Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki"

Transkrypt

1 Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1

2 Na poprzednim wykładzie udowodniliśmy m.in.: Wprowadzenie i przypomnienia Lemat 4.1. Niech M będzie dowolną ale ustaloną interpretacją. Jeżeli M (A B) oraz M A, to M B. Lemat 4.2. Niech M = <U, > będzie dowolną ale ustaloną interpretacją. Załóżmy, że formuła D powstaje z formuły C poprzez zastosowanie jednej z pierwotnych reguł inferencyjnych KRP. Wówczas jeśli M C, to M D. Pierwotne reguły inferencyjne KRP, o których mówimy w lemacie 4.2, to oczywiście: RP, O, D, O i D. Podobnie jak poprzednio, mówiąc o formułach mamy na myśli formuły zdaniowe dowolnego ale ustalonego języka pierwszego rzędu, a mówiąc o interpretacjach mamy na myśli interpretacje tego języka. Przypomnijmy teraz: 2

3 Definicja 14.1: Derywacją formuły zdaniowej A w oparciu o zbiór formuł zdaniowych X nazywamy skończony ciąg formuł zdaniowych, którego ostatnim wyrazem jest formuła A, taki, że dowolna formuła zdaniowa będąca wyrazem tego ciągu: (1) należy do zbioru X, lub (2) powstaje z jakiegoś wcześniejszego wyrazu rozważanego ciągu poprzez zastosowanie: - reguły podstawiania RP, lub - reguły opuszczania dużego kwantyfikatora O, lub - reguły dołączania dużego kwantyfikatora D, lub - reguły opuszczania małego kwantyfikatora O, lub - reguły dołączania małego kwantyfikatora D, lub (3) powstaje z jakichś wcześniejszych wyrazów tego ciągu poprzez zastosowanie reguły odrywania RO. Symbolem Cn(X) oznaczamy zbiór wszystkich formuł, dla których istnieje przynajmniej jedna derywacja w oparciu o zbiór formuł X (tj. zbiór tych wszystkich formuł, które można wyprowadzić, korzystając z pierwotnych reguł inferencyjnych KRP, ze zbioru przesłanek X). Innymi słowy, A Cn(X) wtw istnieje przynajmniej jedna derywacja A w oparciu o X. 3

4 Derywacje a dziedziczenie prawdziwości Gdy mamy do czynienia z derywacją formuły A w oparciu o zbiór formuł X, formułę A nazywamy wnioskiem tej derywacji, natomiast formuły należące do X określamy mianem przesłanek tej derywacji. Twierdzenie 5.1. Jeżeli formuła A jest wnioskiem derywacji, której wszystkie przesłanki są prawdziwe przy (dowolnej ale ustalonej) interpretacji M, to formuła A jest również prawdziwa przy interpretacji M. Dowód: Podobny do dowodu twierdzenia 4.4. Widzimy zatem, że derywacje w oparciu o prawdziwe przesłanki muszą prowadzić do prawdziwych wniosków. Oznaczmy symbolem Vr(M) zbiór wszystkich formuł zdaniowych rozważanego języka, które są prawdziwe przy interpretacji M tego języka. Treść twierdzenia 5.1 możemy teraz wyrazić następująco: dla dowolnej interpretacji M: jeżeli A Cn(X) oraz X Vr(M), to A Vr(M) albo poprzez frazę: operacja konsekwencji Cn nie wyprowadza poza zbiór formuł prawdziwych (przy danej interpretacji języka). 4

5 Konsekwencja logiczna a dziedziczenie prawdziwości Jak pamiętamy (? :)), często jest tak, iż wyprowadzając/ usiłując wyprowadzić daną formułę z jakiegoś zbioru przesłanek rzeczowych, wykorzystujemy w charakterze dodatkowych przesłanek pewne tezy logiki i/lub korzystamy z jakichś wtórnych reguł inferencyjnych (co zresztą sprowadza się w istocie do przypadku pierwszego). Ponieważ wiemy już, że tezy KRP są prawdziwe przy każdej interpretacji języka (są tautologiami), zatem takie derywacje nie mogą prowadzić od prawdziwych przesłanek do fałszywych wniosków. Zachodzi: Twierdzenie 5.2. Jeżeli formuła A jest wnioskiem derywacji [prowadzonej] w oparciu o zbiór formuł zdaniowych X i niepusty zbiór tez KRP, a ponadto wszystkie formuły zdaniowe w X są prawdziwe przy interpretacji M, to formuła A jest również prawdziwa przy interpretacji M. Dowód: Korzystamy z twierdzenia 5.1 oraz twierdzenia 4.5. Na następnym slajdzie ujmiemy powyższe idee w sposób bardziej zadowalający zawodowców :) 5

