Algorytmiczna Teoria Gier Koalicyjnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmiczna Teoria Gier Koalicyjnych"

Transkrypt

1 Algorytmiczna Teoria Gier Koalicyjnych Oskar Skibski Institute of Informatics, University of Warsaw 15 października 2013 Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

2 Przykład Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

3 Przykład Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

4 Przykład Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

5 CO TERAS? Jak podzielić wspólną wypłatę? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

6 CO TERAS? Jak podzielić wspólną wypłatę? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

7 CO TERAS? Jak podzielić wspólną wypłatę? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

8 CO TERAS? Jak podzielić wspólną wypłatę? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

9 CO TERAS? Jak podzielić wspólną wypłatę? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

10 CO TERAS? Jak podzielić wspólną wypłatę? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

11 Gry koalicyjne zbiór graczy N koalicja dowolny podzbiór graczy S N podział (lub układ koalicyjny) zbiór rozłącznych koalicji P = {S 1, S 2,..., S k } których sumą jest N gra koalicyjna funkcja v : 2 N R która przypisuje każdej koalicji jej wartość (zakładamy, że v( ) = 0). Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

12 Gry koalicyjne zbiór graczy N koalicja dowolny podzbiór graczy S N podział (lub układ koalicyjny) zbiór rozłącznych koalicji P = {S 1, S 2,..., S k } których sumą jest N gra koalicyjna funkcja v : 2 N R która przypisuje każdej koalicji jej wartość (zakładamy, że v( ) = 0). Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

13 Gry koalicyjne Problem tworzenia koalicji (ang. Coalition formation problem) Znajdź podział P P(N) dla którego S P v(s) jest maksymalne. Inaczej: jaki układ koalicyjny powstanie? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

14 Gry koalicyjne Problem tworzenia koalicji (ang. Coalition formation problem) Znajdź podział P P(N) dla którego S P v(s) jest maksymalne. Inaczej: jaki układ koalicyjny powstanie? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

15 Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

16 Gry koalicyjne Problem podziału (ang. Problem of division) Załóżmy, że powstanie grand coalition, czyli koalicja wszystkich graczy. Znajdź funkcję ϕ : R 2N R N, która przypisuje każdemu graczowi jego udział we wspólnej wypłacie. Inaczej: jak się podzielić tym co uzyskaliśmy? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

17 Gry koalicyjne Problem podziału (ang. Problem of division) Załóżmy, że powstanie grand coalition, czyli koalicja wszystkich graczy. Znajdź funkcję ϕ : R 2N R N, która przypisuje każdemu graczowi jego udział we wspólnej wypłacie. Inaczej: jak się podzielić tym co uzyskaliśmy? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

18 Przykład Jak podzielić wspólną wypłatę? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

19 Aksjomatyka - czy podział jest sprawiedliwy? Efektywność cała wypłata jest rozdzielona pomiędzy graczy Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

20 Aksjomatyka - czy podział jest sprawiedliwy? Efektywność cała wypłata jest rozdzielona pomiędzy graczy Symetria podział wypłaty nie zależy od imion graczy Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

21 Aksjomatyka - czy podział jest sprawiedliwy? Efektywność cała wypłata jest rozdzielona pomiędzy graczy Symetria podział wypłaty nie zależy od imion graczy Aksjomat gracza-atrapy gracz który nie wnosi nic do wartości żadnej koalicji nic nie dostaje Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

22 Aksjomatyka - czy podział jest sprawiedliwy? Efektywność cała wypłata jest rozdzielona pomiędzy graczy Symetria podział wypłaty nie zależy od imion graczy Aksjomat gracza-atrapy gracz który nie wnosi nic do wartości żadnej koalicji nic nie dostaje Addytywność wypłata graczy w dwóch połączonych grach jest równa sumie wypłat w tych grach rozpatrywanych rozłącznie Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

23 Aksjomatyka - czy podział jest sprawiedliwy? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

24 Aksjomatyka - czy podział jest sprawiedliwy? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

25 Czy podział jest stabilny? Jak podzielić wypłatę? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

26 Czy podział jest stabilny? Jak podzielić wypłatę? Czy któraś para dostanie mniej niż 50? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

