niektóre S nie są P

12 ZDANIA KATEGORYCZNE ogólno-twierdzące Każde S jest P. Nie istnieje takie S, które nie jest P. szczegółowo- twierdzące Niektóre S są P. Istnieje S, które jest P. ogólno-przeczące Żadne S nie jest P. Nie istnieje takie S, które jest P. szczegółowoprzeczące Niektóre S nie są P Istnieje takie S, które nie jest P.

13 Plan wykładu: Podział zdań z uwagi na funkcję logiczną operatora jest Zdania kategoryczne Kwadrat logiczny Konwersja, Obwersja, Kontrapozycja

14 KWADRAT LOGICZNY WYKLUCZANIE DOPEŁNIANIE

15 KWADRAT LOGICZNY p:= q:= Edward jest głodny. Edward jest syty. Nie może być tak, że v(p)=1 i v(q)=1 (oba zdania są prawdziwe) Choć może być tak, że v(p)=0 i v(q)=0 (oba zdania są fałszywe) WYKLUCZANIE Zdania p i q wykluczają się wtw p i q nie mogą być zarazem prawdziwe DOPEŁNIANIE

16 KWADRAT LOGICZNY p:= q:= Edward jest głodny. Edward jest syty. Nie może być tak, że v(p)=1 i v(q)=1 (oba zdania są prawdziwe) Choć może być tak, że v(p)=0 i v(q)=0 (oba zdania są fałszywe) WYKLUCZANIE Zdania p i q wykluczają się wtw p i q nie mogą być zarazem prawdziwe p:= q:= Część studentów poszła na piwo. Część studentów nie poszła na piwo. Nie może być tak, że v(p)=0 i v(q)=0 (oba zdania są fałszywe) Choć może być tak, że v(p)=1 i v(q)=1 (oba zdania są prawdziwe) DOPEŁNIANIE Zdania p i q dopełniają się wtw p i q nie mogą być zarazem fałszywe

17 KWADRAT LOGICZNY; SPRZECZNOŚĆ WYKLUCZANIE Zdania p i q wykluczają się wtw p i q nie mogą być zarazem prawdziwe DOPEŁNIANIE Zdania p i q dopełniają się wtw p i q nie mogą być zarazem fałszywe SPRZECZNOŚĆ:= WYKLUCZANIE I DOPEŁNIANIE

18 KWADRAT LOGICZNY; SPRZECZNOŚĆ WYKLUCZANIE Zdania p i q wykluczają się wtw p i q nie mogą być zarazem prawdziwe DOPEŁNIANIE Zdania p i q dopełniają się wtw p i q nie mogą być zarazem fałszywe Niech: S:= słoń P:= ssak Wtedy: := Każdy słoń jest ssakiem. := Niektóre słonie nie są ssakami. To para zdań sprzecznych SPRZECZNOŚĆ:= WYKLUCZANIE I DOPEŁNIANIE

19 KWADRAT LOGICZNY; SPRZECZNOŚĆ WYKLUCZANIE Zdania p i q wykluczają się wtw p i q nie mogą być zarazem prawdziwe DOPEŁNIANIE Zdania p i q dopełniają się wtw p i q nie mogą być zarazem fałszywe Niech: S:= filozof P:= gad Wtedy: := Żaden filozof nie jest gadem. := Niektórzy filozofowie są gadami. To para zdań sprzecznych SPRZECZNOŚĆ:= WYKLUCZANIE I DOPEŁNIANIE

20 KWADRAT LOGICZNY; PRZECIWIEŃSTWO WYKLUCZANIE Zdania p i q wykluczają się wtw p i q nie mogą być zarazem prawdziwe DOPEŁNIANIE Zdania p i q dopełniają się wtw p i q nie mogą być zarazem fałszywe PRZECIWIEŃSTWO:= WYKLUCZANIE I BRAK DOPEŁNIANIA

21 KWADRAT LOGICZNY; PRZECIWIEŃSTWO WYKLUCZANIE Zdania p i q wykluczają się wtw p i q nie mogą być zarazem prawdziwe DOPEŁNIANIE Zdania p i q dopełniają się wtw p i q nie mogą być zarazem fałszywe Niech: S:= pastuszek P:= szczęśliwy Wtedy: := Każdy pastuszek jest szczęśliwy. := Żaden pastuszek nie jest szczęśliwy. To para zdań przeciwnych. PRZECIWIEŃSTWO:= WYKLUCZANIE I BRAK DOPEŁNIANIA

22 KWADRAT LOGICZNY; PRZECIWIEŃSTWO WYKLUCZANIE Zdania p i q wykluczają się wtw p i q nie mogą być zarazem prawdziwe DOPEŁNIANIE Zdania p i q dopełniają się wtw p i q nie mogą być zarazem fałszywe PODPRZECIWIEŃSTWO:= BRAK WYKLUCZANIA I DOPEŁNIANIE

