Kultura logiczna Klasyczny rachunek zdań 1/2

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kultura logiczna Klasyczny rachunek zdań 1/2"

Transkrypt

1 Kultura logiczna Klasyczny rachunek zdań /2 Bartosz Gostkowski Kraków 22 III 2

2 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe reguły semantyczne Schematy zdaniowe

3 ZDANIE W SENSIE LOGICZNYM Zdanie w sensie logicznym, to taki obiekt językowy, o którym można orzekać prawdę i fałsz. Ostatni dinozaur miał niebieskie oczy. W Jaworznie Szczakowej kibicują Pogoni. E. Husserl studiował u F. Brentany. 2+2=5 SĄ ZDANIAMI W SENSIE LOGICZNYM Ostatnia nadzieja chrześcijańskiej Europy Czy tu można kupić kawę? 7x8 Nie należy ufać superłotrom. NIE SĄ ZDANIAMI W SENSIE LOGICZNYM kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

4 ZDANIE W SENSIE LOGICZNYM Zdanie w sensie logicznym, to taki obiekt językowy, o którym można orzekać prawdę i fałsz. Uwaga! Koncepcja zdania w sensie logicznym przedstawiona w dalszej części prezentacji jest bardzo silnie związana z koncepcją filozofii języka, która identyfikuje się jako Fregowska. Nie jest to jedyne dostępne rozwiązanie problemów semantyki zdań i sądów. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

5 ZDANIE W SENSIE LOGICZNYM Zdanie w sensie logicznym, to taki obiekt językowy, o którym można orzekać prawdę i fałsz. WARTOŚCI LOGICZNE ZDANIE PRAWDA / FAŁSZ kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

6 ZDANIE W SENSIE LOGICZNYM Relacja między zdaniem a odpowiadającą mu wartością logiczną (prawdą lub fałszem) jest analogiczna do relacji między nazwą a jej desygnatami. ZDANIE PRAWDA / FAŁSZ ODNOSI SIĘ DO, OZNACZA kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

7 ZDANIE W SENSIE LOGICZNYM Sądem nazywamy każdą myśl, która zdaje sprawę z pewnego stanu rzeczy, czyli która zdaje sprawę z tego, że tak a tak jest, lub, że tak a tak nie jest. K. Ajdukiewicz, Logika pragmatyczna Sąd pełni podobną rolę w przypadku zdań, jaką treść pełniła w przypadku nazw. (i) wyraża znaczenie, jakie przysługuje zdaniu, WYRAŻA ZDANIE SĄD PRAWDA / FAŁSZ ODNOSI SIĘ DO, OZNACZA kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

8 ZDANIE W SENSIE LOGICZNYM Sądem nazywamy każdą myśl, która zdaje sprawę z pewnego stanu rzeczy, czyli która zdaje sprawę z tego, że tak a tak jest, lub, że tak a tak nie jest. K. Ajdukiewicz, Logika pragmatyczna Sąd pełni podobną rolę w przypadku zdań, jaką treść pełniła w przypadku nazw. (i) wyraża znaczenie, jakie przysługuje zdaniu, (ii) determinuje odniesienie przedmiotowe zdania. WYRAŻA DETERMINUJE ZDANIE SĄD PRAWDA / FAŁSZ ODNOSI SIĘ DO, OZNACZA kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

9 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe reguły semantyczne Schematy zdaniowe

10 KRZ: ALFABET KLASYCZNY RACHUNEK ZDAŃ, to język formalny, określony za pomocą zestawu reguł słownikowych, składniowych i semantycznych. A. Reguły słownikowe [ALFABET] Def.. Symbolem języka KRZ jest: (i) p, q, r, (ii),,,, (iii) (, ) [dowolna zmienna zdaniowa] [dowolny spójnik zdaniowy] [nawias- pełni funkcję pomocniczą] kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

11 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe reguły semantyczne Schematy zdaniowe

12 KRZ: SKŁADNIA KLASYCZNY RACHUNEK ZDAŃ, to język formalny, określony za pomocą zestawu reguł słownikowych, składniowych i semantycznych. B. Reguły składni Def.2. Wyrażeniem języka KRZ jest dowolny skończony ciąg symboli języka KRZ. ((((((((((((((pqr ppppppppppppppppp p q SĄ WYRAŻENIAMI KRZ kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

13 KRZ: SKŁADNIA KLASYCZNY RACHUNEK ZDAŃ, to język formalny, określony za pomocą zestawu reguł słownikowych, składniowych i semantycznych. B. Reguły składni Def.3. Formuła języka KRZ [wyrażenie dobrze zbudowane]: (i) dowolna zmienna jest formułą języka KRZ; (ii) jeśli wyrażenie α jest formułą języka KRZ, to α jest formułą języka KRZ; (iii) jeśli wyrażenia α i β są formułami języka KRZ, to następujące wyrażenia KRZ również będą formułami języka KRZ: (α β) (α β) (α β) (α β) (iv) żadne inne wyrażenie nie jest formułą języka KRZ. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