27 Czy podział jest stabilny? Jak podzielić wypłatę? Czy któraś para dostanie mniej niż 50? A teraz? Czy podział (10, 10, 50) jest ok? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

28 Czy podział jest stabilny? Jak podzielić wypłatę? Czy któraś para dostanie mniej niż 50? A teraz? Czy podział (10, 10, 50) jest ok? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

29 Wartość Shapleya Wartość Shapleya Sh i (v) = S N,i S ( S 1)!( N S )! (v(s) v(s \ {i})) N! Załóżmy, że gracze przychodzą na miejsce spotkania w losowej kolejności. Gracz i zwiększa wartość zastanego zbioru S \ {i} o swój wkład marginalny v(s) v(s \ {i}). Jego wartość w grze wyliczamy teraz jako średnią z jego wszystkich wkładów marginalnych po wszystkich porządkach przyjścia graczy. Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

30 Wartość Shapleya Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

31 Wartość Shapleya Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

32 Wartość Shapleya Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

33 Wartość Shapleya Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

34 Nassau County Board Podział głosów w radzie hrabstwa Nassau: Hempstead #1: 9 Hempstead #2: 9 North Hempstead: 7 Oyster Bay: 3 Glen Cove: 1 Long Beach: 1 Aby przegłosować ustawę potrzeba 16 głosów. Jaka jest siła poszczególnych części? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

35 Nassau County Board Podział głosów w radzie hrabstwa Nassau: Hempstead #1: 9 Hempstead #2: 9 North Hempstead: 7 Oyster Bay: 3 «NULL-PLAYER Glen Cove: 1 «NULL-PLAYER Long Beach: 1 «NULL-PLAYER Aby przegłosować ustawę potrzeba 16 głosów. Jaka jest siła poszczególnych części? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

36 Nassau County Board Podział głosów w radzie hrabstwa Nassau: Hempstead #1: 9 «SIŁA: 1 3 Hempstead #2: 9 «SIŁA: 1 3 North Hempstead: 7 «SIŁA: 1 3 Oyster Bay: 3 «NULL-PLAYER Glen Cove: 1 «NULL-PLAYER Long Beach: 1 «NULL-PLAYER Aby przegłosować ustawę potrzeba 16 głosów. Jaka jest siła poszczególnych części? Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

37 Airport problem Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

38 Airport problem Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

39 Airport problem Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

40 Airport problem Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

41 Obliczanie wartości Shapleya Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

42 Obliczanie wartości Shapleya Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

43 Obliczanie wartości Shapleya Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

44 Obliczanie wartości Shapleya Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

45 Obliczanie wartości Shapleya Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

46 Obliczanie wartości Shapleya Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

47 Gry koalicyjne z efektami zewnętrznymi Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

48 Gry koalicyjne z efektami zewnętrznymi Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

49 Gry koalicyjne z efektami zewnętrznymi Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

50 Sieci terrorystyczne Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

51 Sieci terrorystyczne Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

52 Sieci terrorystyczne Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

53 Co jeszcze? AAMAS 14, deadline: AAAI 14, deadline: ACM EC 14, deadline: Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października / 21

Algorytmiczna Teoria Gier Koalicyjnych 2015/16

Algorytmiczna Teoria Gier Koalicyjnych 2015/16 Algorytmiczna Teoria Gier Koalicyjnych 2015/16 Oskar Skibski MIMUW 4 października 2015 Oskar Skibski (MIMUW) ATGK-16 4 października 2015 1 / 21 Przykład Oskar Skibski (MIMUW) ATGK-16 4 października 2015

Bardziej szczegółowo

Wartość Shapleya. Oskar Skibski. Institute of Informatics, University of Warsaw. 8 października 2012

Wartość Shapleya. Oskar Skibski. Institute of Informatics, University of Warsaw. 8 października 2012 Wartość Shapleya Oskar Skibski Institute of Informatics, University of Warsaw 8 października 2012 Oskar Skibski (University of Warsaw) Shapley value 8 października 2012 1 / 17 Przykład Oskar Skibski (University