6 Przypomnijmy: Konsekwencja logiczna a dziedziczenie prawdziwości Symbolem Arp oznaczamy zbiór wszystkich aksjomatów KRP. Definicja 14.3: A Cn L (X) wtw A Cn(X Arp) Napis A Cn L (X) czytamy A jest jedną z konsekwencji logicznych zbioru X. Pojęcie definiowane przez definicję 14.3 to pojęcie konsekwencji logicznej na gruncie logiki pierwszego rzędu, czyli KRP. Możemy łatwo udowodnić: Twierdzenie 5.3. Jeżeli A Cn L (X) oraz X Vr(M), to A Vr(M). Dowód: Proszę spróbować swoich sił :) Jednocześnie mamy: ($) Jeżeli Y Cn(Arp) oraz A Cn(X Y), to A Cn L (X). Tak więc twierdzenie 5.2 jest wnioskiem z twierdzenia 5.3. Treść intuicyjną tego ostatniego twierdzenia wyraża fraza: operacja konsekwencji logicznej Cn L nie wyprowadza poza zbiór formuł prawdziwych (przy danej interpretacji języka). 6

7 Wynikanie logiczne: intuicje Pojęcia derywacji, dowodu, konsekwencji i konsekwencji logicznej to pojęcia syntaktyczne. Syntaktyczny charakter ma też pojęcie tezy KRP. Jak już wspomnieliśmy, semantycznym odpowiednikiem pojęcia tezy KRP jest pojęcie tautologii. Natomiast semantycznym odpowiednikiem konsekwencji logicznej jest wynikanie logiczne. Intuicja leżąca u podstaw definicji tego pojęcia jest następująca: wniosek wynika logicznie z przesłanek dokładnie wtedy, gdy nie może być tak, że wszystkie przesłanki są prawdziwe, a wniosek nie jest prawdziwy. Warunek typu nie może być tak, że jest oczywiście silniejszy od warunku typu nie jest tak, że. 7

8 Rozważmy: Każda abra jest kadabrą. Każda kadabra jest memeną Każda abra jest memeną. Wynikanie logiczne: intuicje Otóż nie może być tak, że obie przesłanki są prawdziwe, a wniosek nie jest prawdziwy przy czym zupełnie nieistotne jest tu, czym są abra, kadabra i memena. Innymi słowy: jakkolwiek interpretujemy predykaty jest abrą, jest kadabrą i jest memeną, nie jest tak, że przesłanki są prawdziwe, a wniosek prawdziwy nie jest. Powyższy przykład daje nam klucz do definicji (semantycznego) pojęcia wynikania logicznego. 8

9 Wynikanie logiczne: definicja Definicja 5.1. Formuła zdaniowa A języka pierwszego rzędu L wynika logicznie ze zbioru formuł zdaniowych X języka L wtw zachodzi: (#) dla każdej interpretacji M języka L: jeżeli wszystkie formuły ze zbioru X są prawdziwe przy interpretacji M, to również formuła A jest prawdziwa przy interpretacji M. To, że formuła A wynika logicznie ze zbioru formuł X, zapisujemy: X A. Używając wprowadzonej wcześniej notacji, możemy powiedzieć krótko: X A wtw dla każdej interpretacji M: jeżeli X Vr(M), to A Vr(M). Jest oczywiste, że powyższe stwierdzenie jest równoważne z: X A wtw nie istnieje interpretacja M taka, że: X Vr(M) oraz A Vr(M). 9

10 Wynikanie logiczne Wnioskiem z twierdzenia 5.1 i definicji 5.1 jest: Twierdzenie 5.4. Jeżeli A Cn(X), to X A. Z kolei z twierdzenia 5.3 dostajemy: Twierdzenie 5.5. Jeżeli A Cn L (X), to X A. Można również udowodnić, że gdy X A, to A Cn L (X). Wrócimy jeszcze do tego. Natomiast nie zachodzi odwrotność twierdzenia

