Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 9. klasyczny rachunek nazw relacje

Wielkość: px
Rozpocząć pokaz od strony:

Download "Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 9. klasyczny rachunek nazw relacje"

Transkrypt

1 WYKŁAD 9 klasyczny rachunek nazw relacje 1

2 Katedra Logiki i Metodologii Nauk Instytut Filozofii Uniwersytet Łódzki ul. Kopcińskiego 16/18, I piętro, pok.13 tel dyŝur: poniedziałki, godz [w razie potrzeby dyŝur będzie dłuŝszy] 2

3 Ludwik Borkowski, Elementy logiki formalnej, PWN, Warszawa 1977, s.154 (cienka ksiąŝka) 3

4 Rachunek nazw (Arystoteles) Zdanie kategoryczne, to zdanie o budowie podmiotowo-orzecznikowej, w którym występują dwie nazwy (w roli podmiotu i w roli orzecznika) połączone funktorem zdaniotwórczym jest. WyróŜniamy cztery typy zdań kategorycznych: 1. zdanie ogólno-twierdzące KaŜde S jest P (SaP) 2. zdanie ogólno-przeczące śadne S nie jest P (SeP) 3. zdanie szczegółowo-twierdzące Niektóre S są P (SiP) 4. zdanie szczegółowo-przeczące Niektóre S nie są P (SoP) S - subiectum (podmiot) P - praedicatum (orzecznik) SaP, SiP - affirmo (twierdzę) SeP, SoP - nego (przeczę) Przykład KaŜdy adwokat jest prawnikiem. (SaP) śaden sędzia nie jest prokuratorem. (SeP) Niektórzy prawnicy są prokuratorami. (SiP) Niektórzy prawnicy nie są prokuratorami. (SoP) Ex(S) SiS (zdanie Ex(S) stwierdza istnienie obiektu będącego S, czyli stwierdza niepustość S) 4

5 Zdania SaP i SiP mają tę samą JAKOŚĆ (w tym przypadku twierdzącą), zaś zdania SaP i SeP mają tę samą ILOŚĆ (w tym przypadku ogólną). Podobnie, zdania SeP i SoP mają te samą JAKOŚĆ (w tym przypadku przeczącą), zaś zdania SiP i SoP mają tę samą ILOŚĆ (w tym przypadku szczegółową). Zmiana jakości zdania bez zmiany jego ilości oznacza zamianę, albo SaP na SeP, albo SeP na SaP, albo SiP na SoP, albo zamianę SoP na SiP. Zmiana ilości zdania bez zmiany jego jakości oznacza zamianę, albo SaP na SiP, albo SiP na SaP, albo SeP na SoP, albo zamianę SoP na SeP. Jednoczesna zmiana ilości i jakości zdania oznacza zamianę, albo SaP na SoP, albo SoP na SaP, albo SeP na SiP, albo zamianę SiP na SeP. 5

6 diagramy Venna zdanie prawdziwe zdanie fałszywe SaP SeP SiP SoP 6

7 Prawa z kwadratu logicznego SaP x (x S x P) x (x S x P) SoP SeP x (x S x P) x (x S x P) SiP SiP x (x S x P) x (x S x P) SeP SoP x (x S x P) x (x S x P) SaP SaP przeciwne SeP podporządkowane sprzeczne sprzeczne podporządkowane SiP podprzeciwne SoP (SaP Ex(S)) SeP ( SiP Ex(S)) SoP (SaP Ex(S)) SiP (SeP Ex(S)) SaP ( SoP Ex(S)) SiP (SeP Ex(S)) SoP 7

8 S II I III P S - zakres nazwy S P - zakres nazwy P I - obiekty S, które są P II - obiekty S, które nie są P III - obiekty P, które nie są S 8

9 Zadanie WykaŜ, Ŝe: (SaP Ex(S)) SeP Przykład potwierdzający (weryfikujący) (nie ma mocy dowodu): jeśli kaŝdy krasnal ma czapkę i jakiś krasnal istnieje (krasnale istnieją), to nieprawdą jest, Ŝe Ŝaden krasnal nie ma czapki. [nazwa krasnal jest tu zastosowana celowo - dlaczego?] (SeP Ex(S)) SaP Przykład potwierdzający (weryfikujący) (nie ma mocy dowodu): jeśli Ŝaden krasnal nie ma pistoletu i jakiś krasnal istnieje (krasnale istnieją), to nieprawdą jest, Ŝe kaŝdy krasnal ma pistolet. [nazwa krasnal jest tu zastosowana celowo - dlaczego?] 9

10 ( SiP Ex(S)) SoP Przykład potwierdzający (weryfikujący) (nie ma mocy dowodu): jeśli nieprawdą jest, Ŝe pewien krasnal ma chorobę weneryczną i jakiś krasnal istnieje (krasnale istnieją), to pewien krasnal nie ma choroby wenerycznej. [nazwa krasnal jest tu zastosowana celowo - dlaczego?] ( SoP Ex(S)) SiP Przykład potwierdzający (weryfikujący) (nie ma mocy dowodu): jeśli nieprawdą jest, Ŝe pewien krasnal nie ma narzeczonej i jakiś krasnal istnieje (krasnale istnieją), to pewien krasnal ma narzeczoną. [nazwa krasnal jest tu zastosowana celowo - dlaczego?] 10

11 (SaP Ex(S)) SiP Przykład potwierdzający (weryfikujący) (nie ma mocy dowodu): jeśli kaŝdy krasnal ma czapkę i jakiś krasnal istnieje (krasnale istnieją), to pewien krasnal ma czapkę. [nazwa krasnal jest tu zastosowana celowo - dlaczego?] (SeP Ex(S)) SoP Przykład potwierdzający (weryfikujący) (nie ma mocy dowodu): jeśli Ŝaden krasnal nie ma narzeczonej i jakiś krasnal istnieje (krasnale istnieją), to pewien krasnal nie ma narzeczonej. [nazwa krasnal jest tu zastosowana celowo - dlaczego?] 11

12 Prawa konwersji (konwersja to przestawienie podmiotu i orzecznika) prostej z ograniczeniem 2 1 SeP PeS SiP PiS (SaP Ex(S)) PiS (SeP Ex(P)) PoS

13 Prawa obwersji (obwersja to zanegowanie orzecznika i zmiana jakości zdania) (1) SaP Se-P (2) SeP Sa-P (3) SiP So-P (4) SoP Si-P (1) (2) (3) (4) 13