Bardziej szczegółowo

Wartość Shapleya w grach koalicyjnych

Wartość Shapleya w grach koalicyjnych Wartość Shapleya w grach koalicyjnych Dawid Migacz, i LO w Tarnowie 1 Wprowadzenie W zasadzie każdą sytuację występującą na świecie można wymodelować matematycznie. W przypadku sytuacji, w których kilka

Bardziej szczegółowo

Teoria Decyzji Wykład 13 N-osobowe gry kooperacyjne - wartość Shapleya

Teoria Decyzji Wykład 13 N-osobowe gry kooperacyjne - wartość Shapleya Teoria Decyzji Wykład 13 N-osobowe gry kooperacyjne - wartość Shapleya Na poprzednim wykładzie mówiliśmy o dwóch rodzajach pojęcia rozwiązania" gry kooperacyjnej: o rdzeniu i o zbiorach stabilnych. Oba

Bardziej szczegółowo

Gry wieloosobowe. Zdzisław Dzedzej

Gry wieloosobowe. Zdzisław Dzedzej Gry wieloosobowe Zdzisław Dzedzej 2012 2013-01-16 1 Przykład 1 Warstwa A Warstwa B K K W A B W A B A 1,1,-2-4,3,1 A 3,-2,-1-6,-6,12 B 2,-4,2-5,-5,10 B 2,2,-4-2,3,-1 2013-01-16 2 Diagram przesunięć 2013-01-16

Bardziej szczegółowo

Obliczanie wartości Shapleya rozszerzonej do gier koalicyjnych z efektami zewnętrznymi

Obliczanie wartości Shapleya rozszerzonej do gier koalicyjnych z efektami zewnętrznymi Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Oskar Skibski Nr albumu: 237720 Obliczanie wartości Shapleya rozszerzonej do gier koalicyjnych z efektami zewnętrznymi Praca magisterska

Bardziej szczegółowo

Tworzenie gier na urządzenia mobilne

Tworzenie gier na urządzenia mobilne Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z

Bardziej szczegółowo

Tomasz Rostański. Gry wieloosobowe. Wersja niedokończona (wersje dokończoną szlag trafił wraz ze śmiercią strony giaur.qs.pl)

Tomasz Rostański. Gry wieloosobowe. Wersja niedokończona (wersje dokończoną szlag trafił wraz ze śmiercią strony giaur.qs.pl) Tomasz Rostański Gry wieloosobowe Wersja niedokończona (wersje dokończoną szlag trafił wraz ze śmiercią strony giaur.qs.pl) Wprowadzenie. Dotychczas analizowaliśmy gry, w których udział brały tylko 2 osoby.

Bardziej szczegółowo

WARTOŚĆ SHAPLEYA DLA GIER

WARTOŚĆ SHAPLEYA DLA GIER WARTOŚĆ SHAPLEYA DLA GIER Z EFEKTAMI ZEWNETRZNYMI I GIER NA GRAFACH AUTOREFERAT OSKAR SKIBSKI 9 CZERWCA 2014 Problem sprawiedliwego podziału zysku z kooperacji jest jednym z podstawowych zagadnień teorii

Bardziej szczegółowo

11. Gry Macierzowe - Strategie Czyste i Mieszane

11. Gry Macierzowe - Strategie Czyste i Mieszane 11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy

Bardziej szczegółowo

Kombinatoryka. Reguła dodawania. Reguła dodawania

Kombinatoryka. Reguła dodawania. Reguła dodawania Kombinatoryka Dział matematyki, który zajmuje się obliczaniem liczebności zbiorów bądź długości ciągów, które łączą w określony sposób elementy należące do skończonego zbioru (teoria zliczania). W jakich

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwuosobowe z kooperacją Przedstawimy

Bardziej szczegółowo

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

Wprowadzenie do teorii gier

Wprowadzenie do teorii gier Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 1 Klasyfikacja gier 2 Gry macierzowe, macierz wypłat, strategie czyste i mieszane 3 Punkty równowagi w grach o sumie zerowej 4 Gry dwuosobowe oraz n-osobowe