23 KWADRAT LOGICZNY; PRZECIWIEŃSTWO WYKLUCZANIE Zdania p i q wykluczają się wtw p i q nie mogą być zarazem prawdziwe DOPEŁNIANIE Zdania p i q dopełniają się wtw p i q nie mogą być zarazem fałszywe Niech: S:= kosmonauta P:= alkoholik Wtedy: := Niektórzy kosmonauci są alkoholikami. := Niektórzy kosmonauci nie są alkoholikami. To para zdań podprzeciwnych. PODPRZECIWIEŃSTWO:= BRAK WYKLUCZANIA I DOPEŁNIANIE

24 KWADRAT LOGICZNY; PODPORZĄDKOWANIE WYNIKANIE Zdanie q wynika ze zdania p wtw nie może być tak, że v(p)=1, zaś v(q)=0 (ze zdania prawdziwego nie może wynikać zdanie fałszywe) PODPORZĄDKOWANIE := WYNIKANIE

25 KWADRAT LOGICZNY; PODPORZĄDKOWANIE WYNIKANIE Zdanie q wynika ze zdania p wtw nie może być tak, że v(p)=1, zaś v(q)=0 (ze zdania prawdziwego nie może wynikać zdanie fałszywe) Niech: S:= superłotr P:= nieszczęśliwy Wtedy: := Każdy superłotr jest nieszczęśliwy. := Niektórzy superłotrowie są nieszczęśliwi. Zdanie jest podporządkowane zdananiu. wynika z PODPORZĄDKOWANIE := WYNIKANIE

26 KWADRAT LOGICZNY; PODPORZĄDKOWANIE WYNIKANIE Zdanie q wynika ze zdania p wtw nie może być tak, że v(p)=1, zaś v(q)=0 (ze zdania prawdziwego nie może wynikać zdanie fałszywe) Niech: S:= bokser P:= laureat Pokojowej Nagrody Nobla Wtedy: := Żaden bokser nie jest laureatem Pokojowej Nagrody Nobla. := Niektórzy bokserzy nie są laureatami Pokojowej Nagrody Nobla. Zdanie jest podporządkowane zdananiu. wynika z PODPORZĄDKOWANIE := WYNIKANIE

27 PRZECIWIEŃSTWO PODPORZĄDKOWANIE PODPORZĄDKOWANIE PODPRZECIWIEŃSTWO

28 Plan wykładu: Podział zdań z uwagi na funkcję logiczną operatora jest Zdania kategoryczne Kwadrat logiczny Konwersja, Obwersja, Kontrapozycja

29 KONWERSJA, OBWERSJA, KONTRAPOZYCJA Niech x oznacza któryś z operatorów zdań kategorialnych (a, i, e, o) Konwersją zdania kategorycznego SxP jest zdanie kategoryczne PxS takie, że: (i) w obu zdaniach, te same nazwy są podstawiane za S i P; (ii) jakość zostaje zachowana; (zdanie twierdzące konwertuje się na zdanie twierdzące, a przeczące wyłącznie na zdanie przeczące) (iii) prawdziwość zostaje zachowana; (tj. jeśli konwertowane zdanie było prawdziwe, to zdanie powstałe po konwersji również jest prawdziwe)

30 KONWERSJA, OBWERSJA, KONTRAPOZYCJA KONWERSJA Każdy strażak jest bohaterem. PiS Niektórzy bohaterowie są strażakami. Żaden słoń nie jest brzydki PeS Żaden brzydki (obiekt) nie jest słoniem.. Niektórzy filozofowie są surferami PiS Niektórzy surferzy są filozofami Niektórzy drwale nie są czuli.

31 KONWERSJA, OBWERSJA, KONTRAPOZYCJA Niech x oznacza któryś z operatorów zdań kategorialnych (a, i, e, o) Obwersją zdania kategorycznego SxP jest zdanie kategoryczne SxP takie, że: (i) w obu zdaniach, ta sama nazwa jest podstawiana za S; (ii) P to nazwa dopełnienia zakresu nazwy P (jeśli P:= słoń, to P := nie-słoń, tj. do zakresu P należy każdy obiekt uniwersum, który nie jest słoniem) (iii) ilość zdania zostaje zachowana; (zdanie ogólne konwertuje się na zdanie ogólne, a szczegółowe wyłącznie na zdanie szczegółowe) (iv) prawdziwość zostaje zachowana; (tj. jeśli konwertowane zdanie było prawdziwe, to zdanie powstałe po konwersji również jest prawdziwe)

32 KONWERSJA, OBWERSJA, KONTRAPOZYCJA OBWERSJA Każdy strażak jest bohaterem. Żaden strażak nie jest nie-bohaterem Żaden słoń nie jest brzydki Każdy słoń jest piękny (nie-brzydki). Niektórzy filozofowie są surferami Niektórzy filozofowie nie są nie-surferami Niektórzy drwale nie są czuli Niektórzy drwale są nie-czuli.