14 Prawa obwersji konwersji (obwersja zastosowana do prawej strony prawa konwersji) prostej z ograniczeniem 2 1 SeP Pa-S SiP Po-S (SaP Ex(S)) Po-S (SeP Ex(P)) Pi-S

15 Prawa kontrapozycji częściowej (kontrapozycja częściowa = konwersja + zmiana jakości + negacja orzecznika) 1 SaP -PeS 2 SoP -PiS 3 (SeP Ex(S)) -PiS 4 (SaP Ex(-P)) -SoP

16 zupełnej (kontrapozycja zupełna = konwersja+ negacja orzecznika + negacja podmiotu) 1 SaP -Pa-S 2 SoP -Po-S 3 (SeP Ex(S)) -Po-S 4 (SaP Ex(-P)) -Si-P

17 Prawa inwersji częściowej (inwersja częściowa = negacja podmiotu + zmiana jakości + zmiana ilości) zupełnej (negacja podmiotu + negacja orzecznika + zmiana ilości) 1 (SeP Ex(P)) -SiP 2 (SeP Ex(P)) -So-P

18 Tryby sylogistyczne Forma zdania kategorycznego, to funkcja zdaniowa zbudowana z jednej ze stałych a, e, i, o i ze zmiennych nazwowych. Trybem sylogistycznym nazywamy schemat wnioskowania spełniający dwa warunki: 1. Wstępują w nim dwie przesłanki będące formami zdania kategorycznego i ewentualnie przesłanka o niepustości jakiegoś terminu. Wiosek jest teŝ formą zdania kategorycznego. 2. Wstępują w nim trzy terminy, przy czym podmiot wniosku występuje w jednej przesłance, a orzecznik wniosku występuje w drugiej przesłance. Termin występujący w obu przesłankach nie występuje we wniosku - jest on nazywany terminem średnim. Mamy więc cztery moŝliwe figury trybów sylogistycznych: I II III IV M P P M M P P M S M S M M S M S S P S P S P S P 18

19 Poprawne tryby sylogistyczne figura I MaP MeP MaP SaM MeP SaM MaP MeP SaM Ex(S) SaM Ex(S) SiM SiM SaP SiP SeP SoP SiP SoP figura II figura III figura IV PeM PaM PeM SaM PaM SeM PeM PaM SaM Ex(S) SeM Ex(S) SiM SoM SeP SoP SeP SoP SoP SoP MaP MeP MaS MiP MaP MaS MoP MeP Ex(M) MaS MiS Ex(M) MaS MiS SiP SiP SiP SoP SoP SoP PaM PaM PeM MaS PaM MeS PiM MaS PeM Ex(P) MeS Ex(S) MaS Ex(M) MiS SiP SeP SoP SiP SoP SoP 19

20 Zadanie. Sprawdź niezawodność następujących trybów sylogistycznych: MeP SaM SeP PeM SiM SoP niezawodny niezawodny 20

21 PeM SaM Ex(S) SoP PeM MeS SeP niezawodny zawodny 21

22 Dotyczy wszelkich rozumowań, nie tylko trybów sylogistycznych: Rozumowanie jest poprawne, gdy nie jest w nim popełniony, ani błąd formalny (jest poprawne logicznie), ani materialny (jest poprawne treściowo). Błędem materialnym jest wykorzystanie w rozumowaniu przesłanki fałszywej, czyli wzięcie jakiejś przesłanki fałszywej za prawdziwą. Błędem formalnym jest zastosowanie zawodnego (niededukcyjnego) schematu wnioskowania. Wówczas, wniosek nie wynika logicznie z przesłanek, ani na mocy klasycznego rachunku zdań, ani na mocy klasycznego rachunku kwantyfikatorów, ani na mocy klasycznego rachunku nazw. 22

23 PaM MaS SiP PaM MaS Ex(P) SiP zawodny Brak załoŝenia niepustości P - np. jeśli kaŝdy pegaz (P) ma skrzydła umoŝliwiające latanie (M), i kaŝda istota mająca skrzydła umoŝliwiające latanie (M) moŝe latać (S), to i tak nie wynika z tego, Ŝe pewna istota latająca jest pegazem. Rozumowanie niepoprawne choć zastosowane do prawdziwych przesłanek, bo niededukcyjne (z powodu popełnienia błędu formalnego). niezawodny Istnienie załoŝenia niepustości P gwarantuje niezawodność trybu - nawet rozumowanie dotyczące pegazów jest wnioskowaniem logicznym: jeśli kaŝdy pegaz (P) ma skrzydła umoŝliwiające latanie (M), i kaŝda istota mająca skrzydła umoŝliwiające latanie (M) moŝe latać (S) i pegaz istnieje, to pewna istota latająca jest pegazem. Rozumowanie dedukcyjne choć niepoprawne, z powodu popełnienia błędu materialnego, czyli wykorzystania przesłanki fałszywej. 23

24 Relacje Definicja pary uporządkowanej <a,b> = {{a},{a,b}}. Wprost z definicji pary uporządkowanej wynika, Ŝe <a,b> <b,a > (bo przecieŝ {{a},{a,b}} {{b},{a,b}}). <a,b> = <c,d > wtw a = c i b = d. Definicja trójki uporządkowanej Definicja n-tki uporządkowanej <a,b,c> = <<a,b>,c>. <a 1,...,a n > = <<a 1,...,a n-1 >,a n >. Z definicji n-tki uporządkowanej wynika, Ŝe <a,b,c> = <<a,b>,c> = <{{a},{a,b}},c> = {{{{a},{a,b}}},{{{a},{a,b}},c}}. <a 1,...,a n > = <b 1,...,b n > wtw a 1 = b 1,..., a n = b n. 24

25 Zdanie stwierdzające zachodzenie relacji R między obiektami a i b ma postać (róŝne notacje): arb (a pozostaje z b w relacji R) (a jest w relacji R z b) R(a,b) <a,b> R (para uporządkowana <a,b> naleŝy do (jest w) relacji R) Notacja druga i trzecia umoŝliwiają wyraŝenie relacji więcej niŝ dwuczłonowej: R(a,b,c), R(a 1,...,a n ) <a,b,c> R, <a 1,...,a n > R 25