Bardziej szczegółowo

Zastosowanie wartości Shapleya w podejmowaniu decyzji przez importerów

Zastosowanie wartości Shapleya w podejmowaniu decyzji przez importerów Zastosowanie wartości Shapleya w podejmowaniu decyzji przez importerów dr hab. Leszek S. Zaremba 1. Postawienie problemu RozwaŜmy zagadnienie decyzyjne, jakie pojawia się w przypadku importerów pewnego

Bardziej szczegółowo

Gry o sumie niezerowej

Gry o sumie niezerowej Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.0. Wstęp Katarzyna Rybarczyk-Krzywdzińska Wstęp Dlaczego prawdopodobieństwo klasyczne nie wystarcza? Jak opisać grę w ruletkę,

Bardziej szczegółowo

Konkurencja i kooperacja w dwuosobowych grach strategicznych. Anna Lamek

Konkurencja i kooperacja w dwuosobowych grach strategicznych. Anna Lamek Konkurencja i kooperacja w dwuosobowych grach strategicznych Anna Lamek Plan prezentacji Ujęcie kooperacji i konkurencji w teorii gier Nowe podejście CoCo value CoCo value dla gier bayesowskich Uzasadnienie

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

Zdarzenia losowe i prawdopodobieństwo

Zdarzenia losowe i prawdopodobieństwo Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne

Bardziej szczegółowo

GRY KOOPERACYJNE WPROWADZENIE DO TEMATYKI

GRY KOOPERACYJNE WPROWADZENIE DO TEMATYKI GRY KOOPERACYJNE WPROWADZENIE DO TEMATYKI Marcin Malawski Akademia Leona Koźmińskiego i Instytut Podstaw Informatyki PAN Warszawa 6 Forum Matematyków Polskich, Warszawa, wrzesień 2015 1 Pojęcia 2 Rozwiązania

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne.

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne. TEORIA GIER W NAUKACH SPOŁECZNYCH Równowagi Nasha. Rozwiązania niekooperacyjne. Przypomnienie Gra o sumie zerowej Kryterium dominacji Kryterium wartości oczekiwanej Diagram przesunięć Równowaga Can a Round

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

Sieci Kohonena Grupowanie

Sieci Kohonena Grupowanie Sieci Kohonena Grupowanie http://zajecia.jakubw.pl/nai UCZENIE SIĘ BEZ NADZORU Załóżmy, że mamy za zadanie pogrupować następujące słowa: cup, roulette, unbelievable, cut, put, launderette, loveable Nie

Bardziej szczegółowo

Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe

Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Gry dwuosobowe Literatura [1] Sterling

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród

Bardziej szczegółowo

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski WYKŁAD 1 Witold Bednorz, Paweł Wolff Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Wprowadzenie Gry hazardowe Wprowadzenie Gry hazardowe Klasyczna definicja prawdopodobieństwa.

Bardziej szczegółowo

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce. Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

Load balancing games

Load balancing games Load balancing games Marcin Witkowski Uniwersytet im. Adama Mickiewicza w Poznaniu 11 grudnia 2010 1 / 34 Szeregowanie zadań Przyporządkowanie zbioru zadań do zbioru maszyn, w ten sposób, aby obciążenie

Bardziej szczegółowo

-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji

-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 1 -Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 2 Teoria gier bada,w jaki sposób gracze powinnirozgrywać grę, a każdy dąży do takiego wyniku gry, który daje mu jak największą

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji

Bardziej szczegółowo

Rozkład figury symetrycznej na dwie przystające

Rozkład figury symetrycznej na dwie przystające Rozkład figury symetrycznej na dwie przystające Tomasz Tkocz 10 X 2010 Streszczenie Tekst zawiera notatki do referatu z seminarium monograficznego Wybrane zagadnienia geometrii. Całość jest oparta na artykule

Bardziej szczegółowo

14. Ekonomia Behawioralna - Wady Klasycznej Teorii Gier

14. Ekonomia Behawioralna - Wady Klasycznej Teorii Gier 14. Ekonomia Behawioralna - Wady Klasycznej Teorii Gier Klasyczna teoria gier zakłada że gracze tylko interesują się swoimi wypłatami, a nie wypłatami innych graczy. W dodatku, z założenia gracze maksymalizują