14 KRZ: SKŁADNIA Def.3. Formuła języka KRZ [wyrażenie dobrze zbudowane]: (i) dowolna zmienna jest formułą języka KRZ; (ii) jeśli wyrażenie α jest formułą języka KRZ, to α jest formułą języka KRZ; (iii) jeśli wyrażenia α i β są formułami języka KRZ, to następujące wyrażenia KRZ również będą formułami języka KRZ: (α β) (α β) (α β) (α β) (iv) żadne inne wyrażenie nie jest formułą języka KRZ. Poprawność dowolnej formuły KRZ można udowodnić za pomocą definicji 3. (p q) ( p q) kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

15 KRZ: SKŁADNIA Def.3. Formuła języka KRZ [wyrażenie dobrze zbudowane]: (i) dowolna zmienna jest formułą języka KRZ; (ii) jeśli wyrażenie α jest formułą języka KRZ, to α jest formułą języka KRZ; (iii) jeśli wyrażenia α i β są formułami języka KRZ, to następujące wyrażenia KRZ również będą formułami języka KRZ: (α β) (α β) (α β) (α β) (iv) żadne inne wyrażenie nie jest formułą języka KRZ. Poprawność dowolnej formuły KRZ można udowodnić za pomocą definicji 3.. (p q) ( p q) są formułami na mocy warunku (i) kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

16 KRZ: SKŁADNIA Def.3. Formuła języka KRZ [wyrażenie dobrze zbudowane]: (i) dowolna zmienna jest formułą języka KRZ; (ii) jeśli wyrażenie α jest formułą języka KRZ, to α jest formułą języka KRZ; (iii) jeśli wyrażenia α i β są formułami języka KRZ, to następujące wyrażenia KRZ również będą formułami języka KRZ: (α β) (α β) (α β) (α β) (iv) żadne inne wyrażenie nie jest formułą języka KRZ. Poprawność dowolnej formuły KRZ można udowodnić za pomocą definicji 3.. (p q) ( p q) są formułami na mocy warunku (i) 2. (p q) ( p q) jest formułą na mocy warunku (iii) oraz. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

17 KRZ: SKŁADNIA Def.3. Formuła języka KRZ [wyrażenie dobrze zbudowane]: (i) dowolna zmienna jest formułą języka KRZ; (ii) jeśli wyrażenie α jest formułą języka KRZ, to α jest formułą języka KRZ; (iii) jeśli wyrażenia α i β są formułami języka KRZ, to następujące wyrażenia KRZ również będą formułami języka KRZ: (α β) (α β) (α β) (α β) (iv) żadne inne wyrażenie nie jest formułą języka KRZ. Poprawność dowolnej formuły KRZ można udowodnić za pomocą definicji 3.. (p q) ( p q) są formułami na mocy warunku (i) 2. (p q) ( p q) jest formułą na mocy warunku (iii) oraz. 3. (p q) ( p q) są formułami na mocy warunku (ii) oraz. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

18 KRZ: SKŁADNIA Def.3. Formuła języka KRZ [wyrażenie dobrze zbudowane]: (i) dowolna zmienna jest formułą języka KRZ; (ii) jeśli wyrażenie α jest formułą języka KRZ, to α jest formułą języka KRZ; (iii) jeśli wyrażenia α i β są formułami języka KRZ, to następujące wyrażenia KRZ również będą formułami języka KRZ: (α β) (α β) (α β) (α β) (iv) żadne inne wyrażenie nie jest formułą języka KRZ. Poprawność dowolnej formuły KRZ można udowodnić za pomocą definicji 3.. (p q) ( p q) są formułami na mocy warunku (i) 2. (p q) ( p q) jest formułą na mocy warunku (iii) oraz. 3. (p q) ( p q) są formułami na mocy warunku (ii) oraz. 4. (p q) ( p q) jest formułą na mocy warunku (iii) oraz 3. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

19 KRZ: SKŁADNIA Def.3. Formuła języka KRZ [wyrażenie dobrze zbudowane]: (i) dowolna zmienna jest formułą języka KRZ; (ii) jeśli wyrażenie α jest formułą języka KRZ, to α jest formułą języka KRZ; (iii) jeśli wyrażenia α i β są formułami języka KRZ, to następujące wyrażenia KRZ również będą formułami języka KRZ: (α β) (α β) (α β) (α β) (iv) żadne inne wyrażenie nie jest formułą języka KRZ. Poprawność dowolnej formuły KRZ można udowodnić za pomocą definicji 3.. (p q) ( p q) są formułami na mocy warunku (i) 2. (p q) ( p q) jest formułą na mocy warunku (iii) oraz. 3. (p q) ( p q) są formułami na mocy warunku (ii) oraz. 4. (p q) ( p q) jest formułą na mocy warunku (iii) oraz (p q) ( p q) jest formułą na mocy warunku (iii), oraz 4. i 2. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

20 KRZ: SKŁADNIA Konwencja notacyjna: Jeśli formuła ma kształt (α funk β), gdzie funk to któryś z funktorów dwuargumentowych (,,, ), to zewnętrzny nawias można opuścić. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

21 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe reguły semantyczne Schematy zdaniowe

