Rozdział VII. Znaczenie logiki dla prawa i pracy prawnika Zadania i odpowiedzi 20

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozdział VII. Znaczenie logiki dla prawa i pracy prawnika Zadania i odpowiedzi 20"

Transkrypt

1 Przedmowa Wykaz skrótów XIII XV Część A. Wprowadzenie Rozdział I. Rys historyczny 1 1. Początki logiki jako nauki 1 2. Średniowiecze 2 3. Czasy nowożytne i współczesne 4 Rozdział II. Podstawowe prawa myślenia 6 Rozdział III. Funktory 9 Rozdział IV. Logika i podział logiki 12 Rozdział V. Teorie prawdy 14 Rozdział VI. Język Definicja Podział języków Stopnie języka Funkcje języka Gramatyka transformatywno-generatywna Noama Chomsky ego i jej wykorzystanie 19 Rozdział VII. Znaczenie logiki dla prawa i pracy prawnika Zadania i odpowiedzi 20 Część B. Wykłady Rozdział I. Wieloznaczność w języku Informacje podstawowe Rodzaje wieloznaczności 25 I. Homonimia 25 II. Zjawisko nieostrości 26 III. Supozycje 26 IV. Amfibolia 27 V. Błąd figuratywnego myślenia 27 VI. Otwarta tekstowość 27

2 VIII Spis treści 3. Znaczenie wieloznaczności w języku dla prawa i pracy prawnika Zadania i odpowiedzi 28 Rozdział II. Logiczna teoria zdań Informacje podstawowe Zdanie w sensie gramatycznym i zdanie w sensie logicznym Zdania analityczne, syntetyczne i kontradyktoryczne Zdania proste i złożone Znaczenie logicznej teorii zdań dla prawa i pracy prawnika Zadania i odpowiedzi 37 Rozdział III. Kategorie syntaktyczne Informacje podstawowe Pojęcie kategorii syntaktycznej Rodzaje kategorii syntaktycznych 45 I. Kategoria nazw 46 II. Kategoria zdań 46 III. Kategoria funktorów Kategorie syntaktyczne na przykładach Reguły logicznej teorii składni Znaczenie kategorii syntaktycznych dla prawa i pracy prawnika Zadania i odpowiedzi 53 Rozdział IV. Logika erotetyczna Informacje podstawowe Logiczna analiza pytań 60 I. Podziały pytań 60 II. Założenia pytania twierdzenia stanowiące podstawę rozumowania nadawcy komunikatu 61 III. Odróżnienie pytań właściwie postawionych od pytań niewłaściwie postawionych i pytań obarczonych błędem podwójnego pytania Charakterystyka odpowiedzi Sposób rozwiązywania zadań Znaczenie logiki erotetycznej dla prawa i pracy prawnika Zadania i odpowiedzi 65 Rozdział V. Logiczna teoria nazw Informacje podstawowe Supozycje nazwy Treść nazwy Podziały nazw Znaczenie logicznej teorii nazw dla prawa i pracy prawnika Zadania i odpowiedzi 72 Rozdział VI. Stosunki zakresowe Informacje podstawowe Stosunek zakresowy między nazwami Rodzaje stosunków zakresowych 77 I. Stosunek podrzędności (podrzędność) 78 II. Stosunek nadrzędności (nadrzędność) 78 III. Stosunek równoważności (równoważność) 79 IV. Stosunek niezależności (niezależność) 79

3 IX V. Stosunek podprzeciwieństwa (podprzeciwieństwo) 79 VI. Stosunek przeciwieństwa (przeciwieństwo) 80 VII. Stosunek sprzeczności (sprzeczność) Metoda rozwiązywania zadań ze stosunków zakresowych Przykładowe zadania z rozwiązaniami Znaczenie stosunków zakresowych dla prawa i pracy prawnika Zadania i odpowiedzi 87 Rozdział VII. Logiczna teoria definicji Informacje podstawowe Budowa definicji 95 I. Definicje równościowe a definicje nierównościowe 96 II. Definicje wyraźne a definicje kontekstowe 97 III. Definicje klasyczne a definicje nieklasyczne 97 IV. Definicje nierównościowe: indukcyjne, przez postulaty i cząstkowe Stylizacje definicji Funkcje definicji Błędy w definiowaniu Znaczenie logicznej teorii definicji dla prawa i pracy prawnika Zadania i odpowiedzi 101 Rozdział VIII. Logiczna teoria relacji Informacje podstawowe Pojęcie relacji Relacje jako element teorii zbiorów Działania na relacjach Charakterystyka relacji Relacje porządkujące zbiory Funkcja przyporządkowująca relacji Przykładowe sposoby rozwiązywania zadań Znaczenie logicznej teorii relacji dla prawa i pracy prawnika Zadania i odpowiedzi 116 Rozdział IX. Podział logiczny Informacje podstawowe Rodzaje podziałów logicznych 124 I. Podział logiczny ze względu na kryterium (warunek) podziału 124 II. Podział logiczny ze względu na ilość członów podziału 125 III. Podział logiczny ze względu na ilość stopni podziału Klasyfikacja oraz pojęcia z nią związane Typologia oraz pojęcia z nią związane Podział logiczny a semantyka nazw Znaczenie podziału logicznego dla prawa i pracy prawnika Zadania i odpowiedzi 136 Rozdział X. Uzasadnianie twierdzeń Informacje podstawowe Sposoby uzasadniania twierdzeń Uzasadnianie bezpośrednie Uzasadnianie pośrednie Wnioskowanie 147