33 KONWERSJA, OBWERSJA, KONTRAPOZYCJA Niech x oznacza któryś z operatorów zdań kategorialnych (a, i, e, o) Kontrapozycją zdania kategorycznego SxP jest zdanie P xs takie, że: (i) S to nazwa dopełnienia zakresu nazwy S a P to nazwa dopełnienia zakresu P (jeśli P:= słoń, to P := nie-słoń, tj. do zakresu P należy każdy obiekt uniwersum, który nie jest słoniem) (iii) jakość zdania zostaje zachowana; (zdanie twierdzące konwertuje się na zdanie twierdzące, a przeczące wyłącznie na zdanie przeczące) (iv) prawdziwość zostaje zachowana; (tj. jeśli konwertowane zdanie było prawdziwe, to zdanie powstałe po konwersji również jest prawdziwe)

34 KONWERSJA, OBWERSJA, KONTRAPOZYCJA KONTRAPOZYCJA Każdy strażak jest bohaterem. P as Każdy nie-bohater jest nie-strażakiem Żaden słoń nie jest brzydki P os Niektóre ładne (obiekty) nie są nie-słoniami. Niektórzy filozofowie są surferami Niektórzy drwale nie są czuli P os Niektórzy nie-czuli nie są nie-drawalami.

35 KONWERSJA, OBWERSJA, KONTRAPOZYCJA KONWERSJA OBWERSJA KONTRAPOZYCJA PiS P as PeS P os PiS P os

Wprowadzenie do logiki Zdania, cz. II Elementy sylogistyki

Wprowadzenie do logiki Zdania, cz. II Elementy sylogistyki Wprowadzenie do logiki Zdania, cz. II Elementy sylogistyki Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Co dzisiejsza historia mieć będzie wspólnego z Arystotelesem? 2 Plan gry:

Bardziej szczegółowo

Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 8. klasyczny rachunek kwantyfikatorów klasyczny rachunek nazw

Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 8. klasyczny rachunek kwantyfikatorów klasyczny rachunek nazw WYKŁAD 8 klasyczny rachunek kwantyfikatorów klasyczny rachunek nazw 1 lukowski@filozof.uni.lodz.pl Katedra Logiki i Metodologii Nauk Instytut Filozofii Uniwersytet Łódzki ul. Kopcińskiego 16/18, I piętro,

Bardziej szczegółowo

Kultura logiczna Elementy sylogistyki

Kultura logiczna Elementy sylogistyki Kultura logiczna Elementy sylogistyki Bartosz Gostkowski bgostkowski@gmail.com Kraków 15 III 2010 Plan wykładu: Podział wnioskowań Sylogizmy Poprawność sylogizmów i niezawodność trybów PODZIAŁ WNIOSKOWAŃ

Bardziej szczegółowo

Kultura logiczna Klasyczny rachunek zdań 1/2

Kultura logiczna Klasyczny rachunek zdań 1/2 Kultura logiczna Klasyczny rachunek zdań /2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 22 III 2 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe

Bardziej szczegółowo

Logika dla archeologów Część 5: Zaprzeczenie i negacja

Logika dla archeologów Część 5: Zaprzeczenie i negacja Logika dla archeologów Część 5: Zaprzeczenie i negacja Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zaprzeczenie 2 Negacja 3 Negacja w logice Sprzeczne grupy

Bardziej szczegółowo

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu ➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje

Bardziej szczegółowo

Wstęp do logiki. Pytania i odpowiedzi

Wstęp do logiki. Pytania i odpowiedzi Wstęp do logiki Pytania i odpowiedzi 1 Pojęcie pytania i odpowiedzi DEF. 1. Pytanie to wyrażenie, które wskazuje na pewien brak w wiedzy subiektywnej lub obiektywnej i wskazuje na dążenie do uzupełnienia

Bardziej szczegółowo

Rozdział VII. Znaczenie logiki dla prawa i pracy prawnika Zadania i odpowiedzi 20

Rozdział VII. Znaczenie logiki dla prawa i pracy prawnika Zadania i odpowiedzi 20 Przedmowa Wykaz skrótów XIII XV Część A. Wprowadzenie Rozdział I. Rys historyczny 1 1. Początki logiki jako nauki 1 2. Średniowiecze 2 3. Czasy nowożytne i współczesne 4 Rozdział II. Podstawowe prawa myślenia

Bardziej szczegółowo

Logos (gr. Słowo, myśl) Nauka o poprawności rozumowań

Logos (gr. Słowo, myśl) Nauka o poprawności rozumowań Logos (gr. Słowo, myśl) Nauka o poprawności rozumowań Semiotyka Semantyka Syntaktyka Logika formalna Ogólna metodologia nauk Wprowadził logikę do kanonu nauk Logika klasyczna opierająca się na dwóch wartościach:

Bardziej szczegółowo

Logika SYLOGISTYKA. Robert Trypuz. 27 listopada Katedra Logiki KUL. Robert Trypuz (Katedra Logiki) SYLOGISTYKA 27 listopada / 40

Logika SYLOGISTYKA. Robert Trypuz. 27 listopada Katedra Logiki KUL. Robert Trypuz (Katedra Logiki) SYLOGISTYKA 27 listopada / 40 Logika SYLOGISTYKA Robert Trypuz Katedra Logiki KUL 27 listopada 2013 Robert Trypuz (Katedra Logiki) SYLOGISTYKA 27 listopada 2013 1 / 40 Plan wykładu 1 Wprowadzenie Arystoteles w sztuce Arystotelesa życiorys

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać

Bardziej szczegółowo

Konspekt do wykładu Logika I

Konspekt do wykładu Logika I Andrzej Pietruszczak Konspekt do wykładu Logika I (z dnia 06.01.2006) Przypomnienie z poprzedniego wykładu Na początek przypomnijmy podstawowe pojęcia z poprzedniego wykładu, które wykorzystamy również

Bardziej szczegółowo

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0 ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

WSTĘP ZAGADNIENIA WSTĘPNE

WSTĘP ZAGADNIENIA WSTĘPNE 27.09.2012 WSTĘP Logos (gr.) słowo, myśl ZAGADNIENIA WSTĘPNE Logika bada proces myślenia; jest to nauka o formach poprawnego myślenia a zarazem o języku (nie mylić z teorią komunikacji czy językoznawstwem).

Bardziej szczegółowo

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania Logika w zastosowaniach kognitywistycznych Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania (notatki do wykładów) Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl

Bardziej szczegółowo

Czyli ABC logiki predykatów

Czyli ABC logiki predykatów Czyli ABC logiki predykatów PROBLEM POLICJI PRL ma nowego gangstera, Udało się go złapać, Złożył następujące zeznanie: Popełniłem wszystkie przestępstwa z użyciem dwustronnego kilofa. W ostatnim napadzie

Bardziej szczegółowo

Filozofia, Historia, Wykład V - Filozofia Arystotelesa

Filozofia, Historia, Wykład V - Filozofia Arystotelesa Filozofia, Historia, Wykład V - Filozofia Arystotelesa 2010-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Podział nauk Arystoteles podzielił wszystkie dyscypliny wiedzy na trzy grupy:

Bardziej szczegółowo

Logika dla socjologów Część 2: Przedmiot logiki

Logika dla socjologów Część 2: Przedmiot logiki Logika dla socjologów Część 2: Przedmiot logiki Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Działy logiki 2 Własności semantyczne i syntaktyczne 3 Błędy logiczne

Bardziej szczegółowo

Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 9. klasyczny rachunek nazw relacje

Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 9. klasyczny rachunek nazw relacje WYKŁAD 9 klasyczny rachunek nazw relacje 1 lukowski@filozof.uni.lodz.pl Katedra Logiki i Metodologii Nauk Instytut Filozofii Uniwersytet Łódzki ul. Kopcińskiego 16/18, I piętro, pok.13 tel. 635-61-34 dyŝur:

Bardziej szczegółowo

Test Giętkości Dedukcyjnej (TGD) raport z konstrukcji narzędzia. Raport Badawczy numer: 3(3)/2016; opublikowany: 12 czerwca 2016.

Test Giętkości Dedukcyjnej (TGD) raport z konstrukcji narzędzia. Raport Badawczy numer: 3(3)/2016; opublikowany: 12 czerwca 2016. Test Giętkości Dedukcyjnej (TGD) raport z konstrukcji narzędzia Raport Badawczy numer: 3(3)/2016; opublikowany: 12 czerwca 2016. Natalia Żyluk Badanie jest częścią projektu Modelowanie rozumowań abdukcyjnych

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Paradoksy log o i g czne czn i inne 4 marca 2010

Paradoksy log o i g czne czn i inne 4 marca 2010 Paradoksy logiczne i inne 4 marca 2010 Paradoks Twierdzenie niezgodne z powszechnie przyjętym mniemaniem, rozumowanie, którego elementy są pozornie oczywiste, ale wskutek zawartego w nim błędu logicznego

Bardziej szczegółowo

Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań

Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań 1 Wprowadzenie Na tym wykładzie przyjmuję terminologię i

Bardziej szczegółowo

Filozofia przyrody, Wykład V - Filozofia Arystotelesa

Filozofia przyrody, Wykład V - Filozofia Arystotelesa Filozofia przyrody, Wykład V - Filozofia Arystotelesa 2011-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Różnice w metodzie uprawiania nauki Krytyka platońskiej teorii idei Podział