11 Teraz spójrzmy na następującą tabelkę: Wynikanie logiczne A Cn(X) / A Cn L (X) / X A X Vr(M) X Vr(M) A Vr(M) A Vr(M) lub A Vr(M) Komentarz: Żadna z podanych definicji (konsekwencji, konsekwencji logicznej i wynikania logicznego) nie zakłada, że X zbiór przesłanek - musi być zbiorem formuł prawdziwych (przy danej interpretacji języka). Jeśli jednak w X-ie są wyłącznie prawdy (przy danej interpretacji języka), to A jest też prawdą (przy tej samej interpretacji języka). Jeśli natomiast co najmniej jedna formuła w X-ie nie jest prawdziwa przy danej interpretacji języka, to może się zdarzyć zarówno to, że A nie jest prawdą przy tej interpretacji języka, jak i to, że A jest prawdą przy tej interpretacji. To, co faktycznie się zdarzy, zależy od postaci formuł w X-ie i postaci formuły A, oraz od tego, czym jest rozważana interpretacja. Niby to oczywiste, ale warto to głośno powiedzieć :) 11

12 Wynikanie logiczne: monotoniczność Notacja: Pisząc X non A, mamy na myśli, że A nie wynika logicznie z X. Udowodnimy teraz: Twierdzenie 5.6. Jeżeli Y A oraz Y X, to X A. Dowód: Załóżmy, że: Y A oraz Y X, a ponadto X non A. Skoro X non A, to istnieje interpretacja M, przy której A nie jest prawdą, natomiast wszystkie formuły w X są prawdziwe. Ponieważ jednak Y X, zatem wszystkie formuły w Y są prawdziwe przy interpretacji M. Tak więc Y non A. Otrzymaliśmy sprzeczność. Twierdzenie 5.6 pokazuje, że wynikanie logiczne określone przez definicję 5.1 jest monotoniczne: to, co wynika logicznie z pewnego zbioru formuł, wynika też z każdego szerszego zbioru formuł, w którym wyjściowy zbiór jest zawarty. Dygresja: Istnieją logiki nieklasyczne, w których wynikanie logiczne nie jest monotoniczne. O nich jednak powiemy dopiero na trzecim roku :) 12

13 Wynikanie logiczne: własności Definiując wynikanie logiczne, nie nałożyliśmy żadnych ograniczeń na zbiór przesłanek X. Tak więc X może być zarówno zbiorem nieskończonym, jak i zbiorem skończonym; jeśli natomiast X jest skończony, to X może mieć dokładnie jeden element, lub więcej niż jeden element, lub być zbiorem pustym. Następujące twierdzenie przyjmiemy chwilowo bez dowodu: Twierdzenie 5.7 (o finitystyczności/ zwartości wynikania logicznego) X A wtw istnieje skończony podzbiór Y zbioru X taki, że Y A. Widzimy zatem, że w logice pierwszego rzędu (tj. w KRP) z nieskończonego zbioru formuł nie wynika logicznie nic więcej niż z jakiegoś skończonego podzbioru tego zbioru. 13

14 Przypominam, że symbolem oznaczamy zbiór pusty. Udowodnimy teraz: Wynikanie logiczne: własności Twierdzenie 5.8. A wtw A jest tautologią. Dowód: ( ) Załóżmy, że A oraz że A nie jest tautologią. Istnieje wówczas interpretacja M taka, że M non A, czyli A Vr(M). Skoro jednak A, to na mocy definicji 5.1 istnieje formuła B taka, że B oraz M non B. Wnosimy stąd, że istnieje formuła B taka, że B, co nie jest możliwe. Otrzymaliśmy sprzeczność. ( ) Załóżmy, że A jest tautologią, ale non A. Skoro non A, to na mocy definicji 5.1 istnieje interpretacja M taka, że M non A. Zatem A nie jest tautologią. Otrzymaliśmy sprzeczność. Widzimy zatem, że tautologie i tylko one wynikają logicznie z pustego zbioru formuł. Konsekwencją twierdzeń 5.7 i 5.8 jest: Twierdzenie 5.9. Każda tautologia wynika logicznie z dowolnego zbioru formuł. 14

15 Wynikanie logiczne: własności Definicja 5.2. Zbiór formuł zdaniowych X języka L nazywamy sprzecznym wtw nie istnieje interpretacja języka L, przy której wszystkie formuły należące do zbioru X są [jednocześnie] prawdziwe. Zachodzi: Twierdzenie Jeżeli X jest sprzecznym zbiorem formuł zdaniowych, to X A dla dowolnej formuły zdaniowej A. Dowód: Zapraszam na wykład :) Widzimy zatem, że ze sprzecznego zbioru formuł zdaniowych wynika logicznie każda formuła zdaniowa. Nawiasem mówiąc, twierdzenie 5.10 można wzmocnić do równoważności; w dowodzie twierdzenia odwrotnego do twierdzenia 5.10 wystarczy rozważyć dowolna formułę niespełnialną. Pozostawiam to Państwu :) 15