Bardziej szczegółowo

TEORIA GIER DEFINICJA (VON NEUMANN, MORGENSTERN) GRA. jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w

TEORIA GIER DEFINICJA (VON NEUMANN, MORGENSTERN) GRA. jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w TEORIA GIER GRA DEFINICJA (VON NEUMANN, MORGENSTERN) Gra składa się z zestawu reguł określających możliwości wyboru postępowania jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w

Bardziej szczegółowo

Teoria gier a ewolucja. Paweł Kliber (UEP)

Teoria gier a ewolucja. Paweł Kliber (UEP) Teoria gier a ewolucja Paweł Kliber (UEP) Plan 1.Teoria gier co to jest? 2.Dynamika replikatorów 3.Zastosowania ewolucyjne 4.Dynamika interakcji społecznych 5.Symulacje agentów ekonomicznych 6.Kooperacja

Bardziej szczegółowo

Parlamentarno-polityczne zastosowania teorii gier N - osobowych

Parlamentarno-polityczne zastosowania teorii gier N - osobowych Parlamentarno-polityczne zastosowania teorii gier N - osobowych Konferencja Matematyczna OBLICZE 2014 9 11 maja 2014 Parlamentarno-polityczne zastosowania teorii gier N - osobowych 9 11 maja 2014 1 / 24

Bardziej szczegółowo

Algorytmy w teorii liczb

Algorytmy w teorii liczb Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,

Bardziej szczegółowo

METODY WYZNACZANIA ROZWIĄZAŃ SYTUACJI KONFLIKTO- WYCH Z MOŻLIWOŚCIĄ KOOPERACJI

METODY WYZNACZANIA ROZWIĄZAŃ SYTUACJI KONFLIKTO- WYCH Z MOŻLIWOŚCIĄ KOOPERACJI METODY WYZNACZANIA ROZWIĄZAŃ SYTUACJI KONFLIKTO- WYCH Z MOŻLIWOŚCIĄ KOOPERACJI Beata SIEMIEŃSKA Wojskowa Akademia Techniczna w Warszawie Wydział Cybernetyki Kierunek: Bezpieczeństwo Narodowe Specjalność:

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018 Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy

Bardziej szczegółowo

Wyznaczanie strategii w grach

Wyznaczanie strategii w grach Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych

Bardziej szczegółowo

Spis treści. Definicje prawdopodobieństwa. Częstościowa definicja prawdopodobieństwa. Wnioskowanie_Statystyczne_-_wykład

Spis treści. Definicje prawdopodobieństwa. Częstościowa definicja prawdopodobieństwa. Wnioskowanie_Statystyczne_-_wykład Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Definicje prawdopodobieństwa 1.1 Częstościowa definicja prawdopodobieństwa 1.1.1 Przykład 1.1.2 Rozwiązanie: 1.1.3 Inne rozwiązanie: 1.1.4 Jeszcze inne

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Eksploracja danych Co to znaczy eksploracja danych Klastrowanie (grupowanie) hierarchiczne Klastrowanie

Bardziej szczegółowo

Statystyka Astronomiczna

Statystyka Astronomiczna Statystyka Astronomiczna czyli zastosowania statystyki w astronomii historycznie astronomowie mieli wkład w rozwój dyscypliny Rachunek prawdopodobieństwa - gałąź matematyki Statystyka - metoda oceny właściwości

Bardziej szczegółowo

TURCJA - Cesme, Kusadasi

TURCJA - Cesme, Kusadasi wylot z KATOWIC, WARSZAWY 12.0.201 1399 2099 1439 2299 1439 2299 1449 2199 HOTEL OMER HOLIDAY VILLAGE 4+ all incl. ADBOMER 149 HOTEL TUSAN BEACH RESORT all incl. ADBTUSA 24h 1799 wylot z KATOWIC, WARSZAWY

Bardziej szczegółowo

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne.