Bardziej szczegółowo

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości

Bardziej szczegółowo

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące

Bardziej szczegółowo

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 15 zaliczenie z oceną

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 15 zaliczenie z oceną Wydział: Prawo i Administracja Nazwa kierunku kształcenia: Prawo Rodzaj przedmiotu: podstawowy Opiekun: prof. dr hab. Kazimierz Pawłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb

Bardziej szczegółowo

1. Sylogistyka Arystotelesa

1. Sylogistyka Arystotelesa 1. Sylogistyka Arystotelesa Arystoteles ze Stagiry, syn Nikomacha, lekarza z dziada pradziada, działajacego przy dworze króla Macedonii, ur. 384 p.n.e. w Stagirze, zm. 322 p.n.e. w Chalcydzie. Arystoteles

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/013 WydziałPrawa, Administracji i Stosunków Miedzynarodowych Kierunek

Bardziej szczegółowo

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa. Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna

Bardziej szczegółowo

RACHUNEK ZBIORÓW 2 A B = B A

RACHUNEK ZBIORÓW 2 A B = B A RCHUNEK ZIORÓW 2 DZIŁNI N ZIORCH Sum (uni ) zbiorów i nazywamy zbiór, którego elementami s wszystkie elementy nale ce do zbioru lub do zbioru. = {x : x x } ZDNIE = = = Wyznacz sumy:,, C, D, E, D E dla

Bardziej szczegółowo

9. INNE ZASTOSOWANIA METODY ZERO-JEDYNKOWEJ

9. INNE ZASTOSOWANIA METODY ZERO-JEDYNKOWEJ 9. INNE ZASTOSOWANIA METODY ZERO-JEDYNKOWEJ W rozdziale tym poznamy kolejne pojęcia logiczne, jak również ich operacjonalizacje za pomocą matryc logicznych. Wskażemy metodę określania, czy wnioskowanie

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Prawa rachunku zbiorów to takie wyra enia j zyka tego rachunku, które staj si zdaniami prawdziwymi przy ka dym podstawieniu nazw zbiorów za zmienne.

Prawa rachunku zbiorów to takie wyra enia j zyka tego rachunku, które staj si zdaniami prawdziwymi przy ka dym podstawieniu nazw zbiorów za zmienne. Prawa rachunku zbiorów to takie wyra enia j zyka tego rachunku, które staj si zdaniami prawdziwymi przy ka dym podstawieniu nazw zbiorów za zmienne. PRAWA RACHUNKU ZBIORÓW LP PRAWO NAZWA 1 A B = B A A

Bardziej szczegółowo

System hilbertowski. Plan wykładu. hilbertowskiego. Definicja systemu hilbertowskiego. Podstawowe twierdzenie systemu. Podstawowe twierdzenie systemu

System hilbertowski. Plan wykładu. hilbertowskiego. Definicja systemu hilbertowskiego. Podstawowe twierdzenie systemu. Podstawowe twierdzenie systemu Plan wykładu System hilbertowski Wykład 2 Definicja Definicja systemu Reguły y pochodne Twierdzenia dla innych operatorów Porównanie z systemem gentzenowskim Definicja systemu System H jest systemem dowodzenia

Bardziej szczegółowo

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów 1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów Logika matematyczna, dział matematyki zajmujący się badaniem własności wnioskowania (dowodzenia)

Bardziej szczegółowo

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)];

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)]; Logika 1. Czy następujące sformułowania są zdaniami: (a) Wszystkie koty w Polsce są czarne. (b) Jak to udowodnić? (c) x + y = 7. (d) Jeśli x 2 = y 2, to x = y. (e) Jeśli x = y, to x 2 = y 2. (f) 2 n +

Bardziej szczegółowo

Darmowy artykuł, opublikowany na: www.fluent.com.pl

Darmowy artykuł, opublikowany na: www.fluent.com.pl Copyright for Polish edition by Bartosz Goździeniak Data: 4.06.2013 Tytuł: Pytanie o czynność wykonywaną w czasie teraźniejszym Autor: Bartosz Goździeniak e-mail: bgozdzieniak@gmail.com Darmowy artykuł,

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem. Zbiory Pojęcie zbioru jest w matematyce pojęciem pierwotnym, którego nie definiujemy. Gdy a jest elementem należacym do zbioru A to piszemy a A. Stosujemy również oznaczenie a / A jeżeli (a A). Będziemy

Bardziej szczegółowo

4. Zagadnienie prawdy. Andrzej Wiśniewski Wstęp do filozofii Materiały do wykładu 2015/2016

4. Zagadnienie prawdy. Andrzej Wiśniewski Wstęp do filozofii Materiały do wykładu 2015/2016 4. Zagadnienie prawdy Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu 2015/2016 Metafizyczne i epistemologiczne pojęcia prawdziwości (1) Euzebiusz jest prawdziwym