26 Definicja nieformalna relacji Relacją nazywamy związek zachodzący pomiędzy przedmiotami określonego typu. [dość kiepska definicja, bo jak na jej podstawie mówić np. o sumie relacji?] Definicja relacji Relacją nazywamy podzbiór iloczynu kartezjańskiego zbiorów. Relacja jest n-argumentowa jeśli jest podzbiorem iloczynu kartezjańskiego n zbiorów. [dobra definicja] Zatem Relacja dwuczłonowa, to zbiór par uporządkowanych, relacja trójczłonowa, to zbiór trójek uporządkowanych, relacja czteroczłonowa, to zbiór czwórek uporządkowanych, itd. relacja n-członowa, to zbiór n-tek uporządkowanych. 26

27 Przykład 1: Jeśli L jest zbiorem [wszystkich] ludzi, to iloczyn kartezjański LxL jest zbiorem [wszystkich moŝliwych] par uporządkowanych ludzi. Wśród tych par są np. takie, Ŝe na pierwszym miejscu znajduje się człowiek posiadający dziecko, a na drugim to właśnie dziecko. Wszystkie te i tylko te pary tworzą relację bycia rodzicem : ar 1 b wtw a jest rodzicem b. gdzie relacja bycia rodzicem = {<a,b> LxL: <a,b> R 1 } R 1 LxL. Dlatego poprawna definicja relacji mówi tylko o tym, Ŝe relacja jest [jakimś] podzbiorem iloczynu kartezjańskiego pewnych zbiorów. To zaś jaką jest relacją zaleŝy od tego jakim jest podzbiorem. Ma tu miejsce definicyjne utoŝsamienie bycia konkretnym podzbiorem iloczynu kartezjańskiego z treściowo rozumianym byciem jakąś konkretną relacją. 27

28 Przykład 2: Relacją dwuczłonową R 1 jest x jest rodzicem y-ka. Zatem, jeśli a jest rodzicem b, to ar 1 b. Relacją trójczłonową R 2 jest x jest rodzicem y-ka w chwili z. Zatem, jeśli a jest rodzicem b w przedziale czasu do którego naleŝy chwila t, to R 2 (a,b,t). Przykładową relację pięcioczłonową R 3 tworzą wszystkie takie piątki uporządkowane <a,b,c,d,e>, w których a jest dla c i d w przedziale czasu, do którego naleŝy chwila e rodzicem płci Ŝeńskiej, b jest dla c i d w przedziale czasu, do którego naleŝy chwila e rodzicem płci męskiej (czyli, c i d są dziećmi a i b w przedziale czasu, do którego naleŝy chwila e). 28

29 Dla relacji dwuczłonowych jest sens mówić o dziedzinie i przeciwdziedzinie relacji. Dziedzina relacji R: czyli D R = {x: <x,y> R} x D R wtw y xry. Przeciwdziedzina relacji R: czyli D R = {y: <x,y> R}. y D R wtw x xry. Pole relacji R: P R = D R D R. 29

30 Przykład 3: Dziedziną relacji R 1 jest zbiór wszystkich ludzi, którzy są rodzicem dla przynajmniej jednego dziecka. Przeciwdziedziną relacji R 1 jest zbiór wszystkich ludzi, dla których ktoś jest rodzicem. Pytania do przykładu 3: W jakiej chwili ktoś jest, a w jakiej ktoś nie jest rodzicem? W jakiej chwili ktoś ma rodzica? Czy przeciwdziedzina relacji R 1 jest równa zbiorowi wszystkich ludzi? Których ludzi? Czy tylko tych, Ŝyjących? Czy pole relacji R 1 jest równe przeciwdziedzinie tej relacji? W jakim sensie ktoś jest rodzicem? W sensie biologicznym, czy w świetle prawa? Odpowiedzi na te pytania zaleŝą, od tego jak zdefiniowana jest relacja R 1, czyli od tego, które konkretnie pary uporządkowane ją tworzą, a więc i od tego jak określony jest L - zbiór wszystkich ludzi. Niestety, zazwyczaj poprzestajemy na niedookreśleniach. 30

31 Rodzaje relacji: Niech R ZxZ. Relacją pustą jest: Relacją pełną w Z jest: R = (Ŝadna para uporządkowana nie jest w relacji R) R = ZxZ (kaŝda para uporządkowana jest w relacji R) Konwersem relacji R (relacją odwrotną do R) jest: R -1 = {<x,y>: <y,x> R} Ograniczeniem relacji R w dziedzinie do zbioru A jest: R D A = {<x,y>: x A <x,y> R} Ograniczeniem relacji R w przeciwdziedzinie do zbioru A jest: R D- A = {<x,y>: y A <x,y> R} Ograniczeniem relacji R w polu do zbioru A jest: R P A = {<x,y>: x A y A <x,y> R} Iloczynem relacji R i S jest: R S = {<x,y>: <x,y> R <x,y> S} Sumą relacji R i S jest: R S = {<x,y>: <x,y> R <x,y> S} Iloczynem względnym relacji R i S jest: R S = {<x,z>: y (<x,y> R <y,z> S)} R jest relacją lewostronnie jednoznaczną (R L! ) jeśli: x,y,z ((<x,z> R <y,z> R) x = y) R jest relacją prawostronnie jednoznaczną (R P! ) jeśli: x,y,z ((<x,y> R <x,z> R) y = z) R jest relacją jednoznaczną (R! ) jeśli R jest lewostronnie jednoznaczną i R jest prawostronnie jednoznaczną. 31

32 Przykład 4: Pustą relacją jest x jest ojcem x. Pełną relacją jest x jest przodkiem y lub x nie jest przodkiem y. Konwersem relacji x jest męŝem y jest relacja y jest Ŝoną x (takŝe x jest Ŝoną y ). Ograniczeniem relacji x jest rodzicem y w dziedzinie do zbioru kobiet jest x jest matką y. Ograniczeniem relacji x jest rodzicem y w przeciwdziedzinie do zbioru osób płci Ŝeńskiej jest relacja x jest rodzicem y, gdzie y jest córką x-a (nie x jest córką y, bo to byłby konwers tej relacji). Relację x jest rodzicem y moŝna ograniczyć w polu do zbioru osób zameldowanych w mieście Łodzi. Iloczynem relacji x jest ojcem y i x jest młodszy od y jest relacja pusta. Sumą relacji x jest ojcem y i x jest matką y jest relacja x jest rodzicem y. Iloczynem względnym relacji x jest matką y i y jest Ŝoną z jest relacja... x jest kochaną mamusią z. Relacja x jest matką y jest lewostronnie jednoznaczna. Relacja x jest wicewojewodą y jest prawostronnie jednoznaczna. Relacja x jest wojewodą y jest jednoznaczna. 32