4 X Spis treści 6. Wnioskowanie dedukcyjne Błędy wnioskowań na wnioskowania dedukcyjne i wnioskowania niededukcyjne Wnioskowanie entymematyczne Wnioskowania niededukcyjne, czyli wnioskowania uprawdopodobniające Podsumowanie Znaczenie uzasadniania twierdzeń dla prawa i pracy prawnika Zadania i odpowiedzi 156 Rozdział XI. Elementy metodologii nauk Informacje podstawowe Pojęcie nauki Podział nauk Pojęcie teorii Metodologia nauk Podziały metodologii nauk Elementy metodologii nauk społecznych Pojęcie prawniczej nauki o metodzie Stanowisko naturalistów versus stanowisko antynaturalistów spór o charakter metody Metodologia nauk a filozofia analityczna Znaczenie metodologii nauk dla prawa i pracy prawnika Zadania i odpowiedzi 177 Część C. Ćwiczenia Rozdział I. Sprawdzanie tautologiczności formuł Klasycznego Rachunku Zdań Informacje podstawowe Rodzaje funktorów prawdziwościowych 182 I. Funktory jednoargumentowe 182 II. Funktory dwuargumentowe Sposoby rozwiązywania zadań Znaczenie tautologiczności formuł dla prawa i pracy prawnika Zadania i odpowiedzi 189 Rozdział II. Zadania tekstowe Informacje podstawowe Przykładowy sposób rozwiązywania zadań tekstowych Znaczenie zadań tekstowych dla prawa i pracy prawnika Zadania i odpowiedzi 200 Rozdział III. Dowody założeniowe Informacje podstawowe Przykłady zastosowań niektórych praw Rozwiązywanie dowodów założeniowych wprost 209 I. Dowód założeniowy wprost Nr II. Dowód założeniowy wprost Nr III. Dowód założeniowy wprost Nr Rozwiązywanie dowodów założeniowych nie wprost 215 I. Dowód założeniowy nie wprost Nr II. Dowód założeniowy nie wprost Nr 2 216

5 XI III. Dowód założeniowy nie wprost Nr Znaczenie dowodów założeniowych dla prawa i pracy prawnika Zadania i odpowiedzi 219 Rozdział IV. Kwadraty logiczne Informacje podstawowe 225 I. Podział zdań ze względu na kryterium modalności 225 II. Interpretacja konieczności i możliwości Logika modalna 226 I. Podstawowe pojęcia 226 II. Kwadrat logiczny dla zdań modalnych Logika deontyczna 229 I. Podstawowe pojęcia 229 II. Kwadrat logiczny dla zdań deontycznych Klasyczne zdania kategoryczne 230 I. Kwadrat logiczny dla zdań kategorycznych Znaczenie kwadratu logicznego dla prawa i pracy prawnika Zadania i odpowiedzi 234 Rozdział V. Przekształcanie zdań kategorycznych Informacje podstawowe Podstawowe przekształcenia 240 I. Obwersja 240 II. Konwersja Kontrapozycja zupełna Rozwiązywanie zadań Znaczenie przekształcenia zdań kategorycznych dla prawa i pracy prawnika Zadania i odpowiedzi 244 Rozdział VI. Sylogizm kategoryczny Informacje podstawowe Dyrektywy poprawności sylogizmu Wyprowadzanie wniosku z podanych przesłanek Uzupełnianie brakującej przesłanki w entymemacie Znaczenie sylogizmu kategorycznego dla prawa i pracy prawnika Zadania i odpowiedzi 258 Indeks rzeczowy 269

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 15 zaliczenie z oceną

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 15 zaliczenie z oceną Wydział: Prawo i Administracja Nazwa kierunku kształcenia: Prawo Rodzaj przedmiotu: podstawowy Opiekun: prof. dr hab. Kazimierz Pawłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb

Bardziej szczegółowo

Filip Gołba Paulina Piękoś Piotr Turkowski. Logika dla prawników. wykłady ćwiczenia zadania

Filip Gołba Paulina Piękoś Piotr Turkowski. Logika dla prawników. wykłady ćwiczenia zadania Filip Gołba Paulina Piękoś Piotr Turkowski Logika dla prawników wykłady ćwiczenia zadania REPETYTORIA C H BECK Logika dla prawników Polecamy w serii: Paweł Filipek, dr Brygida Kuźniak PRAWO MIĘDZYNARODOWE