16 Wynikanie logiczne formuły z formuły Często zamiast mówienia o wynikaniu logicznym formuły (zdania) ze zbioru formuł (zdań), mówimy o wynikaniu formuły z pojedynczej formuły (zdania). Można wprowadzić osobne pojęcie dla tego przypadku: Definicja 5.3. Formuła zdaniowa A języka pierwszego rzędu L wynika logicznie z formuły zdaniowej B języka L (symbolicznie: B A) wtw zachodzi: (#) dla każdej interpretacji M języka L: jeżeli formuła B jest prawdziwa interpretacji M, to formuła A jest prawdziwa przy interpretacji M. Można też zdefiniować odpowiednie pojęcie korzystając z pojęcia wynikania formuły ze zbioru formuł: Definicja 5.4. B A wtw {B} A. Jakkolwiek postąpimy, jest oczywiste, że zachodzi: Twierdzenie {B 1,..., B n } A wtw B 1... B n A. 16

17 Wynikanie logiczne a tautologiczność Jak pamiętamy (? :)), w rachunku zdań wynikanie logiczne na gruncie KRZ - formuły A (języka KRZ) ze skończonego zbioru formuł {B 1,..., B n } (języka KRZ) zachodziło wtedy i tylko wtedy, gdy formuła (języka KRZ) o postaci B 1... B n A była tautologią KRZ. W logice pierwszego rzędu nie jest tak prosto, niestety mamy tu obok zdań również funkcje zdaniowe. Potrzebujemy teraz technicznego pojęcia domknięcia uporządkowanego formuły zdaniowej. Niech dom(b) oznacza domknięcie uporządkowane formuły zdaniowej B (gdzie B jest formuła dowolnego ale ustalonego języka pierwszego rzędu). Definicja 5.4. (a) Jeżeli B jest zdaniem, to dom(b) = B. są wszystki- (b) Jeżeli B jest funkcją zdaniową, natomiast x i 1,..., x in mi zmiennymi wolnymi w B, przy czym i 1 <...< i n, to dom(b) = x i 1... x in B. 17

18 Wynikanie logiczne a tautologiczność Budując domknięcie uporządkowane funkcji zdaniowej B, po prostu poprzedzamy B dużymi kwantyfikatorami wiążącymi wszystkie zmienne wolne w B, przy czym czynimy to w kolejności wyznaczanej przez wskaźniki zmiennych wolnych od wskaźnika najmniejszego do coraz większych. Zachodzi: Lemat 5.1. M A wtw M dom(a). Dowód: Zostanie podany na ćwiczeniach :) Udowodnimy teraz: Twierdzenie {B 1,..., B n } A wtw formuła o postaci jest tautologią. dom(b 1 )... dom(b n ) A 18

19 Dowód: ( ) Załóżmy, że {B 1,..., B n } A i przypuśćmy, że: Wynikanie logiczne a tautologiczność dom(b 1 )... dom(b n ) A nie jest tautologią. Istnieją zatem: interpretacja M oraz M-wartościowanie s takie, że: (a) M dom(b i ) [s] - dla każdego i takiego, że 1 i n, (b) M non A [s]. Skoro każde dom(b i ) jest zdaniem (1 i n), to na mocy twierdzenia 3.3: (c) M dom(b i ) - dla każdego i takiego, że 1 i n. Na mocy lematu 5.1 z (c) dostajemy: (d) M B i dla każdego i takiego, że 1 i n. Z kolei z (b) dostajemy: (e) M non A Tak więc {B 1,..., B n } non A. Otrzymaliśmy sprzeczność. 19

20 Wynikanie logiczne a tautologiczność ( ) Załóżmy, że dom(b 1 )... dom(b n ) A jest tautologią i przypuśćmy, że: {B 1,..., B n } non A. Wówczas istnieje interpretacja M taka, że: (a) M B i - dla każdego i takiego, że 1 i n oraz istnieje M-wartościowanie s, dla którego zachodzi: (b) M non A [s]. Skoro jednak dom(b 1 )... dom(b n ) A jest tautologią, to mamy: (c) M non dom(b i ) [s] dla pewnego i takiego, że 1 i n czyli: (d) M non dom(b i ) dla pewnego i takiego, że 1 i n skąd na mocy lematu 5.1 dostajemy: (e) M non B i dla pewnego i takiego, że 1 i n. Otrzymaliśmy sprzeczność. 20