33 Rodzaje relacji (c.d.): Niech R ZxZ. R jest zwrotna w Z wtw x Z xrx R jest przeciwzwrotna w Z wtw x Z (xrx) R jest symetryczna w Z wtw x,y Z (xry yrx) R jest przeciwsymetryczna w Z wtw x,y Z (xry (yrx)) R jest na wpół (słabo) przeciwsymetryczna w Z wtw x,y Z ((xry yrx) x = y) * R jest przechodnia (tranzytywna) w Z wtw x,y,z Z ((xry yrz) xrz) R jest przeciwprzechodnia (przeciwtranzytywna) w Z wtw x,y,z Z ((xry yrz) (xrz)) R jest spójna w Z wtw x,y Z (xry yrx x = y) * tradycyjną nazwą tej relacji jest słabo antysymetryczna R jest relacją równowaŝności na Z wtw R jest zwrotna, symetryczna i przechodnia R jest relacją porządkującą zbiór Z wtw R jest przeciwsymetryczna, przechodnia i spójna w Z. R jest relacją częściowo porządkującą zbiór Z wtw R jest zwrotna, słabo przeciwsymetryczna i przechodnia w Z. R jest relacją liniowo porządkującą zbiór Z wtw R jest częściowo porządkująca zbiór Z oraz jest spójna w Z. 33

34 Przykład 5: Relacją zwrotną na zbiorze ludzi jest x jest tego samego wzrostu co y. Relacją symetryczną na zbiorze ludzi jest x jest małŝonkiem y. Relacją przeciwsymetryczną na zbiorze ludzi jest x jest Ŝoną y. Relacją słabo przeciwsymetryczną na zbiorze mizantropów-egoistów jest x kocha y. Relacją słabo przeciwsymetryczną na zbiorze liczb jest x y. Relacją przechodnią na zbiorze ludzi jest x jest przodkiem y. Relacją przeciwprzechodnią na zbiorze ludzi jest x jest synem y. Relacją spójną na zbiorze liczb naturalnych jest rok urodzenia x jest wcześniejszy niŝ rok urodzenia y. 34

35 Uwaga oczywista 1: Relacja, która nie jest symetryczna nie musi być przeciwsymetryczna, np. x szanuje y. Relacja, która nie jest, ani symetryczna, ani przeciwsymetryczna nie musi być słabo przeciwsymetryczna. Bywają relacje, które nie są ani symetryczne, ani przeciwsymetryczne, ani słabo przeciwsymetryczne. Przykładem takiej relacji jest x kocha y określona na zbiorze ludzi. Uwaga oczywista 2: Relacja, która nie jest przechodnia nie musi być przeciwprzechodnia. Bywają relacje, które nie są ani przechodnie, ani przeciwprzechodnie. Przykładem takiej relacji jest x jest krewnym y określona na zbiorze ludzi. Gorąca prośba: Nie twórzmy relacji nonsymetrycznych, jako takich, które miałyby nie być, ani symetrycznymi, ani przeciwsymetrycznymi, czy teŝ relacji nontranzytywnych, które miałyby nie być, ani tranzytywnymi, ani przeciwtranzytywnymi. Tak jak nie tworzymy równoległoboków samych (choć takie pomysły istnieją tu i ówdzie), które miałyby być tymi, które nie są, ani rombami, ani prostokątami. Skoro o człowieku nie powie się, ani Ŝe jest parzysty, ani Ŝe jest nieparzysty, to nie znaczy, Ŝe trzeba mówić, Ŝe jest nonparzysty - po prostu tych określeń nie uŝywa się mówiąc o ludziach. 35

36 Przykład 6: Relacją równowaŝności na zbiorze uczniów szkół podstawowych jest x jest uczniem tej samej klasy szkoły podstawowej co y. Relacja równowaŝności na zbiorze Z jest podstawą podziału logicznego zbioru Z, na którym jest określona. Człony tego podziału nazywają się klasami abstrakcji. Klasę abstrakcji danej relacji równowaŝności R tworzą wszystkie te obiekty, które są ze sobą w relacji R: [a] R = {b Z: arb}. a jest reprezentantem swojej klasy abstrakcji. Dowolny element z danej klasy abstrakcji moŝe być jej reprezentantem. Wracając do przykładu: relacja równowaŝności przynaleŝności do tej samej klasy szkoły podstawowej określona na zbiorze uczniów wszystkich szkół podstawowych jest relacją, która dzieli zbiór uczniów wszystkich szkół podstawowych na klasy abstrakcji będące klasami tych szkół. KaŜdy uczeń danej klasy jest reprezentantem klasy abstrakcji toŝsamej z tą klasą. Naturalnie, wspomniana relacja moŝe być określona na zbiorze wszystkich uczniów jednej konkretnej szkoły podstawowej. Wówczas, dzieli ona na klasy abstrakcji uczniów jedynie tej szkoły. Inną relacją równowaŝności jest: - relacja x pozostaje na tym samym gospodarstwie domowym co y określona na zbiorze obywateli RP. - relacja x jest rówieśnikiem y określona na zbiorze ludzi. - relacja x jest sztućcem z tego samego kompletu co y określona na zbiorze sztućców. 36

37 Relacją porządkującą (porządkującą liniowo) zbiór jest x jest długiem hipotecznym wpisanym do księgi wieczystej [nie] wcześniej niŝ dług y. Istotnie, jest to relacja przeciwsymetryczna, przechodnia i spójna w zbiorze długów hipotecznych danej księgi wieczystej. porządek liniowy Drzewo genealogiczne reprezentuje relację porządkującą nieliniowo: Relacja x y jest zwrotna, słabo przeciwsymetryczna i przechodnia w zbiorze punktów diagramu. Porządkuje więc ten zbiór zgodnie z symboliką kresek: punkt x połączony kreską z punktem y, jest w relacji x y, jeśli x leŝy niŝej niŝ y. porządek częściowy (nie jest porządkiem liniowym) 37

Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 8. klasyczny rachunek kwantyfikatorów klasyczny rachunek nazw

Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 8. klasyczny rachunek kwantyfikatorów klasyczny rachunek nazw WYKŁAD 8 klasyczny rachunek kwantyfikatorów klasyczny rachunek nazw 1 lukowski@filozof.uni.lodz.pl Katedra Logiki i Metodologii Nauk Instytut Filozofii Uniwersytet Łódzki ul. Kopcińskiego 16/18, I piętro,

Bardziej szczegółowo

Wprowadzenie do logiki Zdania, cz. II Elementy sylogistyki

Wprowadzenie do logiki Zdania, cz. II Elementy sylogistyki Wprowadzenie do logiki Zdania, cz. II Elementy sylogistyki Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Co dzisiejsza historia mieć będzie wspólnego z Arystotelesem? 2 Plan gry:

Bardziej szczegółowo

Kultura logiczna Elementy sylogistyki

Kultura logiczna Elementy sylogistyki Kultura logiczna Elementy sylogistyki Bartosz Gostkowski bgostkowski@gmail.com Kraków 15 III 2010 Plan wykładu: Podział wnioskowań Sylogizmy Poprawność sylogizmów i niezawodność trybów PODZIAŁ WNIOSKOWAŃ

Bardziej szczegółowo

Relacje. Relacje / strona 1 z 18

Relacje. Relacje / strona 1 z 18 Relacje Relacje / strona 1 z 18 Relacje (para uporządkowana, iloczyn kartezjański) Definicja R.1. Parą uporządkowaną (x,y) nazywamy zbiór {{x},{x,y}}. Uwaga: (Ala, Ola) (Ola, Ala) Definicja R.2. (n-tka

Bardziej szczegółowo

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 9 Relacje 9.1 Podstawowe pojęcia 9.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu

Bardziej szczegółowo

Teoria automatów i języków formalnych. Określenie relacji

Teoria automatów i języków formalnych. Określenie relacji Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego

Bardziej szczegółowo

RELACJE I ODWZOROWANIA

RELACJE I ODWZOROWANIA RELACJE I ODWZOROWANIA Definicja. Dwuargumentową relacją określoną w iloczynie kartezjańskim X Y, X Y nazywamy uporządkowaną trójkę R = ( X, grr, Y ), gdzie grr X Y. Zbiór X nazywamy naddziedziną relacji.

Bardziej szczegółowo

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu ➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje

Bardziej szczegółowo

Logika I. Wykład 3. Relacje i funkcje

Logika I. Wykład 3. Relacje i funkcje Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 3. Relacje i funkcje 1 Już było... Definicja 2.6. (para uporządkowana) Parą uporządkowaną nazywamy zbiór {{x},

Bardziej szczegółowo

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem. Zbiory Pojęcie zbioru jest w matematyce pojęciem pierwotnym, którego nie definiujemy. Gdy a jest elementem należacym do zbioru A to piszemy a A. Stosujemy również oznaczenie a / A jeżeli (a A). Będziemy

Bardziej szczegółowo

LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ

LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ Robert Trypuz Katedra Logiki KUL 18 grudnia 2013 Robert Trypuz (Katedra Logiki) Wnioskowanie 18 grudnia 2013 1 / 12 Zarys 1 Wnioskowanie Definicja Schemat wnioskowania

Bardziej szczegółowo

RACHUNEK ZBIORÓW 5 RELACJE

RACHUNEK ZBIORÓW 5 RELACJE RELACJE Niech X i Y są dowolnymi zbiorami. Układ ich elementów, oznaczony symbolem x,y (lub też (x,y) ), gdzie x X i y Y, nazywamy parą uporządkowaną o poprzedniku x i następniku y. a,b b,a b,a b,a,a (o

Bardziej szczegółowo

IVa. Relacje - abstrakcyjne własności

IVa. Relacje - abstrakcyjne własności IVa. Relacje - abstrakcyjne własności Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny wiva. Krakowie) Relacje - abstrakcyjne własności 1 / 22 1 Zwrotność

Bardziej szczegółowo

Relacje. Zdania opisujące stosunki dwuczłonowe mają ogólny wzór budowy: xry, co czytamy: x pozostaje w relacji R do y.

Relacje. Zdania opisujące stosunki dwuczłonowe mają ogólny wzór budowy: xry, co czytamy: x pozostaje w relacji R do y. Zdania stwierdzające relację Pewne wyrazy i wyraŝenia wskazują na stosunki, czyli relacje, jakie zachodzą między róŝnymi przedmiotami. Do takich wyrazów naleŝą m. in. wyrazy: nad, pod, za, przy, braterstwo,

Bardziej szczegółowo

Logika SYLOGISTYKA. Robert Trypuz. 27 listopada Katedra Logiki KUL. Robert Trypuz (Katedra Logiki) SYLOGISTYKA 27 listopada / 40

Logika SYLOGISTYKA. Robert Trypuz. 27 listopada Katedra Logiki KUL. Robert Trypuz (Katedra Logiki) SYLOGISTYKA 27 listopada / 40 Logika SYLOGISTYKA Robert Trypuz Katedra Logiki KUL 27 listopada 2013 Robert Trypuz (Katedra Logiki) SYLOGISTYKA 27 listopada 2013 1 / 40 Plan wykładu 1 Wprowadzenie Arystoteles w sztuce Arystotelesa życiorys

Bardziej szczegółowo

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rachunek zdań Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak RACHUNEK ZDAŃ Zdania Definicja Zdanie jest to stwierdzenie w języku naturalnym, któremu można przypisać wartość prawdy lub

Bardziej szczegółowo

PODSTAWOWE POJĘCIA DOTYCZĄCE RELACJI

PODSTAWOWE POJĘCIA DOTYCZĄCE RELACJI PODSTAWOWE POJĘCIA DOTYCZĄCE RELACJI (niniejsze opracowanie jest nieznacznie skróconą wersją opracowania zawartego w książce Zygmunta Ziembińskiego Logika pragmatyczna. (wyd. XIX, s. 95 99). Polecam lekturę

Bardziej szczegółowo

Logika dla socjologów

Logika dla socjologów Logika dla socjologów Część 6: Modele rozumowań. Pojęcie wynikania Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Modele rozumowań 2 Wynikanie 3 Rozumowania poprawne

Bardziej szczegółowo

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią. Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i

Bardziej szczegółowo

Relacje. opracował Maciej Grzesiak. 17 października 2011

Relacje. opracował Maciej Grzesiak. 17 października 2011 Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla

Bardziej szczegółowo

DEFINICJA. Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B.