22 KRZ: SEMANTYKA KLASYCZNY RACHUNEK ZDAŃ, to język formalny, określony za pomocą zestawu reguł słownikowych, składniowych i semantycznych. B. Reguły semantyczne KRZ to (bardzo podstawowy) język logiki klasycznej, to znaczy, że obowiązują w nim dwa ważne założenia: (i) ekstensjonalność- wszystkie występujące w języku funktory są ekstensjonalne. (ii) dwuwartościowość- każde zdanie języka przyjmuje jedną z dwu wartości logicznych (oznaczanych tradycyjnie jako i ). kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

23 EKSTENSJONALNOŚĆ: INTUICJE Porównajmy dwa zdania: (a) Słoń kroczy naprzód i krowy patrzą z podziwem. (b) Podróżnik jest przekonany, że słoń kroczy naprzód, a krowy patrzą z podziwem. 3. Prawdziwość zdania (a), zależy od tego jaką wartość logiczną mają zdania, z których zostało zbudowane i od tego, jakiego spójnika (funktora) użyto dla złączenia ich ze sobą. Jeśli jest tak, że zdanie słoń kroczy naprzód oraz zdanie krowy patrzą z podziwem są zdaniami prawdziwymi, to zdanie (a) jest prawdziwe. 4. Prawdziwość zdanie (b) nie zależy od prawdziwości/ fałszywości zdań, z których się ono składa, oraz tego jakich funktorów użyto, by połączyć je ze sobą, tylko od tego, jakie były przekonania podróżnika. W szczególności, jeśli jego przekonania były inne, to choćby słoń kroczył, a krowy patrzyły, zdanie (b) będzie fałszywe. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

24 EKSTENSJONALNOŚĆ Porównajmy dwa zdania: (a) Słoń kroczy naprzód i krowy patrzą z podziwem. (b) Podróżnik jest przekonany, że słoń kroczy naprzód, a krowy patrzą z podziwem. W zdaniu (a) występuje i, które jest funktorem ekstensjonalnym. Def. 4. Funktor ekstensjonalny, to taki spójnik zdaniowy, że wartość logiczna zdania, które powstanie przy jego użyciu zależy tylko od: (i) (ii) wartości logicznej zdań składowych (lub jednego zdania składowego), charakterystyki prawdziwościowej zastosowanego spójnika. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

25 EKSTENSJONALNOŚĆ Porównajmy dwa zdania: (a) Słoń kroczy naprzód i krowy patrzą z podziwem. (b) Podróżnik jest przekonany, że słoń kroczy naprzód, a krowy patrzą z podziwem. W zdaniu (b) występuje intensjonalny spójnik jest przekonany, że. Def. 5. Funktor intensjonalny, to taki spójnik zdaniowy, który nie jest ekstensjonalny. Janina wierzy, że Janina wie, że Janina boi, się, że przykłady funktorów intensjonalnych Janina ma nadzieję, że etc. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

26 SPÓJNIKI EKSTENSJONALNE Wszystkie spójniki języka KRZ są ekstensjonalne, oto ich charakterystyka: NEGACJA p p Konwencja notacyjna: Alternatywna notacja: ~ Interpretacja w j. naturalnym: nieprawda, że kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

27 SPÓJNIKI EKSTENSJONALNE Wszystkie spójniki języka KRZ są ekstensjonalne, oto ich charakterystyka: KONIUNKCJA p q p q Konwencja notacyjna: Alternatywna notacja:, & Interpretacja w j. naturalnym: i kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

28 SPÓJNIKI EKSTENSJONALNE Wszystkie spójniki języka KRZ są ekstensjonalne, oto ich charakterystyka: ALTERNATYWA p q p q Konwencja notacyjna: Interpretacja w j. naturalnym: lub kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

29 SPÓJNIKI EKSTENSJONALNE Wszystkie spójniki języka KRZ są ekstensjonalne, oto ich charakterystyka: IMPLIKACJA p q p q Konwencja notacyjna: Alternatywna notacja:, Interpretacja w j. naturalnym: jeśli, to kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

30 SPÓJNIKI EKSTENSJONALNE Wszystkie spójniki języka KRZ są ekstensjonalne, oto ich charakterystyka: RÓWNOWAŻNOŚĆ p q p q Konwencja notacyjna: Alternatywna notacja:, Interpretacja w j. naturalnym: wtedy i tylko wtedy, gdy kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

31 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe reguły semantyczne Schematy zdaniowe

32 SCHEMATY ZDANIOWE W KRZ Język KRZ okazuje się przydatny do ukazania (pewnych aspektów) logicznej struktury zdań języka naturalnego. Słoń jest największym żyjącym ssakiem lądowym lub kawa jest gorąca. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

33 SCHEMATY ZDANIOWE W KRZ Język KRZ okazuje się przydatny do ukazania (pewnych aspektów) logicznej struktury zdań języka naturalnego. lub oznacza Słoń jest największym żyjącym ssakiem lądowym. oznacza Kawa jest gorąca. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

34 SCHEMATY ZDANIOWE W KRZ Język KRZ okazuje się przydatny do ukazania (pewnych aspektów) logicznej struktury zdań języka naturalnego. oznacza Słoń jest największym żyjącym ssakiem lądowym. oznacza Kawa jest gorąca. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