21 Wynikanie logiczne a tautologiczność Przykład 5.1. Aby pokazać, że powyższe rozważania nie są zawieszone w powietrzu, rozważmy następujące formuły: (a) P(x) (b) x P(x) Otóż formuła P(x) x P(x) nie jest tautologią. Jednocześnie mamy: P(x) x P(x) ponieważ formuła x P(x) x P(x) jest tautologią. Komentarz: Podobnie jak w przypadku KRZ, również tezy KRP o schemacie: B 1... B n A gdzie n 1, kodują informacje o wynikaniu logicznym z tym, że gdy jakieś B i jest funkcją zdaniową, należy przejść do jego domknięcia. 21

22 Wynikanie logiczne a tautologiczność Skoro jednak domknięcie uporządkowane zdania jest po prostu tym zdaniem, z twierdzenia 5.12 dostajemy: Twierdzenie Niech B 1,..., B n będą zdaniami. Wówczas {B 1,..., B n } A wtw formuła o postaci B 1... B n A jest tautologią. Czyli w przypadku wynikania logicznego ze skończonych zbiorów zdań sytuacja jest analogiczna do znanej z rachunku zdań. 22

23 Dodatek dla koneserów W podanej tu definicji wynikania logicznego odwołaliśmy się do pojęcia prawdy, a nie do pojęcia spełniania. W literaturze przedmiotu wynikanie logiczne dla języków pierwszego rzędu określa się czasami inaczej: Definicja 5.1*. Formuła zdaniowa A języka pierwszego rzędu L wynika logicznie ze zbioru formuł zdaniowych X języka L wtw zachodzi: (##) dla każdej interpretacji M języka L: dowolne M-wartościowanie spełniające wszystkie formuły w X spełnia też formułę A. Dla zbiorów zdań oba te pojęcia pokrywają się (zakresowo), natomiast dla funkcji zdaniowych już nie. Przykładowo, nie jest tak, że każde wartościowanie spełniające funkcję zdaniową P(x) spełnia też formułę x P(x) a zatem nie zachodzi wynikanie logiczne w sensie definicji 5.1* formuły x P(x) z formuły P(x). Jednocześnie jeśli każde wartościowanie spełnia P(x), to każde wartościowanie spełnia x P(x) - czyli z P(x) wynika logicznie w sensie definicji 5.1 formuła x P(x). To, którą z definicji wynikania logicznego przyjmiemy, zależy od wybranego sposobu rozumienia zmiennych wolnych uogólniającego lub uszczegółowiającego. O tym jednak przy innej okazji. 23

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność 1 Modele Jak zwykle zakładam, że pojęcia wprowadzone

Bardziej szczegółowo

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań System aksjomatyczny logiki Budując logikę

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań 1 Struktury modelowe Przedstawimy teraz pewien

Bardziej szczegółowo

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Istnieje wiele systemów aksjomatycznych

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP 1 Pojęcie dowodu w KRP Pojęcia: formuły zdaniowej języka Klasycznego Rachunku

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest

Bardziej szczegółowo

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:

Bardziej szczegółowo

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie 3. Wykłady 5 i 6: Semantyka klasycznego rachunku zdań. Dotychczas rozwinęliśmy klasyczny rachunek na gruncie czysto syntaktycznym, a więc badaliśmy metodę sprawdzania, czy dana formuła B jest dowodliwa

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 7 i 8. Aksjomatyczne ujęcie Klasycznego Rachunku Zdań

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 7 i 8. Aksjomatyczne ujęcie Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykłady 7 i 8. Aksjomatyczne ujęcie Klasycznego Rachunku Zdań 1 Istnieje wiele systemów aksjomatycznych Klasycznego Rachunku

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 15. Trójwartościowa logika zdań Łukasiewicza 1 Wprowadzenie W logice trójwartościowej, obok tradycyjnych wartości logicznych,

Bardziej szczegółowo

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania Logika w zastosowaniach kognitywistycznych Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania (notatki do wykładów) Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne

Andrzej Wiśniewski Logika II. Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki rok akademicki 2007/2008 Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne 1 Język aletycznych modalnych

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera wykładu z Metod dowodzenia...