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne. Wykład Prawdopodobieństwo warunkowe Dwukrotny rzut symetryczną monetą Ω {OO, OR, RO, RR}. Zdarzenia: Awypadną dwa orły, Bw pierwszym rzucie orzeł. P (A) 1 4, 1. Jeżeli już wykonaliśmy pierwszy rzut i wiemy,

Bardziej szczegółowo

Algebra relacji. nazywamy każdy podzbiór iloczynu karteziańskiego D 1 D 2 D n.

Algebra relacji. nazywamy każdy podzbiór iloczynu karteziańskiego D 1 D 2 D n. Algebra relacji Definicja 1 (Relacja matematyczna). Relacją R między elementami zbioru D 1 D 2 D n, gdzie przypomnijmy D 1 D 2 D n = {(d 1, d 2,..., d n ) : d i D i, i = 1, 2,..., n}, nazywamy każdy podzbiór

Bardziej szczegółowo

Teoria Decyzji Wykład 12 N-OSOBOWE GRY KOOPERACYJNE - POSTAĆ CHARAKTERYSTYCZNA GRY

Teoria Decyzji Wykład 12 N-OSOBOWE GRY KOOPERACYJNE - POSTAĆ CHARAKTERYSTYCZNA GRY Teoria Decyzji Wykład 12 N-OSOBOWE GRY KOOPERACYJNE - POSTAĆ CHARAKTERYSTYCZNA GRY Na poprzednich wykładach zajmowaliśmy się głównie takimi sytuacjami, w których gracze podejmowali decyzje jednocześnie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Teoria gier i decyzji Theory of games and decisions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji:

Bardziej szczegółowo

MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk

MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk MNRP 18.03.2019r. Grzegorz Kowalczyk 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Definicja (σ - ciało) Niech Ω - dowolny zbiór. Rodzinę F P (Ω), gdzie P (Ω) jest rodziną wszystkich podzbiorów

Bardziej szczegółowo

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne (dr Robert Kowalczyk) Wykład: Poniedziałek 16.15-.15.48 (sala A428) Ćwiczenia:

Bardziej szczegółowo

Bazy danych - Materiały do laboratoriów IV

Bazy danych - Materiały do laboratoriów IV Bazy danych - Materiały do laboratoriów IV dr inż. Olga Siedlecka-Lamch Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 17 marca 2011 roku Pozostałe funkcje wierszowe Oracle:

Bardziej szczegółowo

2 Zakłady proste w grze Standard

2 Zakłady proste w grze Standard WZAJEMNE ZAKŁADY BUKMACHERSKIE MILENIUM Sp. z o.o. - w sprawie określenia szczegółowego wykazu systemów oraz zakładów prostych i systemowych. 1 Na podstawie 4 ust. 3 Regulaminu internetowych zakładów wzajemnych

Bardziej szczegółowo

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, Biomatematyka

EGZAMIN DYPLOMOWY, część II, Biomatematyka Biomatematyka Niech X n oznacza proporcję pozycji w nici DNA, które po n replikacjach są obsadzone takimi samymi nukleotydami, jak w chwili początkowej, tak więc X 0 = 1. Zakładamy, że w każdej replikacji

Bardziej szczegółowo

Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np.

Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np. Dłuższy przykład: Dwie firmy, Zeus i Atena, produkują sprzęt muzyczny. Zeus jest większy, Atena jest ceniona za HF. Wprowadzają nowy produkt, np. kula wyłożona głośnikami od wewnątrz. Popyt jest nieznany:

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 9A/14 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to

Bardziej szczegółowo

Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych

Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 10 listopada 2016 Proseminarium licencjackie

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura

Bardziej szczegółowo

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI

Dr inż. Grażyna KRUPIŃSKA.  D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl http://orion.fis.agh.edu.pl/~grazyna/ D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI Plan wykładu 2 Wprowadzenie, trochę historii, systemy liczbowe

Bardziej szczegółowo

Teoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 5 - Równowagi w grach n-osobowych Figure: Podział gier Definicje Formalnie, jednoetapowa gra w postaci strategicznej dla n graczy definiowana jest jako:

Bardziej szczegółowo

= A. A - liczba elementów zbioru A. Lucjan Kowalski

= A. A - liczba elementów zbioru A. Lucjan Kowalski Lucjan Kowalski ZADANIA, PROBLEMY I PARADOKSY W PROBABILISTYCE Przypomnienie. Ω - zbiór zdarzeń elementarnych. A zdarzenie (podzbiór Ω). A - liczba elementów zbioru A Jeśli zdarzeń elementarnych jest skończenie

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

PageRank. Bartosz Makuracki. 28 listopada B. Makuracki PageRank

PageRank. Bartosz Makuracki. 28 listopada B. Makuracki PageRank PageRank Bartosz Makuracki 28 listopada 2013 Definicja Definicja PageRank jest algorytmem używanym przez wyszukiwarkę Google do ustalania kolejności stron pojawiających się w wynikach wyszukiwania. Definicja

Bardziej szczegółowo

Wstęp do Teorii Gier 5 X Tadeusz P/latkowski

Wstęp do Teorii Gier 5 X Tadeusz P/latkowski Tadeusz Płatkowski 5 X 2017 Organizacyjne Pokój: 4440 Konsultacje: np. poniedziałek 15.00 16.00 Drzwi 4440: koperta WTG Grupa I: Pon 16:00 s. 2100, Grupa II: Czwartek 12:15 s. 3320. Organizacyjne Pokój:

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa

Wstęp do rachunku prawdopodobieństwa wykład : Wstęp do rachunku prawdopodobieństwa STTYSTYK OPISOW Wanda Olech Katedra Genetyki i Ochrony Zwierząt Statystyka zajmuje się Zjawiskami losowymi - które bada przez doświadczenie U podstaw współczesnej

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.4. Momenty zmiennych losowych Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Rzucamy raz kostką Ile wynosi średnia liczba oczek, jaka

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Konflikt i Kooperacja

Konflikt i Kooperacja Konflikt i Kooperacja O modelowaniu ludzkich zachowań na gruncie Teorii Gier Karol Wawrzyniak Zespól Systemów Złożonych Centrum Informatyczne Świerk (www.cis.gov.pl), Narodowe Centurm Badań Jądrowych (www.ncbj.gov.pl)

Bardziej szczegółowo

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne Wykład: Sobota/Niedziela Ćwiczenia: Sobota/Niedziela Dyżur: Czwartek 14.00-16.00

Bardziej szczegółowo

Relacje. opracował Maciej Grzesiak. 17 października 2011

Relacje. opracował Maciej Grzesiak. 17 października 2011 Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla

Bardziej szczegółowo

Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia)

Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia) Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia) 1 Przestrzeń probabilistyczna Zadanie 1 Rzucamy dwiema kostkami do gry. Opisać przestrzeń zdarzeń

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Teoria Gier. Piotr Kuszewski 2018L

Teoria Gier. Piotr Kuszewski 2018L Teoria Gier Piotr Kuszewski 2018L Tematyka wykładów plan akcji Wykład I John von Neumann Trochę historii Czym jest gra i strategia Użyteczność Jak wyeliminować niektóre strategie Wykład II John Nash Równowaga

Bardziej szczegółowo

ELEMENTY GRY. 90 kart upraw

ELEMENTY GRY. 90 kart upraw instrukcja wideo gry.nk.com.pl autor: Jeffrey D. Allers ELEMENTY GRY 90 kart upraw ilustracje: Tomek Larek Każda karta upraw składa się z dwóch części. Na każdej części znajduje się jedna z 5 upraw (lawenda,

Bardziej szczegółowo

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n

Bardziej szczegółowo

Gra EGZAMIN. Damian Wróbel, student III roku Wydział Fizyki i Informatyki Stosowanej AGH

Gra EGZAMIN. Damian Wróbel, student III roku Wydział Fizyki i Informatyki Stosowanej AGH FOTON 140, Wiosna 2018 41 Gra EGZAMIN Damian Wróbel, student III roku Wydział Fizyki i Informatyki Stosowanej AGH Każdy na pewno zadawał sobie pytanie czy warto się uczyć?. Po znalezieniu setek powodów,

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji

Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji ODSTWY STTYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne 6.