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/013 WydziałPrawa, Administracji i Stosunków Miedzynarodowych Kierunek

Bardziej szczegółowo

K A R T A P R Z E D M I O T U

K A R T A P R Z E D M I O T U Uczelnia Wydział Kierunek studiów Poziom kształcenia Profil kształcenia Uniwersytet Marii Curie-Skłodowskiej w Lublinie Wydział Prawa i Administracji Administracja Studia pierwszego stopnia Profil ogólnoakademicki

Bardziej szczegółowo

Sylabus dla przedmiotu Logika i ogólna metodologia nauk

Sylabus dla przedmiotu Logika i ogólna metodologia nauk Sylabus dla przedmiotu Logika i ogólna metodologia nauk 1. Definicja pojęcia logika Wprowadzenie w tematykę przedmiotu (szkic czym jest logika, jak należy ją rozumieć, przedmiot logiki, podział logika

Bardziej szczegółowo

Liczba godzin Punkty ECTS Sposób zaliczenia. konwersatoria 30 zaliczenie z oceną

Liczba godzin Punkty ECTS Sposób zaliczenia. konwersatoria 30 zaliczenie z oceną Wydział: Prawo i Administracja Nazwa kierunku kształcenia: Administracja Rodzaj przedmiotu: podstawowy Opiekun: prof. dr hab. Kazimierz Pawłowski Poziom studiów (I lub II stopnia): I stopnia Tryb studiów:

Bardziej szczegółowo

Katedra Teorii i Filozofii Prawa Poznań, dnia 12 lutego 2013 r. OPISU MODUŁU KSZTAŁCENIA (SYLABUS)

Katedra Teorii i Filozofii Prawa Poznań, dnia 12 lutego 2013 r. OPISU MODUŁU KSZTAŁCENIA (SYLABUS) Katedra Teorii i Filozofii Prawa Poznań, dnia 12 lutego 2013 r. Zespół wykładowców: prof. UAM dr hab. Jarosław Mikołajewicz dr Marzena Kordela Zespół prowadzących ćwiczenia: prof. UAM dr hab. Jarosław

Bardziej szczegółowo

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do testu z filozofii jest zaliczenie testu z logiki i zaliczenie

Bardziej szczegółowo

Logika dla socjologów Część 2: Przedmiot logiki

Logika dla socjologów Część 2: Przedmiot logiki Logika dla socjologów Część 2: Przedmiot logiki Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Działy logiki 2 Własności semantyczne i syntaktyczne 3 Błędy logiczne

Bardziej szczegółowo

Przewodnik do ćwiczeń z logiki dla prawników

Przewodnik do ćwiczeń z logiki dla prawników Przewodnik do ćwiczeń z logiki dla prawników redakcja naukowa Andrzej Malinowski Andrzej Malinowski, Michał Pełka, Radosław Brzeski Zamów książkę w księgarni internetowej SERIA AKADEMICKA 6. WYDANIE WARSZAWA

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:

Bardziej szczegółowo

ĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje

ĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje ĆWICZENIE 2 Klasyczny Rachunek Zdań (KRZ): wynikanie logiczne, wnioskowanie, niezawodny schemat wnioskowania, wnioskowanie dedukcyjne, równoważność logiczna, iniowalność spójników za mocą formuły. DEF.

Bardziej szczegółowo

LOGIKA Dedukcja Naturalna

LOGIKA Dedukcja Naturalna LOGIKA Dedukcja Naturalna Robert Trypuz Katedra Logiki KUL 7 stycznia 2014 Robert Trypuz (Katedra Logiki) Założeniowy system klasycznego rachunku zdań 7 stycznia 2014 1 / 42 PLAN WYKŁADU 1 Przykład dowodów

Bardziej szczegółowo

JÓZEF W. BREMER WPROWADZENIE DO LOGIKI

JÓZEF W. BREMER WPROWADZENIE DO LOGIKI JÓZEF W. BREMER WPROWADZENIE DO LOGIKI Wydawnictwo WAM Kraków 2006 Spis tre ci Przedmowa Jana Wole skiego 9 Wst p 11 1 Logika i jej rozumienie 17 1.1 Teksty wprowadzaj ce...................... 17 1.1.1

Bardziej szczegółowo

Rok akademicki: 2014/2015 Kod: HKL s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2014/2015 Kod: HKL s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Logika, Metodyka pracy umysłowej Rok akademicki: 2014/2015 Kod: HKL-1-104-s Punkty ECTS: 4 Wydział: Humanistyczny Kierunek: Kulturoznawstwo Specjalność: - Poziom studiów: Studia I stopnia

Bardziej szczegółowo

Etyka i filozofia współczesna wykład 11. Logiczna kultura argumentacji:

Etyka i filozofia współczesna wykład 11. Logiczna kultura argumentacji: Logiczna kultura argumentacji: Logiczna kultura argumentacji: wypowiedź argumentacyjna a wnioskowanie, przyczyny nieporozumień, definiowanie i błędy w definiowaniu. Wnioskowanie: proces poznawczy, który