DEFINICJA. Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B. RELACJE Relacje 1 DEFINICJA Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B. Relacje 2 Przykład 1 Wróćmy do przykładu rozważanego

Bardziej szczegółowo

Wykład ze Wstępu do Logiki i Teorii Mnogości

Wykład ze Wstępu do Logiki i Teorii Mnogości Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje

Bardziej szczegółowo

Pytania i polecenia podstawowe

Pytania i polecenia podstawowe Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:

Bardziej szczegółowo

Klasyczne zdania kategoryczne

Klasyczne zdania kategoryczne Klasyczne zdania kategoryczne Elementy logiki i metodologii nauk spotkanie III Bartosz Gostkowski Poznań, 20 X 09 Plan wykładu: Podział zdań z uwagi na funkcję logiczną operatora jest Zdania kategoryczne

Bardziej szczegółowo

1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.

1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3. Logika (3h). Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( p q) 3. (p q) ( q p) 4. (p q) ( p q) 5. (p q) (p q) 6. ((p q) r) (p (q r)) 7. (p q) r (p r) (q r) 8. (p q) (q r) (p r). Sprawdź, czy wyrażenia:.

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Analiza matematyczna 1

Analiza matematyczna 1 Analiza matematyczna 1 Marcin Styborski Katedra Analizy Nieliniowej pok. 610E (gmach B) marcins@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/marcins () 28 września 2010 1 / 10 Literatura podstawowa R. Rudnicki,

Bardziej szczegółowo

Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 7. zdanie wynikanie wynikanie logiczne

Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 7. zdanie wynikanie wynikanie logiczne WYKŁAD 7 zdanie wynikanie wynikanie logiczne 1 lukowski@filozof.uni.lodz.pl Katedra Logiki i Metodologii Nauk Instytut Filozofii Uniwersytet Łódzki ul. Kopcińskiego 16/18, I piętro, pok. 13 tel. 635-61-34

Bardziej szczegółowo

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się 1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania

Bardziej szczegółowo

Teoria popytu. Popyt indywidualny konsumenta

Teoria popytu. Popyt indywidualny konsumenta Teoria popytu Popyt indywidualny konsumenta Koszyk towarów Definicja 1 Wektor x=(x 1,x 2,x 3,...,x n ) taki, że x i 0 dla każdego i,w którym i-ta współrzędna oznacza ilość towaru nr i, którą konsument

Bardziej szczegółowo

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to:

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to: 1 Rachunek zdań Formuły zdaniowe (lub krócej: zdania) w klasycznym rachunku zdań składają się ze zmiennych zdaniowych nazywanych też zdaniami składowymi (oznaczane są zazwyczaj p, q, r,...) oraz operatorów

Bardziej szczegółowo

Wstęp do Matematyki (2)

Wstęp do Matematyki (2) Wstęp do Matematyki (2) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Wstęp do Matematyki (2) Własności relacji 1 / 24 Wprowadzenie

Bardziej szczegółowo

BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH

BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH WSTĘP Zbiór liczb całkowitych można definiować na różne sposoby. Jednym ze sposobów określania zbioru liczb całkowitych jest

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 2B/14 Relacje Pojęcia: relacja czyli relacja dwuargumentowa relacja w zbiorze A relacja n-argumentowa Relacja E = {(x, x): x S} jest

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

Programowanie deklaratywne

Programowanie deklaratywne Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

SPIS TREŚCI. Przedmowa... Wykaz skrótów... Wykaz ważniejszej literatury...

SPIS TREŚCI. Przedmowa... Wykaz skrótów... Wykaz ważniejszej literatury... SPIS TREŚCI Przedmowa... Wykaz skrótów... Wykaz ważniejszej literatury... XI XIII XVII Rozdział I. Pojęcie logiki i jej struktura... 1 1. Pojęcie... 1 2. Struktura... 2 3. Logika a nauki pokrewne... 5

Bardziej szczegółowo

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Egzamin z logiki i teorii mnogości, rozwiązania zadań Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?

Bardziej szczegółowo

Spis treści. Wykaz skrótów... Wykaz literatury... Przedmowa... XXIII

Spis treści. Wykaz skrótów... Wykaz literatury... Przedmowa... XXIII Wykaz skrótów... Wykaz literatury... XI XV Przedmowa... XXIII Rozdział I. Pojęcie logiki i jej struktura... 1 1. Pojęcie... 1 2. Struktura... 2 3. Logika a nauki pokrewne... 5 Rozdział II. Znak, kategorie

Bardziej szczegółowo

Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy. Dla dowolnego zbioru B Y określamy jego przeciwobraz:

Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy. Dla dowolnego zbioru B Y określamy jego przeciwobraz: Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy jego obraz: f(a) = {f(x); x A} = {y Y : x A f(x) = y}. Dla dowolnego zbioru B Y określamy jego przeciwobraz: f 1 (B) = {x X; f(x) B}. 1 Zadanie.

Bardziej szczegółowo

wypowiedzi inferencyjnych

wypowiedzi inferencyjnych Wnioskowania Pojęcie wnioskowania Wnioskowanie jest to proces myślowy, w którym na podstawie mniej lub bardziej stanowczego uznania pewnych zdań zwanych przesłankami dochodzimy do uznania innego zdania

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

Symbol, alfabet, łańcuch

Symbol, alfabet, łańcuch Łańcuchy i zbiory łańcuchów Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Symbol, alfabet, łańcuch Symbol Symbol jest to pojęcie niedefiniowane (synonimy: znak, litera)

Bardziej szczegółowo

Rachunek zdań. Zdanie w sensie logicznym jest to wyraŝenie jednoznacznie stwierdzające, na gruncie reguł danego języka, iŝ tak a

Rachunek zdań. Zdanie w sensie logicznym jest to wyraŝenie jednoznacznie stwierdzające, na gruncie reguł danego języka, iŝ tak a Zdanie w sensie logicznym jest to wyraŝenie jednoznacznie stwierdzające, na gruncie reguł danego języka, iŝ tak a tak jest alboŝe tak a tak nie jest. Wartość logiczna zdania jest czymś obiektywnym, to

Bardziej szczegółowo

Rozdział 7 Relacje równoważności

Rozdział 7 Relacje równoważności Rozdział 7 Relacje równoważności Pojęcie relacji. Załóżmy, że dany jest niepusty zbiór A oraz własność W, którą mogą mieć niektóre elementy zbioru A. Własność W wyznacza pewien podzbiór W A zbioru A, złożony

Bardziej szczegółowo

Logika i teoria mnogości Ćwiczenia

Logika i teoria mnogości Ćwiczenia Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Algebra zbiorów 3 3 Różnica symetryczna 4 4 Iloczyn kartezjański. Kwantyfikatory. 5 5 Kwantyfikatory. 6 6 Relacje 7 7 Relacje

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

KURS MATEMATYKA DYSKRETNA

KURS MATEMATYKA DYSKRETNA KURS MATEMATYKA DYSKRETNA Lekcja 17 Relacje częściowego porządku. Diagramy Hassego. ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa).