35 SCHEMATY ZDANIOWE W KRZ Język KRZ okazuje się przydatny do ukazania (pewnych aspektów) logicznej struktury zdań języka naturalnego. p q p oznacza Słoń jest największym żyjącym ssakiem lądowym. q oznacza Kawa jest gorąca. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

36 SCHEMATY ZDANIOWE W KRZ Tłumacząc zdanie języka naturalnego na KRZ, otrzymujemy jego schemat logiczny. Def. 4. Schematem logicznym zdania, jest zatem formuła KRZ, która powstała przez: (i) konsekwentne zastąpienie wszystkich zdań prostych przez przyporządkowane im zmienne zdaniowe (wszystkie wystąpienia tego samego zdania prostego zastępujemy z pomocą tej samej zmiennej zdaniowej); (ii) zastąpienie spójników ekstensjonalnych obecnych w zdaniu z języka naturalnego, przez odpowiednie spójniki KRZ. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

37 SCHEMATY ZDANIOWE W KRZ Dzięki schematowi widać jak wartość logiczna zdania złożonego zależy w sposób systematyczny od wartości logicznych zdań prostych, z których jest zbudowane. Jeśli doña Leona szła na zachód i spotkała uciekające słonie, to została zdeptana. (p q) r p- Doña Leona szła na zachód. q- Doña Leona spotkała uciekające słonie. r- Doña Leona została zdeptana. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

38 SCHEMATY ZDANIOWE W KRZ (p q) r Schemat, który odpowiada badanemu zdaniu, zawiera trzy zmienne zdaniowe. Każda ze zmiennych może przyjmować wartość lub 2, musimy zatem rozważyć 8 różnych kombinacji wartości logicznych. 2 n W ogólności, kombinacji będzie zawsze 2 n gdzie n to liczba zmiennych zdaniowych występujących w badanej formule. Dla ciekawych, dlaczego tak jest, proponuję rozważyć problem w następujący sposób: niech każdą zmienną reprezentuje worek, w którym ukryto dwie kulki: czarną i białą. Teraz, należy wylosować z każdego worka po jednej kulce. Na ile sposobów może przebiegać takie losowanie? kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

39 SCHEMATY ZDANIOWE W KRZ (p q) r p q r Najłatwiej wypisać wszystkie możliwe kombinacje wartości logicznych, kierując się następujacą regułą: Niech i będzie liczbą wszystkich kombinacji. (i) Dla pierwszej zmiennej (pierwsza kolumna), wypisz najpierw i/2 jedynek, oraz i/2 zer. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

40 SCHEMATY ZDANIOWE W KRZ (p q) r p q r Najłatwiej wypisać wszystkie możliwe kombinacje wartości logicznych, kierując się następujacą regułą: Niech i będzie liczbą wszystkich kombinacji. (i) Dla pierwszej zmiennej (pierwsza kolumna), wypisz najpierw i/2 jedynek, oraz i/2 zer. (ii) Dla kolejnej zmiennej, weź liczbę jedynek z poprzedniej kolumny, podziel ją przez 2, wynik oznacza liczbę jedynek, zanim zaczniesz wpisywać zera, powtarzaj, aż zapełnisz kolumnę. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

41 SCHEMATY ZDANIOWE W KRZ (p q) r p q r Najłatwiej wypisać wszystkie możliwe kombinacje wartości logicznych, kierując się następujacą regułą: Niech i będzie liczbą wszystkich kombinacji. (i) Dla pierwszej zmiennej (pierwsza kolumna), wypisz najpierw i/2 jedynek, oraz i/2 zer. (ii) Dla kolejnej zmiennej, weź liczbę jedynek z poprzedniej kolumny, podziel ją przez 2, wynik oznacza liczbę jedynek, zanim zaczniesz wpisywać zera, powtarzaj, aż zapełnisz kolumnę. kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

42 SCHEMATY ZDANIOWE W KRZ (p q) r p q r (p q) r kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

43 SCHEMATY ZDANIOWE W KRZ (p q) r p q r (p q) r kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2

44 p q r (p q) (p q) r (p q) r kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2 SCHEMATY ZDANIOWE W KRZ

45 p q r (p q) (p q) r (p q) r kultura logiczna spotkanie V: KLASYCZNY RACHUNEK ZDAŃ /2 SCHEMATY ZDANIOWE W KRZ

46 DO ĆWICZEŃ!

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do testu z filozofii jest zaliczenie testu z logiki i zaliczenie

Bardziej szczegółowo

Kultura logiczna Klasyczny rachunek zdań 2/2

Kultura logiczna Klasyczny rachunek zdań 2/2 Kultura logiczna Klasyczny rachunek zdań 2/2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 29 III 2 Plan wykładu: Wartościowanie w KRZ Tautologie KRZ Wartościowanie v, to funkcja, która posyła zbiór

Bardziej szczegółowo

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0 ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru

Bardziej szczegółowo

LOGIKA Klasyczny Rachunek Zdań

LOGIKA Klasyczny Rachunek Zdań LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć

Bardziej szczegółowo

Podstawowe Pojęcia. Semantyczne KRZ

Podstawowe Pojęcia. Semantyczne KRZ Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga

Bardziej szczegółowo

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

Rachunek logiczny. 1. Język rachunku logicznego.