Bardziej szczegółowo

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 15 stycznia 2011 Michał Lipnicki () Logika 15 stycznia 2011 1 / 37 Wstęp Materiały na dzisiejsze zajęcia zostały opracowane na podstawie pomocy naukowych

Bardziej szczegółowo

Dowody założeniowe w KRZ

Dowody założeniowe w KRZ Dowody założeniowe w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl w styczniu 2007 Jerzy Pogonowski (MEG) Dowody założeniowe w KRZ w styczniu 2007 1 / 10 Dowody

Bardziej szczegółowo

Logika formalna SYLABUS A. Informacje ogólne

Logika formalna SYLABUS A. Informacje ogólne Logika formalna SYLABUS A. Informacje ogólne studiów Poziom kształcenia Profil studiów Forma studiów Rodzaj przedmiotu Rok studiów /semestr Wymagania wstępne Liczba godzin zajęć Założenia i cele przedmiotu

Bardziej szczegółowo

TESTY LOGIKA. redakcja naukowa ZBIGNIEW PINKALSKI

TESTY LOGIKA. redakcja naukowa ZBIGNIEW PINKALSKI TESTY LOGIKA redakcja naukowa ZBIGNIEW PINKALSKI Warszawa 2012 Spis treści Wykaz skrótów i symboli... 7 Wprowadzenie... 9 Rozdział I Nazwy... 11 Rozdział II Kategorie syntaktyczne... 17 Rozdział III Pytania...

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium

Bardziej szczegółowo

Z-ZIP Logika. Stacjonarne Wszystkie Katedra Matematyki Dr Beata Maciejewska. Podstawowy Nieobowiązkowy Polski Semestr trzeci

Z-ZIP Logika. Stacjonarne Wszystkie Katedra Matematyki Dr Beata Maciejewska. Podstawowy Nieobowiązkowy Polski Semestr trzeci KARTA MODUŁU / KARTA PRZEDMIOTU Z-ZIP-1003 Kod modułu Nazwa modułu Logika Nazwa modułu w języku angielskim Logic Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

Rachunek logiczny. 1. Język rachunku logicznego.

Rachunek logiczny. 1. Język rachunku logicznego. Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Logika matematyczna Mathematical Logic Poziom przedmiotu: II

Bardziej szczegółowo

Rok akademicki: 2014/2015 Kod: HSO s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2014/2015 Kod: HSO s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Logika, Metodyka pracy umysłowej Rok akademicki: 2014/2015 Kod: HSO-1-105-s Punkty ECTS: 4 Wydział: Humanistyczny Kierunek: Socjologia Specjalność: - Poziom studiów: Studia I stopnia Forma

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Zdań III

Wstęp do logiki. Klasyczny Rachunek Zdań III Wstęp do logiki Klasyczny Rachunek Zdań III Przypomnijmy: Logika: = Teoria form (schematów, reguł) poprawnych wnioskowań. Wnioskowaniem nazywamy jakąkolwiek skończoną co najmniej dwuwyrazową sekwencję

Bardziej szczegółowo

Ćwiczenia Becka. Tadeusz Widła Dorota Zienkiewicz. zadania testy pytania egzaminacyjne. Wydawnictwo C.H.Beck. 2. wydanie. Logika

Ćwiczenia Becka. Tadeusz Widła Dorota Zienkiewicz. zadania testy pytania egzaminacyjne. Wydawnictwo C.H.Beck. 2. wydanie. Logika Ćwiczenia Becka Tadeusz Widła Dorota Zienkiewicz Logika zadania testy pytania egzaminacyjne 2. wydanie Wydawnictwo C.H.Beck Ćwiczenia Becka Logika W sprzedaży: E. Nieznański LOGIKA Podręczniki Prawnicze

Bardziej szczegółowo

Katedra Teorii i Filozofii Prawa Poznań, dnia 29 września 2015 r. OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Logika na kierunku Zarządzanie

Katedra Teorii i Filozofii Prawa Poznań, dnia 29 września 2015 r. OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Logika na kierunku Zarządzanie Katedra Teorii i Filozofii Prawa Poznań, dnia 29 września 2015 r. OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Logika na kierunku Zarządzanie I. Informacje ogólne 1. Nazwa modułu kształcenia: Logika

Bardziej szczegółowo

Część A. Logika w zadaniach

Część A. Logika w zadaniach Część A. Logika w zadaniach Rozdział I. Nazwy Rozdział I. I. Nazwy Nazwa to wyraz bądź wyrażenie nadające się na podmiot bądź orzecznik orzeczenia imiennego w zdaniu. Desygnat nazwy to każdy przedmiot,

Bardziej szczegółowo

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika

Bardziej szczegółowo

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca 2012 Imię i Nazwisko:........................................................... FIGLARNE POZNANIANKI Wybierz