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan na pytanie o odniesienie przedmiotowe zdań odpowiedź

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

PODZIAŁ LOGICZNY. Zbiór Z. Zbiór A. Zbiór B

PODZIAŁ LOGICZNY. Zbiór Z. Zbiór A. Zbiór B Fragment książki Jarosława Strzeleckiego Logika z wyobraźnią. Wszelki uwagi merytoryczne i stylistyczne proszę kierować pod adres jstrzelecki@uwm.edu.pl PODZIAŁ LOGICZNY I. DEFINICJA: Podziałem logicznym

Bardziej szczegółowo

Logika Matematyczna. Zadania Egzaminacyjne, 2007

Logika Matematyczna. Zadania Egzaminacyjne, 2007 Logika Matematyczna Zadania Egzaminacyjne, 2007 I Rok Językoznawstwa i Informacji Naukowej UAM Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl Podajemy rozwiązania zadań egzaminacyjnych.

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki

Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki 0 1 Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki 2. W następujących dwóch prawach wyróżnić wyrażenia specyficznie matematyczne i wyrażenia z zakresu logiki (do

Bardziej szczegółowo

Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji

Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zbiory 2 Pary uporządkowane 3 Relacje Zbiory dystrybutywne

Bardziej szczegółowo

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach

Bardziej szczegółowo

http://www-users.mat.umk.pl/~pjedrzej/wstep.html 1 Opis przedmiotu Celem przedmiotu jest wykształcenie u studentów podstaw języka matematycznego, wypracowanie podstawowych umiejętności przeprowadzania

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Rachunek logiczny. 1. Język rachunku logicznego.

Rachunek logiczny. 1. Język rachunku logicznego. Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były

Bardziej szczegółowo

Matematyka dla biologów skrót wykładu 1.

Matematyka dla biologów skrót wykładu 1. Matematyka dla biologów skrót wykładu 1. Dariusz Wrzosek Instytut Matematyki Stosowanej i Mechaniki, Wydział Matematyki, Informatyki i Mechaniki, Uniwersytet Warszawski, Banacha 2, 02-097 Warszawa pokój

Bardziej szczegółowo

Znak, język, kategorie syntaktyczne

Znak, język, kategorie syntaktyczne Składnia ustalone reguły jakiegoś języka dotyczące sposobu wiązania wyrazów w wyrażenia złożone. Językoznawstwo zajmuje się m.in. opisem składni poszczególnych języków, natomiast przedmiotem syntaktyki

Bardziej szczegółowo

Wykład 4 Logika dla prawników. Nazwy, Relacje między zakresami nazw, Podział logiczny, Definicje

Wykład 4 Logika dla prawników. Nazwy, Relacje między zakresami nazw, Podział logiczny, Definicje Wykład 4 Logika dla prawników Nazwy, Relacje między zakresami nazw, Podział logiczny, Definicje Nazwy Nazwą jest taka częśd zdania, która w zdaniu może pełnid funkcję podmiotu lub orzecznika. Nazwami mogą

Bardziej szczegółowo

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Istnieje wiele systemów aksjomatycznych

Bardziej szczegółowo

Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne

Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne Logika i teoria mnogości Wykład 14 1 Sformalizowane teorie matematyczne W początkowym okresie rozwoju teoria mnogości budowana była w oparciu na intuicyjnym pojęciu zbioru. Operowano swobodnie pojęciem

Bardziej szczegółowo

Semiotyka logiczna. Jerzy Pogonowski. Dodatek 4. Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl

Semiotyka logiczna. Jerzy Pogonowski. Dodatek 4. Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semiotyka logiczna Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Dodatek 4 Jerzy Pogonowski (MEG) Semiotyka logiczna Dodatek 4 1 / 17 Wprowadzenie Plan na dziś Plan

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań

Andrzej Wiśniewski Logika II. Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań 1 Wprowadzenie Podobnie jak w przypadku

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest

Bardziej szczegółowo

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe: LOGIKA MATEMATYCZNA Poziom podstawowy Zadanie ( pkt.) Która koniunkcja jest prawdziwa: a) Liczba 6 jest niewymierna i 6 jest liczbą dodatnią. b) Liczba 0 jest wymierna i 0 jest najmniejszą liczbą całkowitą.

Bardziej szczegółowo

Matematyka ETId Elementy logiki

Matematyka ETId Elementy logiki Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,

Bardziej szczegółowo

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH 5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.