Bardziej szczegółowo

Dowody założeniowe w KRZ

Dowody założeniowe w KRZ Dowody założeniowe w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl w styczniu 2007 Jerzy Pogonowski (MEG) Dowody założeniowe w KRZ w styczniu 2007 1 / 10 Dowody

Bardziej szczegółowo

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 4. Semantyka Klasycznego Rachunku Zdań 1 Skróty: Język Klasycznego Rachunku Zdań zamiast Klasyczny Rachunek Zdań piszę

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 15 stycznia 2011 Michał Lipnicki () Logika 15 stycznia 2011 1 / 37 Wstęp Materiały na dzisiejsze zajęcia zostały opracowane na podstawie pomocy naukowych

Bardziej szczegółowo

Wprowadzenie do logiki epistemicznej. Przekonania i wiedza

Wprowadzenie do logiki epistemicznej. Przekonania i wiedza Logika w zastosowaniach kognitywistycznych Wprowadzenie do logiki epistemicznej. Przekonania i wiedza (notatki do wykładów) Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl wersja beta 1.1 (na podstawie:

Bardziej szczegółowo

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ KONWERSATORIUM 6: REZOLUCJA V rok kognitywistyki UAM 1 Kilka uwag terminologicznych Słuchacze zapewne pamiętają z zajęć dotyczących PROLOGu poniższą

Bardziej szczegółowo

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią. Semantyczne twierdzenie o podstawianiu Jeżeli dana formuła rachunku zdań jest tautologią i wszystkie wystąpienia pewnej zmiennej zdaniowej w tej tautologii zastąpimy pewną ustaloną formułą, to otrzymana

Bardziej szczegółowo

Elementy logiki i teorii mnogości

Elementy logiki i teorii mnogości Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy

Bardziej szczegółowo

Paradygmaty dowodzenia

Paradygmaty dowodzenia Paradygmaty dowodzenia Sprawdzenie, czy dana formuła rachunku zdań jest tautologią polega zwykle na obliczeniu jej wartości dla 2 n różnych wartościowań, gdzie n jest liczbą zmiennych zdaniowych tej formuły.

Bardziej szczegółowo

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1. 3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Metoda tabel syntetycznych (MTS) MTS

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

LOGIKA Klasyczny Rachunek Zdań

LOGIKA Klasyczny Rachunek Zdań LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć

Bardziej szczegółowo

III rok kognitywistyki UAM,

III rok kognitywistyki UAM, METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 6A: REZOLUCJA III rok kognitywistyki UAM, 2016 2017 1 Rezolucja w KRZ Dowody rezolucyjne w KRZ są równie proste, jak dowody tablicowe Metoda

Bardziej szczegółowo

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca 2013 Imię i Nazwisko:.................................................................................. I Wybierz

Bardziej szczegółowo

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rachunek zdań Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak RACHUNEK ZDAŃ Zdania Definicja Zdanie jest to stwierdzenie w języku naturalnym, któremu można przypisać wartość prawdy lub

Bardziej szczegółowo

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność

Bardziej szczegółowo

Rachunek logiczny. 1. Język rachunku logicznego.

Rachunek logiczny. 1. Język rachunku logicznego. Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Zdań II

Wstęp do logiki. Klasyczny Rachunek Zdań II Wstęp do logiki Klasyczny Rachunek Zdań II DEF. 1 (Słownik). Następujące znaki tworzą słownik języka KRZ: p 1, p 2, p 3, (zmienne zdaniowe) ~,,,, (spójniki) ), ( (nawiasy). DEF. 2 (Wyrażenie). Wyrażeniem

Bardziej szczegółowo

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach

Bardziej szczegółowo

Kultura logiczna Klasyczny rachunek zdań 2/2

Kultura logiczna Klasyczny rachunek zdań 2/2 Kultura logiczna Klasyczny rachunek zdań 2/2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 29 III 2 Plan wykładu: Wartościowanie w KRZ Tautologie KRZ Wartościowanie v, to funkcja, która posyła zbiór

Bardziej szczegółowo

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka

Bardziej szczegółowo

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 29 czerwca Imię i Nazwisko:...

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 29 czerwca Imię i Nazwisko:... JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 29 czerwca 2015 Imię i Nazwisko:............................................................... DZIARSKIE SKRZATY Wybierz

Bardziej szczegółowo

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0 ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru

Bardziej szczegółowo

Logika Matematyczna (10)

Logika Matematyczna (10) Logika Matematyczna (10) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Rezolucja w KRZ Jerzy Pogonowski (MEG) Logika Matematyczna (10) Rezolucja w KRZ 1 / 39 Plan

Bardziej szczegółowo

Schematy Piramid Logicznych

Schematy Piramid Logicznych Schematy Piramid Logicznych geometryczna interpretacja niektórych formuł Paweł Jasionowski Politechnika Śląska w Gliwicach Wydział Matematyczno-Fizyczny Streszczenie Referat zajmuje się następującym zagadnieniem:

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań

Andrzej Wiśniewski Logika II. Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 12 i 13. Metoda tabel analitycznych dla normalnych modalnych rachunków zdań 1 Wprowadzenie Podobnie jak w przypadku

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

Semantyka rachunku predykatów

Semantyka rachunku predykatów Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie

Bardziej szczegółowo

LOGIKA Dedukcja Naturalna

LOGIKA Dedukcja Naturalna LOGIKA Dedukcja Naturalna Robert Trypuz Katedra Logiki KUL 7 stycznia 2014 Robert Trypuz (Katedra Logiki) Założeniowy system klasycznego rachunku zdań 7 stycznia 2014 1 / 42 PLAN WYKŁADU 1 Przykład dowodów

Bardziej szczegółowo

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut Predykat Weźmy pod uwagę następujące wypowiedzi: (1) Afryka jest kontynentem. (2) 7 jest liczbą naturalną. (3) Europa jest mniejsza niż Afryka. (4) 153 jest podzielne przez 3. Są to zdania jednostkowe,

Bardziej szczegółowo

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych

Bardziej szczegółowo

Logika. Michał Lipnicki. 18 listopada Zakład Logiki Stosowanej UAM. Michał Lipnicki Logika 18 listopada / 1

Logika. Michał Lipnicki. 18 listopada Zakład Logiki Stosowanej UAM. Michał Lipnicki Logika 18 listopada / 1 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 18 listopada 2012 Michał Lipnicki Logika 18 listopada 2012 1 / 1 Wstęp Materiały na dzisiejsze zajęcia zostały opracowane na podstawie pomocy naukowych

Bardziej szczegółowo

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ). 6. Wykład 6: Rachunek predykatów. Język pierwszego rzędu składa się z: symboli relacyjnych P i, i I, gdzie (P i ) oznaczać będzie ilość argumentów symbolu P i, symboli funkcyjnych f j, j J, gdzie (f j

Bardziej szczegółowo

Logika Matematyczna (2,3)

Logika Matematyczna (2,3) Logika Matematyczna (2,3) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 11, 18 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (2,3) 11, 18 X 2007 1 / 34 Język KRZ

Bardziej szczegółowo

Podstawowe Pojęcia. Semantyczne KRZ

Podstawowe Pojęcia. Semantyczne KRZ Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga

Bardziej szczegółowo

WYKŁAD 3: METODA AKSJOMATYCZNA

WYKŁAD 3: METODA AKSJOMATYCZNA METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 3: METODA AKSJOMATYCZNA III rok kognitywistyki UAM, 2016 2017 Plan na dziś: 1. Przypomnimy, na czym polega aksjomatyczna metoda dowodzenia twierdzeń.

Bardziej szczegółowo

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca 2012 Imię i Nazwisko:........................................................... FIGLARNE POZNANIANKI Wybierz

Bardziej szczegółowo

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Egzamin z logiki i teorii mnogości, rozwiązania zadań Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Struktury formalne, czyli elementy Teorii Modeli

Struktury formalne, czyli elementy Teorii Modeli Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Logika Matematyczna. Zadania Egzaminacyjne, 2007

Logika Matematyczna. Zadania Egzaminacyjne, 2007 Logika Matematyczna Zadania Egzaminacyjne, 2007 I Rok Językoznawstwa i Informacji Naukowej UAM Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl Podajemy rozwiązania zadań egzaminacyjnych.

Bardziej szczegółowo

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa. Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna

Bardziej szczegółowo

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Wnioskowanie logiczne i systemy eksperckie Systemy posługujące się logiką predykatów: część 3/3 Dzisiaj Uogólnienie Poprawność i pełność wnioskowania

Bardziej szczegółowo

III rok kognitywistyki UAM,

III rok kognitywistyki UAM, METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 14: POWTÓRKA III rok kognitywistyki UAM, 2016 2017 Dzisiejszy wykład w całości poświęcony będzie omówieniu przykładowych zadań, podobnych do

Bardziej szczegółowo

Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań

Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań 1 Wprowadzenie Na tym wykładzie przyjmuję terminologię i

Bardziej szczegółowo

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu Witold Marciszewski: Wykład Logiki, 17 luty 2005, Collegium Civitas, Warszawa Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu 1. Poniższe wyjaśnienie (akapit

Bardziej szczegółowo

Metoda Tablic Semantycznych

Metoda Tablic Semantycznych Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,