Bardziej szczegółowo

Wstęp do logiki. Kto jasno i konsekwentnie myśli, ściśle i z ładem się wyraża,

Wstęp do logiki. Kto jasno i konsekwentnie myśli, ściśle i z ładem się wyraża, Prof. UAM, dr hab. Zbigniew Tworak Zakład Logiki i Metodologii Nauk Instytut Filozofii Wstęp do logiki Kto jasno i konsekwentnie myśli, ściśle i z ładem się wyraża, kto poprawnie wnioskuje i uzasadnia

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

Wprowadzenie do logiki Zdania, cz. II Elementy sylogistyki

Wprowadzenie do logiki Zdania, cz. II Elementy sylogistyki Wprowadzenie do logiki Zdania, cz. II Elementy sylogistyki Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Co dzisiejsza historia mieć będzie wspólnego z Arystotelesem? 2 Plan gry:

Bardziej szczegółowo

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:

Bardziej szczegółowo

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0 ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru

Bardziej szczegółowo

Podstawowe Pojęcia. Semantyczne KRZ

Podstawowe Pojęcia. Semantyczne KRZ Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga

Bardziej szczegółowo

WYKŁAD 7: DEDUKCJA NATURALNA

WYKŁAD 7: DEDUKCJA NATURALNA METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 7: DEDUKCJA NATURALNA III rok kognitywistyki UAM, 2016 2017 Systemy dedukcji naturalnej pochodzą od Gerharda Gentzena (1909 1945) oraz Stanisława

Bardziej szczegółowo

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych

Bardziej szczegółowo

Matematyka ETId Elementy logiki

Matematyka ETId Elementy logiki Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,

Bardziej szczegółowo

Wykład 4 Logika dla prawników. Nazwy, Relacje między zakresami nazw, Podział logiczny, Definicje

Wykład 4 Logika dla prawników. Nazwy, Relacje między zakresami nazw, Podział logiczny, Definicje Wykład 4 Logika dla prawników Nazwy, Relacje między zakresami nazw, Podział logiczny, Definicje Nazwy Nazwą jest taka częśd zdania, która w zdaniu może pełnid funkcję podmiotu lub orzecznika. Nazwami mogą

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 15. Trójwartościowa logika zdań Łukasiewicza 1 Wprowadzenie W logice trójwartościowej, obok tradycyjnych wartości logicznych,

Bardziej szczegółowo

Akademia Wychowania Fizycznego i Sportu w Gdańsku SYLABUS NA CYKL KSZTAŁCENIA 2014-2016

Akademia Wychowania Fizycznego i Sportu w Gdańsku SYLABUS NA CYKL KSZTAŁCENIA 2014-2016 Załącznik Nr 1 do Uchwały Senatu AWFiS w Gdańsku Nr 16 z dnia 27 kwietnia 2012 roku Akademia Wychowania Fizycznego i Sportu w Gdańsku SYLABUS NA CYKL KSZTAŁCENIA 2014-2016 Jednostka Organizacyjna: Rodzaj

Bardziej szczegółowo

Podstawy logiki praktycznej

Podstawy logiki praktycznej Podstawy logiki praktycznej Wykład 2: Język i części języka Dr Maciej Pichlak Uniwersytet Wrocławski Katedra Teorii i Filozofii Prawa maciej.pichlak@uwr.edu.pl Semiotyka Nauka o znakach język jako system

Bardziej szczegółowo

Logika Matematyczna. Zadania Egzaminacyjne, 2007

Logika Matematyczna. Zadania Egzaminacyjne, 2007 Logika Matematyczna Zadania Egzaminacyjne, 2007 I Rok Językoznawstwa i Informacji Naukowej UAM Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl Podajemy rozwiązania zadań egzaminacyjnych.

Bardziej szczegółowo

Logika pragmatyczna dla inżynierów

Logika pragmatyczna dla inżynierów Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny

Bardziej szczegółowo

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 4. Semantyka Klasycznego Rachunku Zdań 1 Skróty: Język Klasycznego Rachunku Zdań zamiast Klasyczny Rachunek Zdań piszę

Bardziej szczegółowo

LOGIKA Klasyczny Rachunek Zdań

LOGIKA Klasyczny Rachunek Zdań LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć

Bardziej szczegółowo

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań Instytut Informatyki Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań Zdzisław Spławski Zdzisław Spławski: Teoretyczne Podstawy Języków Programowania, Wykład 1. Rachunek zdań 1 Systemy

Bardziej szczegółowo

Logika dla prawników

Logika dla prawników Logika dla prawników Wykład I: Pytania o logikę Dr Maciej Pichlak Uniwersytet Wrocławski Katedra Teorii i Filozofii Prawa mpichlak@prawo.uni.wroc.pl Tak na logikę Kodeks karny: Art. 226 1. Kto znieważa