Bardziej szczegółowo

Logika. Lista 1 Klasyczny rachunek zdań

Logika. Lista 1 Klasyczny rachunek zdań Lista 1 Klasyczny rachunek zdań 1. Zapisz schemat logiczny następujących zdao: a) Jeśli nie będę próbował, to nie uda mi się zaliczyd zajęd z logiki. b) Nie jest prawdą, że jeśli będę próbował, to uda

Bardziej szczegółowo

Liczba godzin Punkty ECTS Sposób zaliczenia. konwersatoria 30 zaliczenie z oceną

Liczba godzin Punkty ECTS Sposób zaliczenia. konwersatoria 30 zaliczenie z oceną Wydział: Prawo i Administracja Nazwa kierunku kształcenia: Administracja Rodzaj przedmiotu: podstawowy Opiekun: prof. dr hab. Kazimierz Pawłowski Poziom studiów (I lub II stopnia): I stopnia Tryb studiów:

Bardziej szczegółowo

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do testu z filozofii jest zaliczenie testu z logiki i zaliczenie

Bardziej szczegółowo

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych

Bardziej szczegółowo

Podstawy logiki praktycznej

Podstawy logiki praktycznej Podstawy logiki praktycznej Wykład 2: Język i części języka Dr Maciej Pichlak Uniwersytet Wrocławski Katedra Teorii i Filozofii Prawa maciej.pichlak@uwr.edu.pl Semiotyka Nauka o znakach język jako system

Bardziej szczegółowo

Wstęp do matematyki Piotr Jędrzejewicz UMK Toruń 2014

Wstęp do matematyki Piotr Jędrzejewicz UMK Toruń 2014 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wstęp do matematyki

Bardziej szczegółowo

1. Wprowadzenie do rachunku zbiorów

1. Wprowadzenie do rachunku zbiorów 1 1. Wprowadzenie do rachunku zbiorów 2 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach w sensie dystrybutywnym; rachunek zbiorów jest fragmentem teorii mnogości. Pojęcia

Bardziej szczegółowo

Ćwiczenia Becka. Tadeusz Widła Dorota Zienkiewicz. zadania testy pytania egzaminacyjne. Wydawnictwo C.H.Beck. 2. wydanie. Logika

Ćwiczenia Becka. Tadeusz Widła Dorota Zienkiewicz. zadania testy pytania egzaminacyjne. Wydawnictwo C.H.Beck. 2. wydanie. Logika Ćwiczenia Becka Tadeusz Widła Dorota Zienkiewicz Logika zadania testy pytania egzaminacyjne 2. wydanie Wydawnictwo C.H.Beck Ćwiczenia Becka Logika W sprzedaży: E. Nieznański LOGIKA Podręczniki Prawnicze

Bardziej szczegółowo

Podstawy logiki i teorii zbiorów Ćwiczenia

Podstawy logiki i teorii zbiorów Ćwiczenia Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.

Bardziej szczegółowo

Wykład nr 3. Temat: Wskaźniki i referencje. Edward Morgan Forster

Wykład nr 3. Temat: Wskaźniki i referencje. Edward Morgan Forster Wykład nr 3 Temat: Wskaźniki i referencje. Cytaty: Mylić się jest rzeczą ludzką, ale żeby coś naprawdę spaprać potrzeba komputera. Edward Morgan Forster Gdyby murarze budowali domy tak, jak programiści

Bardziej szczegółowo

Test Umiejętności Rozumowania Dedukcyjnego (TRD) raport z konstrukcji narzędzia. Raport Badawczy. Katarzyna Paluszkiewicz

Test Umiejętności Rozumowania Dedukcyjnego (TRD) raport z konstrukcji narzędzia. Raport Badawczy. Katarzyna Paluszkiewicz Test Umiejętności Rozumowania Dedukcyjnego (TRD) raport z konstrukcji narzędzia Raport Badawczy numer: 6(6)/2016; opublikowany: 2 grudnia 2016. Katarzyna Paluszkiewicz Badanie jest częścią projektu Modelowanie

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 15. Trójwartościowa logika zdań Łukasiewicza 1 Wprowadzenie W logice trójwartościowej, obok tradycyjnych wartości logicznych,

Bardziej szczegółowo

1. Wprowadzenie do języka PHP

1. Wprowadzenie do języka PHP 1. Wprowadzenie do języka PHP Język PHP jest generalnie w swojej składni podobny do języka C, chociaż występuje tu szereg różnic. 1.1. Zmienne W PHP nazwy zmiennych poprzedzamy znakiem dolara ($). Nie

Bardziej szczegółowo

Wstęp do matematyki listy zadań

Wstęp do matematyki listy zadań Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wstęp do matematyki

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 15 stycznia 2011 Michał Lipnicki () Logika 15 stycznia 2011 1 / 37 Wstęp Materiały na dzisiejsze zajęcia zostały opracowane na podstawie pomocy naukowych

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Logika i teoria mnogości Ćwiczenia

Logika i teoria mnogości Ćwiczenia Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Algebra zbiorów 3 3 Różnica symetryczna 4 4 Iloczyn kartezjański. Kwantyfikatory. 5 5 Kwantyfikatory. 6 6 Relacje 7 7 Relacje