Bardziej szczegółowo

Trzy razy o indukcji

Trzy razy o indukcji Trzy razy o indukcji Antoni Kościelski 18 października 01 1 Co to są liczby naturalne? Indukcja matematyczna wiąże się bardzo z pojęciem liczby naturalnej. W szkole zwykle najpierw uczymy się posługiwać

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

Funkcja wykładnicza kilka dopowiedzeń

Funkcja wykładnicza kilka dopowiedzeń Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 8. Modalności i intensjonalność

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 8. Modalności i intensjonalność Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 8. Modalności i intensjonalność 1 Coś na kształt ostrzeżenia Ta prezentacja jest nieco odmienna od poprzednich. To,

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Zdań III

Wstęp do logiki. Klasyczny Rachunek Zdań III Wstęp do logiki Klasyczny Rachunek Zdań III Przypomnijmy: Logika: = Teoria form (schematów, reguł) poprawnych wnioskowań. Wnioskowaniem nazywamy jakąkolwiek skończoną co najmniej dwuwyrazową sekwencję

Bardziej szczegółowo

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH 5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:

Bardziej szczegółowo

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan na pytanie o odniesienie przedmiotowe zdań odpowiedź

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Klasyczny rachunek predykatów

Klasyczny rachunek predykatów Kultura logiczna Klasyczny rachunek predykatów Bartosz Gostkowski bgostkowski@gmail.com Alfabet klasycznego rachunku zdań reguły konsytutywne języka Alfabet klasycznego rachunku predykatów (KRP Do alfabetu

Bardziej szczegółowo

Logika Matematyczna (5-7)

Logika Matematyczna (5-7) Logika Matematyczna (5-7) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Aksjomatyka KRZ Jerzy Pogonowski (MEG) Logika Matematyczna (5-7) Aksjomatyka KRZ 1 / 114 Plan

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.

Bardziej szczegółowo

Konsekwencja logiczna

Konsekwencja logiczna Konsekwencja logiczna Niech Φ 1, Φ 2,..., Φ n będa formułami logicznymi. Formuła Ψ wynika logicznie z Φ 1, Φ 2,..., Φ n jeżeli (Φ 1 Φ 2 Φ n ) Ψ jest tautologia. Formuły Φ 1, Φ 2,..., Φ n nazywamy założeniami

Bardziej szczegółowo

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium

Bardziej szczegółowo

ROZDZIAŁ 1. Rachunek funkcyjny

ROZDZIAŁ 1. Rachunek funkcyjny ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast

Bardziej szczegółowo

DODATEK 1: Wtedy h(α) = 1 oraz h(β) = 0. Jak pamiętamy ze szkoły, obraz sumy zbiorów jest sumą obrazów tych zbiorów. Mamy zatem:

DODATEK 1: Wtedy h(α) = 1 oraz h(β) = 0. Jak pamiętamy ze szkoły, obraz sumy zbiorów jest sumą obrazów tych zbiorów. Mamy zatem: DODATEK 1: DOWODY NIEKTÓRYCH TWIERDZEŃ DOTYCZACYCH SEMANTYKI KLASYCZNEGO RACHUNKU ZDAŃ 2.2. TWIERDZENIE O DEDUKCJI WPROST (wersja semantyczna). Dla dowolnych X F KRZ, α F KRZ, β F KRZ zachodzą następujące

Bardziej szczegółowo

7 Twierdzenie Fubiniego

7 Twierdzenie Fubiniego M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz

Bardziej szczegółowo

Rachunek zdań i predykatów

Rachunek zdań i predykatów Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)

Bardziej szczegółowo

Drzewa Semantyczne w KRZ

Drzewa Semantyczne w KRZ Drzewa Semantyczne w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 7 XII 2006, 13:30 15:00 Jerzy Pogonowski (MEG) Drzewa Semantyczne w KRZ 7 XII 2006, 13:30 15:00

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

O pewnych związkach teorii modeli z teorią reprezentacji

O pewnych związkach teorii modeli z teorią reprezentacji O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej

Bardziej szczegółowo

ĆWICZENIE 4 KRZ: A B A B A B A A METODA TABLIC ANALITYCZNYCH

ĆWICZENIE 4 KRZ: A B A B A B A A METODA TABLIC ANALITYCZNYCH ĆWICZENIE 4 Klasyczny Rachunek Zdań (KRZ): metoda tablic analitycznych, system aksjomatyczny S (aksjomaty, reguła dowodzenia), dowód w systemie S z dodatkowym zbiorem założeń, tezy systemu S, wtórne reguły

Bardziej szczegółowo