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

WSTĘP ZAGADNIENIA WSTĘPNE

WSTĘP ZAGADNIENIA WSTĘPNE 27.09.2012 WSTĘP Logos (gr.) słowo, myśl ZAGADNIENIA WSTĘPNE Logika bada proces myślenia; jest to nauka o formach poprawnego myślenia a zarazem o języku (nie mylić z teorią komunikacji czy językoznawstwem).

Bardziej szczegółowo

Katedra Teorii i Filozofii Prawa Poznań, dnia 27 września 2018 r.

Katedra Teorii i Filozofii Prawa Poznań, dnia 27 września 2018 r. Katedra Teorii i Filozofii Prawa Poznań, dnia 27 września 2018 r. OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Logika prawnicza na kierunku Prawo I. Informacje ogólne 1. Nazwa modułu kształcenia:

Bardziej szczegółowo

Rozdział VII. Znaczenie logiki dla prawa i pracy prawnika Zadania i odpowiedzi 20

Rozdział VII. Znaczenie logiki dla prawa i pracy prawnika Zadania i odpowiedzi 20 Przedmowa Wykaz skrótów XIII XV Część A. Wprowadzenie Rozdział I. Rys historyczny 1 1. Początki logiki jako nauki 1 2. Średniowiecze 2 3. Czasy nowożytne i współczesne 4 Rozdział II. Podstawowe prawa myślenia

Bardziej szczegółowo

Podstawy logiki i teorii zbiorów Ćwiczenia

Podstawy logiki i teorii zbiorów Ćwiczenia Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.

Bardziej szczegółowo

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14 Wstęp do matematyki Matematyka, I rok. Tomasz Połacik Spis treści 1 Logika................................. 1 2 Zbiory................................. 7 3 Pewnik wyboru............................ 10

Bardziej szczegółowo

Elementy teorii mnogości. Część I. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Elementy teorii mnogości. Część I. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Elementy teorii mnogości 1 Elementy teorii mnogości Część I Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy teorii mnogości 2 1. Pojęcia

Bardziej szczegółowo

Elementy logiki i teorii mnogości

Elementy logiki i teorii mnogości Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy

Bardziej szczegółowo

Logika dla archeologów Część 5: Zaprzeczenie i negacja

Logika dla archeologów Część 5: Zaprzeczenie i negacja Logika dla archeologów Część 5: Zaprzeczenie i negacja Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zaprzeczenie 2 Negacja 3 Negacja w logice Sprzeczne grupy

Bardziej szczegółowo

Logika i teoria mnogości Ćwiczenia

Logika i teoria mnogości Ćwiczenia Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.

Bardziej szczegółowo

Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji

Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zbiory 2 Pary uporządkowane 3 Relacje Zbiory dystrybutywne

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2020 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2017 Zadania 1

Matematyka dyskretna. Andrzej Łachwa, UJ, 2017 Zadania 1 Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl Zadania 1 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A B C)'

Bardziej szczegółowo

Wykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27

Wykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27 Wykład 7 Informatyka Stosowana 21 listopada 2016 Informatyka Stosowana Wykład 7 21 listopada 2016 1 / 27 Relacje Informatyka Stosowana Wykład 7 21 listopada 2016 2 / 27 Definicja Iloczynem kartezjańskim

Bardziej szczegółowo

- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S.

- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. 1 Zbiór potęgowy - Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. - Dowolny podzbiór R zbioru 2 S nazywa się rodziną zbiorów względem S. - Jeśli S jest n-elementowym zbiorem,

Bardziej szczegółowo

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

Kultura logiczna Wnioskowania dedukcyjne

Kultura logiczna Wnioskowania dedukcyjne Kultura logiczna Wnioskowania dedukcyjne Bartosz Gostkowski bgostkowski@gmail.com Kraków 25 IV 2010 Plan wykładu: Intuicje dotyczące poprawności wnioskowania Wnioskowanie dedukcyjne Reguły niezawodne a

Bardziej szczegółowo

1. Wprowadzenie do rachunku zbiorów

1. Wprowadzenie do rachunku zbiorów 1 1. Wprowadzenie do rachunku zbiorów 2 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach w sensie dystrybutywnym; rachunek zbiorów jest fragmentem teorii mnogości. Pojęcia

Bardziej szczegółowo

Logika. Zadanie 4. Sprawdź, czy poniższe funkcje zdaniowe są tautologiami: i) (p q) = ( p q), ii) (p = q) ( p q). Rozwiązanie.

Logika. Zadanie 4. Sprawdź, czy poniższe funkcje zdaniowe są tautologiami: i) (p q) = ( p q), ii) (p = q) ( p q). Rozwiązanie. Logika Zadanie 4. Sprawdź, czy poniższe funkcje zdaniowe są tautologiami: i) (p q) = ( p q), ii) (p = q) ( p q). Rozwiązanie. i) Wprowadźmy oznaczenie F (p, q) ((p q) = ( p q)). Funkcja zdaniowa F nie

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Paradoksy log o i g czne czn i inne 4 marca 2010

Paradoksy log o i g czne czn i inne 4 marca 2010 Paradoksy logiczne i inne 4 marca 2010 Paradoks Twierdzenie niezgodne z powszechnie przyjętym mniemaniem, rozumowanie, którego elementy są pozornie oczywiste, ale wskutek zawartego w nim błędu logicznego