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:

Bardziej szczegółowo

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0

Bardziej szczegółowo

B.VII USTALANIE KOLEJNOŚCI MIEJSC W TURNIEJACH PZSZACH. q Ustalanie kolejności miejsc (PZSzach) Część B.VII str. 1

B.VII USTALANIE KOLEJNOŚCI MIEJSC W TURNIEJACH PZSZACH. q Ustalanie kolejności miejsc (PZSzach) Część B.VII str. 1 q Ustalanie kolejności miejsc (PZSzach) Część B.VII str. 1 q B.VII USTALANIE KOLEJNOŚCI MIEJSC W TURNIEJACH PZSZACH 1. WSTĘP 1.1. O kolejności zajętych miejsc rozstrzyga zawsze liczba punktów zdobytych

Bardziej szczegółowo

Rachunek prawdopodobieństwa w grach losowych.

Rachunek prawdopodobieństwa w grach losowych. Rachunek prawdopodobieństwa w grach losowych. Lista zawiera kilkadziesiąt zadań dotyczących różnych gier z użyciem kart i kości, w tym tych najbardziej popularnych jak brydż, tysiąc itp. Kolejne zadania

Bardziej szczegółowo

Ruletka czy można oszukać kasyno?

Ruletka czy można oszukać kasyno? 23 stycznia 2017 Ruletka czy można oszukać kasyno? M. Dworak, K. Maraj, S. Michałowski Plan prezentacji Podstawy ruletki System dwójkowy (Martingale) Czy system rzeczywiście działa? 1/22 Podstawy ruletki

Bardziej szczegółowo

ZASADY SZCZEGÓŁOWE 1. AGRICOLA+ - Liczba graczy: 3-5, - Pozostałe zasady zgodne z instrukcją. 2. CA$H N GUNS+

ZASADY SZCZEGÓŁOWE 1. AGRICOLA+ - Liczba graczy: 3-5, - Pozostałe zasady zgodne z instrukcją. 2. CA$H N GUNS+ ZASADY SZCZEGÓŁOWE 1. AGRICOLA+ 2. CA$H N GUNS+ - Liczba graczy: 4-6, - Gra musi być rozgrywana bez udziału policjanta, można używać kart specjalnych zdolności, - Ustalenie miejsc: gracz, który zostaje

Bardziej szczegółowo

Rachunek Prawdopodobieństwa MAP1181 Wydział Matematyki, Matematyka Stosowana Projekt - Czas dojazdu autobusem Opracowanie: Klaudia Karpińska

Rachunek Prawdopodobieństwa MAP1181 Wydział Matematyki, Matematyka Stosowana Projekt - Czas dojazdu autobusem Opracowanie: Klaudia Karpińska Zadanie Rachunek Prawdopodobieństwa MAP8 Wydział Matematyki, Matematyka Stosowana Projekt - Czas dojazdu autobusem Opracowanie: Klaudia Karpińska Z pracy do domu możemy dojechać autobusem jednej z trzech

Bardziej szczegółowo

Rola lidera w procesie

Rola lidera w procesie Rola lidera w procesie Termin: 8-9 sierpnia, Wrocław Cena: 1890 zł netto Kontakt: Natalia Medyńska tel. +48 789 407 645 Natalia.Medynska@pl.ey.com Twój partner w rozwoju kompetencji Cele szkolenia Celem

Bardziej szczegółowo

Quizuj z YouTube. Elżbieta Straszak Tomasz Karoń

Quizuj z YouTube.  Elżbieta Straszak Tomasz Karoń Quizuj z YouTube Elżbieta Straszak Tomasz Karoń straszak@womczest.edu.pl karon@womczest.edu.pl Obraz z witryny: https://www.blubbr.tv/assets/mediafiles.zip, dostęp: 8.10.2015 r. Co to jest grywalizacja?

Bardziej szczegółowo

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie Poznań, 1.10.2016 r. Dr Grzegorz Paluszak OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie I. Informacje ogólne 1. Nazwa modułu : Teoria gier 2. Kod modułu : 1 TGw

Bardziej szczegółowo