Bardziej szczegółowo

Elementy filozofii i metodologii INFORMATYKI

Elementy filozofii i metodologii INFORMATYKI Elementy filozofii i metodologii INFORMATYKI Filozofia INFORMATYKA Metodologia Wykład 1. Wprowadzenie. Filozofia, metodologia, informatyka Czym jest FILOZOFIA? (objaśnienie ogólne) Filozofią nazywa się

Bardziej szczegółowo

Konspekt do wykładu z Logiki I

Konspekt do wykładu z Logiki I Andrzej Pietruszczak Konspekt do wykładu z Logiki I (27.10.2006 i 03.11.2006) Przedmiot logiki Na początek spójrzmy, co kryje się pod hasłem logika w Słowniku języka polskiego PWN. Wyróżnione są trzy znaczenia

Bardziej szczegółowo

Wykład 2 Logika dla prawników. Funkcje wypowiedzi Zdanie Analityczne i logiczne związki między zdaniami

Wykład 2 Logika dla prawników. Funkcje wypowiedzi Zdanie Analityczne i logiczne związki między zdaniami Wykład 2 Logika dla prawników Funkcje wypowiedzi Zdanie Analityczne i logiczne związki między zdaniami Zadania logiki prawniczej: Dostarczenie przydatnych wskazówek w dziedzinie języka prawnego i prawniczego,

Bardziej szczegółowo

Logika I. Wykład 2. Działania na zbiorach

Logika I. Wykład 2. Działania na zbiorach Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 2. Działania na zbiorach 1 Suma zbiorów Niech A i B będą dowolnymi zbiorami. Definicja 2.1. (suma zbiorów) Suma zbiorów

Bardziej szczegółowo

Programowanie deklaratywne

Programowanie deklaratywne Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne

Bardziej szczegółowo

LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE

LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE POJĘCIE PIERWOTNE, AKSJOMAT, TWIERDZENIE Pojęcie pierwotne jest to pojęcie, którego nie definiujemy, a mimo to przyjmujemy za oczywiste np.: liczba, punkt,

Bardziej szczegółowo

LOGIKA: WIELKA KSIĘGA PYTAŃ I ODPOWIEDZI EDYCJA I: ROK 2009

LOGIKA: WIELKA KSIĘGA PYTAŃ I ODPOWIEDZI EDYCJA I: ROK 2009 LOGIKA: WIELKA KSIĘGA PYTAŃ I ODPOWIEDZI EDYCJA I: ROK 2009 SPIS TREŚCI: TEORIA NAZW [2] / TEORIA DEFINICJI [12] / TEORIA PYTAŃ [19] / TEORIA WNIOSKOWAŃ [23] / KATEGORIE SYNTAKTYCZNE [27] / INNE [29].

Bardziej szczegółowo

OGÓLNOPOLSKI SPRAWDZIAN KOMPETENCJI TRZECIOKLASISTY

OGÓLNOPOLSKI SPRAWDZIAN KOMPETENCJI TRZECIOKLASISTY Imię i nazwisko ucznia... Wypełnia nauczyciel Klasa... OGÓLNOPOLSKI SPRAWDZIAN KOMPETENCJI TRZECIOKLASISTY Wielki kłopot 14 TEST Z MATEMATYKI Czas pracy: 45 minut Liczba punktów do uzyskania: Numer ucznia

Bardziej szczegółowo

Nazwy. Jak widać, nazwa to nie to samo co rzeczownik. W podanych przykładach na nazwę złoŝoną składa się cały zespół

Nazwy. Jak widać, nazwa to nie to samo co rzeczownik. W podanych przykładach na nazwę złoŝoną składa się cały zespół Nazwa spełnia istotną rolę w języku, gdyŝ umoŝliwia proces identyfikowania róŝnych obiektów i z tego powodu nazwa jest podstawowym składnikiem wypowiedzi. Nazwa jest to wyraz albo wyraŝenie rozumiane jednoznacznie,

Bardziej szczegółowo

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to:

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to: 1 Rachunek zdań Formuły zdaniowe (lub krócej: zdania) w klasycznym rachunku zdań składają się ze zmiennych zdaniowych nazywanych też zdaniami składowymi (oznaczane są zazwyczaj p, q, r,...) oraz operatorów

Bardziej szczegółowo

RACHUNEK ZDAŃ 5. Układ przesłanek jest sprzeczny, gdy ich koniunkcja jest kontrtautologią.

RACHUNEK ZDAŃ 5. Układ przesłanek jest sprzeczny, gdy ich koniunkcja jest kontrtautologią. Błędy popełniane przy wnioskowaniach: 1) Błąd formalny popełniamy twierdząc, że dane wnioskowanie jest dedukcyjne w sytuacji, gdy schemat tego wnioskowania jest zawodny, tj. gdy wniosek nie wynika logicznie

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium

Bardziej szczegółowo