Bardziej szczegółowo

Wstęp do logiki. O definiowaniu

Wstęp do logiki. O definiowaniu Wstęp do logiki O definiowaniu Cele definiowania Generalnie, definiowanie to operacja językowa prowadząca do ustalania znaczeń wyrażeń z wykorzystaniem wyrażeń już w języku występujących. Celem definiowania

Bardziej szczegółowo

SPIS TREŚCI I. WPROWADZENIE - FILOZOFIA JAKO TYP POZNANIA. 1. Człowiek poznający Poznanie naukowe... 16

SPIS TREŚCI I. WPROWADZENIE - FILOZOFIA JAKO TYP POZNANIA. 1. Człowiek poznający Poznanie naukowe... 16 SPIS TREŚCI P r z e d m o w a... 5 P r z e d m o w a do d r u g i e g o w y d a n i a... 7 P r z e d m o w a do t r z e c i e g o w y d a n i a... 9 P r z e d m o w a do c z w a r t e g o w y d a n i a...

Bardziej szczegółowo

Józef Stawicki* LOGIKA NA UŻYTEK EKONOMISTÓW I MENADŻERÓW

Józef Stawicki* LOGIKA NA UŻYTEK EKONOMISTÓW I MENADŻERÓW ACTA UNIVERSITATIS LODZIENSIS FOLIA OECONOMICA 205, 2007 Józef Stawicki* LOGIKA NA UŻYTEK EKONOMISTÓW I MENADŻERÓW Motto:...główną i, ilościowo rzecz biorąc, dominującą część współczesnego nurtu teoretycznej

Bardziej szczegółowo

SPIS TREŚCI. Wykaz skrótów... XI Wykaz podstawowej literatury... XV Przedmowa... XVII

SPIS TREŚCI. Wykaz skrótów... XI Wykaz podstawowej literatury... XV Przedmowa... XVII SPIS TREŚCI Wykaz skrótów... XI Wykaz podstawowej literatury... XV Przedmowa... XVII CZĘŚĆ I. Prawo jako przedmiot nauk prawnych Rozdział I. Podstawowe koncepcje prawa... 3 1. Koncepcje prawnonaturalne...

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Kierunek i poziom studiów: matematyka, studia I stopnia, rok I. Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat)

Kierunek i poziom studiów: matematyka, studia I stopnia, rok I. Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: matematyka, studia I stopnia, rok I Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat) 1. Informacje ogólne koordynator modułu Tomasz

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014 WydziałPrawa, Administracji i Stosunków Międzynarodowych

Bardziej szczegółowo

Rachunek zdań i predykatów

Rachunek zdań i predykatów Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)

Bardziej szczegółowo

LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ

LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ Robert Trypuz Katedra Logiki KUL 18 grudnia 2013 Robert Trypuz (Katedra Logiki) Wnioskowanie 18 grudnia 2013 1 / 12 Zarys 1 Wnioskowanie Definicja Schemat wnioskowania

Bardziej szczegółowo

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2020 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią. Semantyczne twierdzenie o podstawianiu Jeżeli dana formuła rachunku zdań jest tautologią i wszystkie wystąpienia pewnej zmiennej zdaniowej w tej tautologii zastąpimy pewną ustaloną formułą, to otrzymana

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Z-LOG-1003 Logika Logics

Z-LOG-1003 Logika Logics KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOG-100 Logika Logics Obowiązuje od roku akademickiego 2012/201 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

Konspekt do wykładu z Logiki I

Konspekt do wykładu z Logiki I Andrzej Pietruszczak Konspekt do wykładu z Logiki I (27.10.2006 i 03.11.2006) Przedmiot logiki Na początek spójrzmy, co kryje się pod hasłem logika w Słowniku języka polskiego PWN. Wyróżnione są trzy znaczenia

Bardziej szczegółowo

Kultura logiczna Klasyczny rachunek zdań 2/2

Kultura logiczna Klasyczny rachunek zdań 2/2 Kultura logiczna Klasyczny rachunek zdań 2/2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 29 III 2 Plan wykładu: Wartościowanie w KRZ Tautologie KRZ Wartościowanie v, to funkcja, która posyła zbiór

Bardziej szczegółowo

Rachunek zdań 1 zastaw zadań

Rachunek zdań 1 zastaw zadań Rachunek zdań 1 zastaw zadań Zadanie 1 ([1]) Wyraź w języku KRZ następujące zdania języka naturalnego: (a) Jeśli Jan jest ateistą to Jan nie jest katolikiem. (b) Jeśli Jan jest ateistą to nieprawda, że

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

WSTĘP ZAGADNIENIA WSTĘPNE

WSTĘP ZAGADNIENIA WSTĘPNE 27.09.2012 WSTĘP Logos (gr.) słowo, myśl ZAGADNIENIA WSTĘPNE Logika bada proces myślenia; jest to nauka o formach poprawnego myślenia a zarazem o języku (nie mylić z teorią komunikacji czy językoznawstwem).