Bardziej szczegółowo

Lekcja 3: Elementy logiki - Rachunek zdań

Lekcja 3: Elementy logiki - Rachunek zdań Lekcja 3: Elementy logiki - Rachunek zdań S. Hoa Nguyen 1 Materiał a) Zdanie proste, złożone b) Spójniki logiczne (funktory zdaniotwórcze):,,,,, (alternatywa wykluczająca - XOR). c) Tautologia, zdanie

Bardziej szczegółowo

Powtórka 3. Katarzyna Paluszkiewicz 15.01.2015. Katarzyna Paluszkiewicz Powtórka 3 15.01.2015 1 / 11

Powtórka 3. Katarzyna Paluszkiewicz 15.01.2015. Katarzyna Paluszkiewicz Powtórka 3 15.01.2015 1 / 11 Powtórka 3 Katarzyna Paluszkiewicz 15.01.2015 Katarzyna Paluszkiewicz Powtórka 3 15.01.2015 1 / 11 p Przyjmijmy, że w sylogizmie o przesłankach postaci SaM i PoM oraz wniosku o postaci SoP obie przesłanki

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Zdań III

Wstęp do logiki. Klasyczny Rachunek Zdań III Wstęp do logiki Klasyczny Rachunek Zdań III Przypomnijmy: Logika: = Teoria form (schematów, reguł) poprawnych wnioskowań. Wnioskowaniem nazywamy jakąkolwiek skończoną co najmniej dwuwyrazową sekwencję

Bardziej szczegółowo

Nazwy. Jak widać, nazwa to nie to samo co rzeczownik. W podanych przykładach na nazwę złoŝoną składa się cały zespół

Nazwy. Jak widać, nazwa to nie to samo co rzeczownik. W podanych przykładach na nazwę złoŝoną składa się cały zespół Nazwa spełnia istotną rolę w języku, gdyŝ umoŝliwia proces identyfikowania róŝnych obiektów i z tego powodu nazwa jest podstawowym składnikiem wypowiedzi. Nazwa jest to wyraz albo wyraŝenie rozumiane jednoznacznie,

Bardziej szczegółowo

Relacje i relacje równoważności. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak

Relacje i relacje równoważności. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Relacje i relacje równoważności Materiały pomocnicze do wykładu uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Zbiór i iloczyn kartezjański Pojęcie zbioru Zbiór jest

Bardziej szczegółowo

Podstawy logiki i teorii zbiorów Ćwiczenia

Podstawy logiki i teorii zbiorów Ćwiczenia Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Kwantyfikatory. 5 6 Relacje 7

Bardziej szczegółowo

Elementy logiki Zbiory Systemy matematyczne i dowodzenie twierdzeń Relacje

Elementy logiki Zbiory Systemy matematyczne i dowodzenie twierdzeń Relacje Dr Maciej Grzesiak, pok.724 E e-mail: maciej.grzesiak@put.poznan.pl http://www.put.poznan.pl/ maciej.grzesiak Konsultacje: poniedziałek, 8.45-9.30, środa 8.45-9.30, piątek 9.45-10.30, pokój 724E Treść

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Informacje

Bardziej szczegółowo

Wstęp do matematyki listy zadań

Wstęp do matematyki listy zadań Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wstęp do matematyki

Bardziej szczegółowo

Filozofia, Historia, Wykład V - Filozofia Arystotelesa

Filozofia, Historia, Wykład V - Filozofia Arystotelesa Filozofia, Historia, Wykład V - Filozofia Arystotelesa 2010-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Podział nauk Arystoteles podzielił wszystkie dyscypliny wiedzy na trzy grupy:

Bardziej szczegółowo

Relacje. 1 Iloczyn kartezjański. 2 Własności relacji

Relacje. 1 Iloczyn kartezjański. 2 Własności relacji Relacje 1 Iloczyn kartezjański W poniższych zadaniach litery a, b, c, d oznaczają elementy zbiorów, a litery A, B, C, D oznaczają zbiory. Przypomnijmy definicję pary uporządkowanej (w sensie Kuratowskiego):

Bardziej szczegółowo

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

Katedra Teorii i Filozofii Prawa Poznań, dnia 12 lutego 2013 r. OPISU MODUŁU KSZTAŁCENIA (SYLABUS)

Katedra Teorii i Filozofii Prawa Poznań, dnia 12 lutego 2013 r. OPISU MODUŁU KSZTAŁCENIA (SYLABUS) Katedra Teorii i Filozofii Prawa Poznań, dnia 12 lutego 2013 r. Zespół wykładowców: prof. UAM dr hab. Jarosław Mikołajewicz dr Marzena Kordela Zespół prowadzących ćwiczenia: prof. UAM dr hab. Jarosław

Bardziej szczegółowo

Lista zadań - Relacje

Lista zadań - Relacje MATEMATYKA DYSKRETNA Lista zadań - Relacje Zadania obliczeniowe Zad. 1. Która z poniższych relacji jest funkcją? a) Relacja składająca się ze wszystkich par uporządkowanych, których poprzednikami są studenci,

Bardziej szczegółowo

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań System aksjomatyczny logiki Budując logikę

Bardziej szczegółowo

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego 2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną G = gdzie: N zbiór symboli nieterminalnych, T zbiór symboli terminalnych, P zbiór

Bardziej szczegółowo

1. Sylogistyka Arystotelesa

1. Sylogistyka Arystotelesa 1. Sylogistyka Arystotelesa Arystoteles ze Stagiry, syn Nikomacha, lekarza z dziada pradziada, działajacego przy dworze króla Macedonii, ur. 384 p.n.e. w Stagirze, zm. 322 p.n.e. w Chalcydzie. Arystoteles

Bardziej szczegółowo

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu Witold Marciszewski: Wykład Logiki, 17 luty 2005, Collegium Civitas, Warszawa Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu 1. Poniższe wyjaśnienie (akapit

Bardziej szczegółowo

Matematyka ETId Elementy logiki

Matematyka ETId Elementy logiki Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,

Bardziej szczegółowo

LOGIKA Klasyczny Rachunek Zdań

LOGIKA Klasyczny Rachunek Zdań LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Języki i operacje na językach. Teoria automatów i języków formalnych. Definicja języka

Języki i operacje na językach. Teoria automatów i języków formalnych. Definicja języka Języki i operacje na językach Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Definicja języka Definicja języka Niech Σ będzie alfabetem, Σ* - zbiorem wszystkich łańcuchów

Bardziej szczegółowo