Rachunek logiczny. 1. Język rachunku logicznego. Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były

Bardziej szczegółowo

Wprowadzenie do logiki Zdania, cz. I Wprowadzenie do Klasycznego Rachunku Zdań

Wprowadzenie do logiki Zdania, cz. I Wprowadzenie do Klasycznego Rachunku Zdań Wprowadzenie do logiki Zdania, cz. I Wprowadzenie do Klasycznego Rachunku Zdań Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan gry: 1 Czym są zdania? Co znaczą i co oznaczają?

Bardziej szczegółowo

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:

Bardziej szczegółowo

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan na pytanie o odniesienie przedmiotowe zdań odpowiedź

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

Logika pragmatyczna dla inżynierów

Logika pragmatyczna dla inżynierów Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny

Bardziej szczegółowo

Klasyczny rachunek predykatów

Klasyczny rachunek predykatów Kultura logiczna Klasyczny rachunek predykatów Bartosz Gostkowski bgostkowski@gmail.com Alfabet klasycznego rachunku zdań reguły konsytutywne języka Alfabet klasycznego rachunku predykatów (KRP Do alfabetu

Bardziej szczegółowo

Wprowadzenie do logiki Klasyczny Rachunek Zdań część 3

Wprowadzenie do logiki Klasyczny Rachunek Zdań część 3 Wprowadzenie do logiki Klasyczny Rachunek Zdań część 3 Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan gry: 1 Czym są zdania? 2 Język Klasycznego Rachunku Zdań syntaktyka 3 Język

Bardziej szczegółowo

Matematyka ETId Elementy logiki

Matematyka ETId Elementy logiki Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,

Bardziej szczegółowo

ĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje

ĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje ĆWICZENIE 2 Klasyczny Rachunek Zdań (KRZ): wynikanie logiczne, wnioskowanie, niezawodny schemat wnioskowania, wnioskowanie dedukcyjne, równoważność logiczna, iniowalność spójników za mocą formuły. DEF.

Bardziej szczegółowo

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu Witold Marciszewski: Wykład Logiki, 17 luty 2005, Collegium Civitas, Warszawa Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu 1. Poniższe wyjaśnienie (akapit

Bardziej szczegółowo

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań System aksjomatyczny logiki Budując logikę

Bardziej szczegółowo

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią. Semantyczne twierdzenie o podstawianiu Jeżeli dana formuła rachunku zdań jest tautologią i wszystkie wystąpienia pewnej zmiennej zdaniowej w tej tautologii zastąpimy pewną ustaloną formułą, to otrzymana

Bardziej szczegółowo

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Michał Lipnicki (UAM) Logika 11 stycznia / 20

Michał Lipnicki (UAM) Logika 11 stycznia / 20 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 11 stycznia 2013 Michał Lipnicki (UAM) Logika 11 stycznia 2013 1 / 20 KRP wstęp Wstęp Rozważmy wnioskowanie: Każdy człowiek jest śmiertelny. Sokrates

Bardziej szczegółowo

Rachunek zdań i predykatów

Rachunek zdań i predykatów Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać

Bardziej szczegółowo

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych

Bardziej szczegółowo

4 Klasyczny rachunek zdań

4 Klasyczny rachunek zdań 4 Klasyczny rachunek zdań Elementy Logiki i Teorii Mnogości 2015/2016 Spis najważniejszych tautologii: (a) p p prawo wyłączonego środka (b) ( p) p prawo podwójnej negacji (c) p q q p (d) p q q p prawo

Bardziej szczegółowo

Schematy Piramid Logicznych

Schematy Piramid Logicznych Schematy Piramid Logicznych geometryczna interpretacja niektórych formuł Paweł Jasionowski Politechnika Śląska w Gliwicach Wydział Matematyczno-Fizyczny Streszczenie Referat zajmuje się następującym zagadnieniem:

Bardziej szczegółowo

Kultura logicznego myślenia

Kultura logicznego myślenia Kultura logicznego myślenia rok akademicki 2015/2016 semestr zimowy Temat 6: Rachunek predykatów jako logika pierwszego rzędu logika elementarna = logika pierwszego rzędu KRZ logika zerowego rzędu Język

Bardziej szczegółowo

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH 5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 8. Modalności i intensjonalność

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 8. Modalności i intensjonalność Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 8. Modalności i intensjonalność 1 Coś na kształt ostrzeżenia Ta prezentacja jest nieco odmienna od poprzednich. To,

Bardziej szczegółowo

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 4. Semantyka Klasycznego Rachunku Zdań 1 Skróty: Język Klasycznego Rachunku Zdań zamiast Klasyczny Rachunek Zdań piszę

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium

Bardziej szczegółowo

Logika Radosna 1. Jerzy Pogonowski. Semantyka KRZ. Zakład Logiki Stosowanej UAM

Logika Radosna 1. Jerzy Pogonowski. Semantyka KRZ. Zakład Logiki Stosowanej UAM Logika Radosna 1 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRZ Jerzy Pogonowski (MEG) Logika Radosna 1 Semantyka KRZ 1 / 47 Wprowadzenie Cel Cel tych