Bardziej szczegółowo

Wykład ze Wstępu do Logiki i Teorii Mnogości

Wykład ze Wstępu do Logiki i Teorii Mnogości Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje

Bardziej szczegółowo

Wykład 2 Logika dla prawników. Funkcje wypowiedzi Zdanie Analityczne i logiczne związki między zdaniami

Wykład 2 Logika dla prawników. Funkcje wypowiedzi Zdanie Analityczne i logiczne związki między zdaniami Wykład 2 Logika dla prawników Funkcje wypowiedzi Zdanie Analityczne i logiczne związki między zdaniami Zadania logiki prawniczej: Dostarczenie przydatnych wskazówek w dziedzinie języka prawnego i prawniczego,

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

Kultura logiczna Klasyczny rachunek zdań 1/2

Kultura logiczna Klasyczny rachunek zdań 1/2 Kultura logiczna Klasyczny rachunek zdań /2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 22 III 2 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe

Bardziej szczegółowo

WYKŁAD I CZYM JEST ARGUMENTACJA PRAWNICZA?

WYKŁAD I CZYM JEST ARGUMENTACJA PRAWNICZA? WYKŁAD I CZYM JEST ARGUMENTACJA PRAWNICZA? 1 TEKST PRAWNY ROZUMIENIE INTERPRETACJA/WYKŁADNIA UZASADNIENIE/ARGUMENTACJA PRAWO ZASTOSOWANIE UZASADNIENIE/ARGUMENTACJA 2 I. Spór o metody prawnicze XIX w. 1.

Bardziej szczegółowo

Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011

Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011 Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011 Przedmowa. CZĘŚĆ I: WPROWADZENIE 1. Komputer 1.1. Kółko i krzyżyk 1.2. Kodowanie 1.3. Odrobina fantazji

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 8. Modalności i intensjonalność

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 8. Modalności i intensjonalność Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 8. Modalności i intensjonalność 1 Coś na kształt ostrzeżenia Ta prezentacja jest nieco odmienna od poprzednich. To,

Bardziej szczegółowo

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu Witold Marciszewski: Wykład Logiki, 17 luty 2005, Collegium Civitas, Warszawa Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu 1. Poniższe wyjaśnienie (akapit

Bardziej szczegółowo

Konsekwencja logiczna

Konsekwencja logiczna Konsekwencja logiczna Niech Φ 1, Φ 2,..., Φ n będa formułami logicznymi. Formuła Ψ wynika logicznie z Φ 1, Φ 2,..., Φ n jeżeli (Φ 1 Φ 2 Φ n ) Ψ jest tautologia. Formuły Φ 1, Φ 2,..., Φ n nazywamy założeniami

Bardziej szczegółowo

DEFINICJA: Wypowiedź wieloznaczna: wypowiedź, która ma więcej niż jedną interpretację.

DEFINICJA: Wypowiedź wieloznaczna: wypowiedź, która ma więcej niż jedną interpretację. DEFINICJA: Wypowiedź wieloznaczna: wypowiedź, która ma więcej niż jedną interpretację. DEFINICJA: Wypowiedź wieloznaczna: wypowiedź, która ma więcej niż jedną interpretację. Dwa rodzaje wieloznaczności

Bardziej szczegółowo

KARTA KURSU. Odnowa Biologiczna

KARTA KURSU. Odnowa Biologiczna KARTA KURSU Odnowa Biologiczna Nazwa Nazwa w j. ang. Metodologia nauk przyrodniczych Methodology of the natural science Kod Punktacja ECTS* 2.0 Koordynator Dr hab. Alicja Walosik Zespół dydaktyczny Dr

Bardziej szczegółowo

ARGUMENTACJA PRAWNICZA II

ARGUMENTACJA PRAWNICZA II ARGUMENTACJA PRAWNICZA II Pytania: 1/ jakie są konsekwencje open texture of law? 2/ czy możliwe jest sformułowanie wzorów rozstrzygania problemów prawnych? dyskurs dogmatycznoprawny 3/ do jakich argumentów

Bardziej szczegółowo

Z E S Z Y T Y N A U K O W E UNIWERSYTETU RZESZOWSKIEGO SERIA PRAWNICZA ZESZYT 91/2016 PRAWO 18

Z E S Z Y T Y N A U K O W E UNIWERSYTETU RZESZOWSKIEGO SERIA PRAWNICZA ZESZYT 91/2016 PRAWO 18 Z E S Z Y T Y N A U K O W E UNIWERSYTETU RZESZOWSKIEGO SERIA PRAWNICZA ZESZYT 91/2016 PRAWO 18 Piotr Sobol-Kołodziejczyk, Marek Zielinski DOI: 10.15584/znurprawo.2016.18.11 KILKA UWAG POLEMICZNYCH W SPRAWIE

Bardziej szczegółowo

LOGIKA: WIELKA KSIĘGA PYTAŃ I ODPOWIEDZI EDYCJA I: ROK 2009

LOGIKA: WIELKA KSIĘGA PYTAŃ I ODPOWIEDZI EDYCJA I: ROK 2009 LOGIKA: WIELKA KSIĘGA PYTAŃ I ODPOWIEDZI EDYCJA I: ROK 2009 SPIS TREŚCI: TEORIA NAZW [2] / TEORIA DEFINICJI [12] / TEORIA PYTAŃ [19] / TEORIA WNIOSKOWAŃ [23] / KATEGORIE SYNTAKTYCZNE [27] / INNE [29].