Bardziej szczegółowo

Logika Matematyczna (1)

Logika Matematyczna (1) Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:

Bardziej szczegółowo

Rachunek zdań. Zdanie w sensie logicznym jest to wyraŝenie jednoznacznie stwierdzające, na gruncie reguł danego języka, iŝ tak a

Rachunek zdań. Zdanie w sensie logicznym jest to wyraŝenie jednoznacznie stwierdzające, na gruncie reguł danego języka, iŝ tak a Zdanie w sensie logicznym jest to wyraŝenie jednoznacznie stwierdzające, na gruncie reguł danego języka, iŝ tak a tak jest alboŝe tak a tak nie jest. Wartość logiczna zdania jest czymś obiektywnym, to

Bardziej szczegółowo

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Istnieje wiele systemów aksjomatycznych

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Zdań III

Wstęp do logiki. Klasyczny Rachunek Zdań III Wstęp do logiki Klasyczny Rachunek Zdań III Przypomnijmy: Logika: = Teoria form (schematów, reguł) poprawnych wnioskowań. Wnioskowaniem nazywamy jakąkolwiek skończoną co najmniej dwuwyrazową sekwencję

Bardziej szczegółowo

ROZDZIAŁ 1. Rachunek funkcyjny

ROZDZIAŁ 1. Rachunek funkcyjny ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 15. Trójwartościowa logika zdań Łukasiewicza 1 Wprowadzenie W logice trójwartościowej, obok tradycyjnych wartości logicznych,

Bardziej szczegółowo

Dowody założeniowe w KRZ

Dowody założeniowe w KRZ Dowody założeniowe w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl w styczniu 2007 Jerzy Pogonowski (MEG) Dowody założeniowe w KRZ w styczniu 2007 1 / 10 Dowody

Bardziej szczegółowo

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Elementy logiki. Klasyczny rachunek zdań. 1 Elementy logiki Klasyczny rachunek zdań Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy

Bardziej szczegółowo

Drzewa Semantyczne w KRZ

Drzewa Semantyczne w KRZ Drzewa Semantyczne w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 7 XII 2006, 13:30 15:00 Jerzy Pogonowski (MEG) Drzewa Semantyczne w KRZ 7 XII 2006, 13:30 15:00

Bardziej szczegółowo

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika

Bardziej szczegółowo

Lista 1 (elementy logiki)

Lista 1 (elementy logiki) Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP 1 Pojęcie dowodu w KRP Pojęcia: formuły zdaniowej języka Klasycznego Rachunku

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:

Bardziej szczegółowo

Wprowadzenie do logiki Pojęcie wynikania

Wprowadzenie do logiki Pojęcie wynikania Wprowadzenie do logiki Pojęcie wynikania Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Gry plan: jak używamy terminu wynikanie w potocznych kontekstach? racja, następstwo i związki

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Metoda tabel syntetycznych (MTS) MTS

Bardziej szczegółowo

DODATEK 1: Wtedy h(α) = 1 oraz h(β) = 0. Jak pamiętamy ze szkoły, obraz sumy zbiorów jest sumą obrazów tych zbiorów. Mamy zatem:

DODATEK 1: Wtedy h(α) = 1 oraz h(β) = 0. Jak pamiętamy ze szkoły, obraz sumy zbiorów jest sumą obrazów tych zbiorów. Mamy zatem: DODATEK 1: DOWODY NIEKTÓRYCH TWIERDZEŃ DOTYCZACYCH SEMANTYKI KLASYCZNEGO RACHUNKU ZDAŃ 2.2. TWIERDZENIE O DEDUKCJI WPROST (wersja semantyczna). Dla dowolnych X F KRZ, α F KRZ, β F KRZ zachodzą następujące

Bardziej szczegółowo

WSTĘP ZAGADNIENIA WSTĘPNE

WSTĘP ZAGADNIENIA WSTĘPNE 27.09.2012 WSTĘP Logos (gr.) słowo, myśl ZAGADNIENIA WSTĘPNE Logika bada proces myślenia; jest to nauka o formach poprawnego myślenia a zarazem o języku (nie mylić z teorią komunikacji czy językoznawstwem).

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

Składnia rachunku predykatów pierwszego rzędu

Składnia rachunku predykatów pierwszego rzędu Początek Gramatyka Kwantyfikatory Poprawność Logika obliczeniowa Instytut Informatyki Początek Gramatyka Kwantyfikatory Poprawność Plan wykładu 1 Na (dobry) początek Zrozumieć słowa Oswoić znaki 2 Gramatyka

Bardziej szczegółowo

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI JEZYKOZNAWSTWO I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca 2012 Imię i Nazwisko:........................................................... FIGLARNE POZNANIANKI Wybierz

Bardziej szczegółowo

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut Predykat Weźmy pod uwagę następujące wypowiedzi: (1) Afryka jest kontynentem. (2) 7 jest liczbą naturalną. (3) Europa jest mniejsza niż Afryka. (4) 153 jest podzielne przez 3. Są to zdania jednostkowe,

Bardziej szczegółowo

Jak wnioskują maszyny?