Bardziej szczegółowo

Wprowadzenie do logiki Podział logiczny. Definicje

Wprowadzenie do logiki Podział logiczny. Definicje Wprowadzenie do logiki Podział logiczny. Definicje Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Jak dobrze pokroić tort? Dwie proste zasady ku pożytkowi ogólnemu i szczęśliwości:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Teoria mnogości Set theory Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

Zdanie analityczne (prawda analityczna) to zdanie, które jest zawsze prawdziwe (na mocy znaczeń użytych w nim wyrażeń).

Zdanie analityczne (prawda analityczna) to zdanie, które jest zawsze prawdziwe (na mocy znaczeń użytych w nim wyrażeń). Tautologia to schemat zdań wyłącznie prawdziwych. Kontrtautologia to schemat zdań wyłącznie fałszywych. Zdanie analityczne (prawda analityczna) to zdanie, które jest zawsze prawdziwe (na mocy znaczeń użytych

Bardziej szczegółowo

LOGIKA Wprowadzenie. Robert Trypuz. Katedra Logiki KUL GG października 2013

LOGIKA Wprowadzenie. Robert Trypuz. Katedra Logiki KUL GG października 2013 LOGIKA Wprowadzenie Robert Trypuz Katedra Logiki KUL GG 43 e-mail: trypuz@kul.pl 2 października 2013 Robert Trypuz (Katedra Logiki) Wprowadzenie 2 października 2013 1 / 14 Plan wykładu 1 Informacje ogólne

Bardziej szczegółowo

Logika dla prawników

Logika dla prawników Logika dla prawników S awomir Lewandowski Hanna Machiƒska Andrzej Malinowski Jacek Petzel pod redakcjà Andrzeja Malinowskiego Wydanie 7 Warszawa 2012 Poszczególne rozdziały napisali: Sławomir Lewandowski

Bardziej szczegółowo

Spis treści WPROWADZENIE...11

Spis treści WPROWADZENIE...11 Spis treści WPROWADZENIE...11 CZĘŚĆ PIERWSZA PODSTAWY PRAWOZNAWSTWA Rozdział I ŹRÓDŁA LUDZKIEGO POZNAWANIA... 15 1. Wiedza, filozofia, nauka... 15 2. Specyfika źródeł poznawania... 15 3. Oceny wartości

Bardziej szczegółowo

Znak, język, kategorie syntaktyczne

Znak, język, kategorie syntaktyczne Składnia ustalone reguły jakiegoś języka dotyczące sposobu wiązania wyrazów w wyrażenia złożone. Językoznawstwo zajmuje się m.in. opisem składni poszczególnych języków, natomiast przedmiotem syntaktyki

Bardziej szczegółowo

Wprowadzenie do logiki Definicje część 1

Wprowadzenie do logiki Definicje część 1 Wprowadzenie do logiki Definicje część 1 Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Rozkład jazdy Poszukamy odpowiedzi na pytania następujące: 1 Co definicje definiują? 2 Jak

Bardziej szczegółowo

Kultura myślenia i argumentacji 2015/2016. Temat 2: Przyczyny nieporozumień

Kultura myślenia i argumentacji 2015/2016. Temat 2: Przyczyny nieporozumień Kultura myślenia i argumentacji 2015/2016 Temat 2: Przyczyny nieporozumień Wieloznaczności leksykalne: homonimia, polisemia, znaczenia obrazowe, metaforyczne oraz idiomatyczne. Wieloznaczności leksykalne:

Bardziej szczegółowo

Mieczysław Omyła Logika a czas i zmiana. Filozofia Nauki 5/3,

Mieczysław Omyła Logika a czas i zmiana. Filozofia Nauki 5/3, Mieczysław Omyła Logika a czas i zmiana Filozofia Nauki 5/3, 131-134 1997 Filozofia Nauki RECENZJE Rok V, 1997, N r 3(19) Mieczysław Omyła Logika a czas i zmiana Józef Wajszczyk, Logika a czas i zmiana,

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu

Bardziej szczegółowo

Logika dla socjologów

Logika dla socjologów Logika dla socjologów Część 6: Modele rozumowań. Pojęcie wynikania Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Modele rozumowań 2 Wynikanie 3 Rozumowania poprawne

Bardziej szczegółowo

Wprowadzenie do logiki O czym to będzie?

Wprowadzenie do logiki O czym to będzie? Wprowadzenie do logiki O czym to będzie? Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Dwa fundamentalne pytania: Czym zajmuje się logika? Czym my się zajmować będziemy? I póki co

Bardziej szczegółowo