Jak wnioskują maszyny? Jak wnioskują maszyny? Andrzej Szałas informatyka + 1 Plan wykładu Plan wykładu Modelowanie wnioskowania Wyszukiwanie, a wnioskowanie Klasyczny rachunek zdań Diagramy Venna Wprowadzenie do automatycznego

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Predykatów I

Wstęp do logiki. Klasyczny Rachunek Predykatów I Wstęp do logiki Klasyczny Rachunek Predykatów I KRZ jest teorią stanowiącą wstępną część logiki formalnej, część zakładaną przez inne teorie. Przypomnijmy, jest on teorią związków logicznych między zdaniami

Bardziej szczegółowo

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe: LOGIKA MATEMATYCZNA Poziom podstawowy Zadanie ( pkt.) Która koniunkcja jest prawdziwa: a) Liczba 6 jest niewymierna i 6 jest liczbą dodatnią. b) Liczba 0 jest wymierna i 0 jest najmniejszą liczbą całkowitą.

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Internet Semantyczny i Logika I

Internet Semantyczny i Logika I Internet Semantyczny i Logika I Warstwy Internetu Semantycznego Dowód Zaufanie Logika OWL, Ontologie Podpis cyfrowy RDF, schematy RDF XML, schematy XML przestrzenie nazw URI Po co nam logika? Potrzebujemy

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (2) Logika LTL Paweł Głuchowski, Politechnika Wrocławska wersja 2.1 Treść wykładu Charakterystyka logiki LTL Czas w Linear

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań 1 Struktury modelowe Przedstawimy teraz pewien

Bardziej szczegółowo

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów 1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów Logika matematyczna, dział matematyki zajmujący się badaniem własności wnioskowania (dowodzenia)

Bardziej szczegółowo

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)];

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)]; Logika 1. Czy następujące sformułowania są zdaniami: (a) Wszystkie koty w Polsce są czarne. (b) Jak to udowodnić? (c) x + y = 7. (d) Jeśli x 2 = y 2, to x = y. (e) Jeśli x = y, to x 2 = y 2. (f) 2 n +

Bardziej szczegółowo

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań Instytut Informatyki Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań Zdzisław Spławski Zdzisław Spławski: Teoretyczne Podstawy Języków Programowania, Wykład 1. Rachunek zdań 1 Systemy

Bardziej szczegółowo

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych Zapoznaj z poniŝszym tekstem reprezentującym wiedzę logiczną o wartościach logicznych będących interpretacjami formuł złoŝonych

Bardziej szczegółowo

Logika. Michał Lipnicki. 8 października 2011. Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 8 października 2011 1 / 44

Logika. Michał Lipnicki. 8 października 2011. Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 8 października 2011 1 / 44 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 8 października 2011 Michał Lipnicki () Logika 8 października 2011 1 / 44 Zdania KRZ wprowadzenie Przedmiotem logiki klasycznej są tylko zdania oznajmujące,

Bardziej szczegółowo

Kultura logiczna Elementy sylogistyki

Kultura logiczna Elementy sylogistyki Kultura logiczna Elementy sylogistyki Bartosz Gostkowski bgostkowski@gmail.com Kraków 15 III 2010 Plan wykładu: Podział wnioskowań Sylogizmy Poprawność sylogizmów i niezawodność trybów PODZIAŁ WNIOSKOWAŃ

Bardziej szczegółowo

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 15 stycznia 2011 Michał Lipnicki () Logika 15 stycznia 2011 1 / 37 Wstęp Materiały na dzisiejsze zajęcia zostały opracowane na podstawie pomocy naukowych

Bardziej szczegółowo

Sylabus dla przedmiotu Logika i ogólna metodologia nauk

Sylabus dla przedmiotu Logika i ogólna metodologia nauk Sylabus dla przedmiotu Logika i ogólna metodologia nauk 1. Definicja pojęcia logika Wprowadzenie w tematykę przedmiotu (szkic czym jest logika, jak należy ją rozumieć, przedmiot logiki, podział logika

Bardziej szczegółowo

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ). 6. Wykład 6: Rachunek predykatów. Język pierwszego rzędu składa się z: symboli relacyjnych P i, i I, gdzie (P i ) oznaczać będzie ilość argumentów symbolu P i, symboli funkcyjnych f j, j J, gdzie (f j

Bardziej szczegółowo

Logika dla archeologów Część 5: Zaprzeczenie i negacja

Logika dla archeologów Część 5: Zaprzeczenie i negacja Logika dla archeologów Część 5: Zaprzeczenie i negacja Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zaprzeczenie 2 Negacja 3 Negacja w logice Sprzeczne grupy

Bardziej szczegółowo

Logika formalna SYLABUS A. Informacje ogólne

Logika formalna SYLABUS A. Informacje ogólne Logika formalna SYLABUS A. Informacje ogólne studiów Poziom kształcenia Profil studiów Forma studiów Rodzaj przedmiotu Rok studiów /semestr Wymagania wstępne Liczba godzin zajęć Założenia i cele przedmiotu

Bardziej szczegółowo

Znak, język, kategorie syntaktyczne

Znak, język, kategorie syntaktyczne Składnia ustalone reguły jakiegoś języka dotyczące sposobu wiązania wyrazów w wyrażenia złożone. Językoznawstwo zajmuje się m.in. opisem składni poszczególnych języków, natomiast przedmiotem syntaktyki

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Programowanie deklaratywne i logika obliczeniowa

Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Wykład logika 12 godzin Dr hab. inż. Joanna Józefowska, prof. PP dyżur: poniedziałek 9.30-11.00 p. 10,

Bardziej szczegółowo

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące

Bardziej szczegółowo

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania

Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania Logika w zastosowaniach kognitywistycznych Paradoks wszechwiedzy logicznej (logical omniscience paradox) i wybrane metody jego unikania (notatki do wykładów) Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl

Bardziej szczegółowo

Logika Matematyczna. Zadania Egzaminacyjne, 2007

Logika Matematyczna. Zadania Egzaminacyjne, 2007 Logika Matematyczna Zadania Egzaminacyjne, 2007 I Rok Językoznawstwa i Informacji Naukowej UAM Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl Podajemy rozwiązania zadań egzaminacyjnych.

Bardziej szczegółowo

logicznych oczywiście

logicznych oczywiście logicznych oczywiście PRZYPOMNIJMY ZWIĄZKI LOGICZNE to związki analityczne między zdaniami uwarunkowane wyłącznie: Strukturą tych zdań Znaczeniem stałych logicznych STĄD W NAJBLIŻSZEJ PRZYSZŁOŚCI: O strukturze

Bardziej szczegółowo

http://www-users.mat.umk.pl/~pjedrzej/wstep.html 1 Opis przedmiotu Celem przedmiotu jest wykształcenie u studentów podstaw języka matematycznego, wypracowanie podstawowych umiejętności przeprowadzania

Bardziej szczegółowo

Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych

Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych Elementy logiki: Algebra Boole a i układy logiczne 1 Elementy logiki dla informatyków Wykład III Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych Elementy logiki: Algebra Boole a

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ

LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ LOGIKA FORMALNA POPRAWNOŚĆ WNIOSKOWAŃ Robert Trypuz Katedra Logiki KUL 18 grudnia 2013 Robert Trypuz (Katedra Logiki) Wnioskowanie 18 grudnia 2013 1 / 12 Zarys 1 Wnioskowanie Definicja Schemat wnioskowania

Bardziej szczegółowo

Filozofia z elementami logiki Język jako system znaków słownych część 2

Filozofia z elementami logiki Język jako system znaków słownych część 2 Filozofia z elementami logiki Język jako system znaków słownych część 2 Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Rozkład jazdy 1 Pojęcie znaku 2 Funkcje wypowiedzi językowych

Bardziej szczegółowo

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa. Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna

Bardziej szczegółowo

LOGIKA Dedukcja Naturalna

LOGIKA Dedukcja Naturalna LOGIKA Dedukcja Naturalna Robert Trypuz Katedra Logiki KUL 7 stycznia 2014 Robert Trypuz (Katedra Logiki) Założeniowy system klasycznego rachunku zdań 7 stycznia 2014 1 / 42 PLAN WYKŁADU 1 Przykład dowodów

Bardziej szczegółowo

Zdanie analityczne (prawda analityczna) to zdanie, które jest zawsze prawdziwe (na mocy znaczeń użytych w nim wyrażeń).

Zdanie analityczne (prawda analityczna) to zdanie, które jest zawsze prawdziwe (na mocy znaczeń użytych w nim wyrażeń). Tautologia to schemat zdań wyłącznie prawdziwych. Kontrtautologia to schemat zdań wyłącznie fałszywych. Zdanie analityczne (prawda analityczna) to zdanie, które jest zawsze prawdziwe (na mocy znaczeń użytych

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Czyli ABC logiki predykatów

Czyli ABC logiki predykatów Czyli ABC logiki predykatów PROBLEM POLICJI PRL ma nowego gangstera, Udało się go złapać, Złożył następujące zeznanie: Popełniłem wszystkie przestępstwa z użyciem dwustronnego kilofa. W ostatnim napadzie

Bardziej szczegółowo

Wstęp do logiki. Pytania i odpowiedzi

Wstęp do logiki. Pytania i odpowiedzi Wstęp do logiki Pytania i odpowiedzi 1 Pojęcie pytania i odpowiedzi DEF. 1. Pytanie to wyrażenie, które wskazuje na pewien brak w wiedzy subiektywnej lub obiektywnej i wskazuje na dążenie do uzupełnienia

Bardziej szczegółowo

Konsekwencja logiczna

Konsekwencja logiczna Konsekwencja logiczna Niech Φ 1, Φ 2,..., Φ n będa formułami logicznymi. Formuła Ψ wynika logicznie z Φ 1, Φ 2,..., Φ n jeżeli (Φ 1 Φ 2 Φ n ) Ψ jest tautologia. Formuły Φ 1, Φ 2,..., Φ n nazywamy założeniami

Bardziej szczegółowo