METODA SYMULACYJNA WYZNACZANIA WIELKOŚCI BUFORÓW STABILIZUJĄCYCH HARMONOGRAMY BUDOWLANE

Wielkość: px
Rozpocząć pokaz od strony:

Download "METODA SYMULACYJNA WYZNACZANIA WIELKOŚCI BUFORÓW STABILIZUJĄCYCH HARMONOGRAMY BUDOWLANE"

Transkrypt

1 METODA SYMULACYJNA WYZNACZANIA WIELKOŚCI BUFORÓW STABILIZUJĄCYCH HARMONOGRAMY BUDOWLANE Janusz KULEJEWSKI, Jacek ZAWISTOWSKI Wydział Inżynierii Lądowe, Politechnika Warszawska, Al. Armii Ludowe 16, Warszawa Streszczenie: Referat dotyczy zagadnienia uodporniania planowanych terminów rozpoczynania robót, na zakłócenia powstaące podczas realizaci budowy. Istotą proponowane metody est połączenie modelu symulaci przebiegu budowy i modelu optymalizaci rozwiązania zadania stabilizaci harmonogramu. Umożliwia to szybką ocenę akości danego wariantu rozwiązania zadania oraz znalezienie rozwiązania, nalepie spełniaącego ustalone kryteria, warunki i ograniczenia. Efektywność metody est zapewniona dzięki połączeniu technik symulacynych z algorytmami metaheurystycznymi. Słowa kluczowe: odporność harmonogramu, buforowanie terminów rozpoczynania czynności. 1. Wprowadzenie Warunki realizaci przedsięwzięć budowlanych nie są w pełni przewidywalne. Mimo pewne powtarzalności poszczególnych składowych procesu inwestycynego, każda budowa est w duże mierze przedsięwzięciem o unikatowych i niepewnych warunkach realizaci. Jednym ze skutków te niepewności, est niewłaściwe oszacowanie różnorodnych zakłóceń, powoduących nieterminowość wykonania poszczególnych robót i całego przedsięwzięcia oraz związane z tym straty finansowe wykonawcy robót. Straty te są spowodowane przede wszystkim karami umownymi, naliczanymi przez zamawiaącego i ewentualnych podwykonawców. Mogą być także spowodowane kosztami przestou maszyn budowlanych i zespołów roboczych, względnie kosztami przedłużonego składowania materiałów do wykonania robót. Podobne problemy występuą podczas planowania i realizaci proektów w innych obszarach działalności gospodarcze. Próby rozwiązania tych problemów stały się przyczyną rozwou metod harmonogramowania proaktywnego (Herroelen i Leus, 2004). W metodach tych wykorzystue się probabilistyczne modelowanie niepewności dla opracowania harmonogramu predyktywnego, którego celem est alternatywnie: zapewnienie stabilności terminu zakończenia przedsięwzięcia, co est określane w źródłach literaturowych ako niezawodność harmonogramu (Jaworski, 1980), lub ako odporność akości harmonogramu (ang. quality robustness) (Al Fawzan i Haouari, 2005; Herroelen i Leus, 2005; Kobylański i Kuchta, 2007); zapewnienie stabilności terminów rozpoczynania poszczególnych czynności, co est określane w źródłach literaturowych ako niezawodność czynności (Jaworski, 1980), lub ako odporność uszeregowania czynności w harmonogramie (ang. solution robustness) (Al Fawzan i Haouari, 2005; Herroelen i Leus, 2005; Kobylański i Kuchta, 2007). Odporność akości harmonogramu osiąga się dzięki wprowadzeniu do harmonogramu odpowiednich buforów czasu. Podobnie postępue się w przypadku większości znanych metod zwiększania odporności uszeregowania czynności w harmonogramie. Jednak, istnieą również metody zapewniania stabilności uszeregowania czynności w harmonogramie bez wprowadzania buforów czasu. 2. Charakterystyka istnieących metod harmonogramowania proaktywnego W przypadku dążenia do zapewnienia stabilności terminu zakończenia przedsięwzięcia, nawiększe znaczenie ma metoda łańcucha krytycznego (Goldratt, 1997; Leach, 2000). Łańcuch krytyczny (ang. critical chain) est definiowany ako zbiór czynności w modelu sieciowym, których suma czasów wykonania determinue czas realizaci całego proektu, przy uwzględnieniu zależności technologicznych pomiędzy czynnościami i dodatkowych zależności nieformalnych, wprowadzonych dla Autor odpowiedzialny za korespondencę. .kuleewski@il.pw.edu.pl 563

2 Civil and Environmental Engineering / Budownictwo i Inżynieria Środowiska 2 (2011) zbilansowania zasobów odnawialnych o ograniczone dostępności. Stabilność terminu zakończenia przedsięwzięcia uzyskue się dzięki: a) właściwe identyfikaci czynności, tworzących łańcuch krytyczny i łańcuchy zasilaące, grupuące czynności nie zaliczone do łańcucha krytycznego; b) wprowadzeniu: na końcu łańcucha krytycznego: bufora proektu, stabilizuącego termin zakończenia całego proektu, w miescach, gdzie łańcuchy zasilaące łączą się z łańcuchem krytycznym: buforów zasilaących, chroniących łańcuch krytyczny przed propagacą zakłóceń, powoduących opóźnienia realizaci czynności w danym łańcuchu zasilaącym. W metodzie łańcucha krytycznego przewidziano również wprowadzanie buforów zasobów tam, gdzie czynność z tego łańcucha wymaga innego rodzau zasobu, niż czynność poprzednia. Bufory zasobów nie posiadaą wymiaru czasowego. Służą edynie zapewnieniu, że eżeli dana czynność z łańcucha krytycznego będzie gotowa do rozpoczęcia, to będzie również miała zapewniony przydział odpowiedniego zasobu odnawialnego do e realizaci. Sporządzanie harmonogramu proektu metodą łańcucha krytycznego przebiega w dwóch etapach. W etapie pierwszym, sporządza się harmonogram wstępny, uwzględniaący zależności pomiędzy czynnościami w modelu sieciowym budowy oraz ograniczenia dostępności zasobów odnawialnych. Do sporządzenia harmonogramu wstępnego, przymue się pesymistyczne oszacowania czasów wykonania czynności, uznawane za oszacowania bezpieczne. Wykorzystuąc metodę analizy ścieżki krytyczne, wyznacza się napóźniesze terminy rozpoczynania poszczególnych czynności. W etapie drugim, napierw redukue się planowane czasy wykonania robót z wartości pesymistycznych do wartości agresywnych. Można przyąć oszacowania agresywne ako równe połowom oszacowań bezpiecznych. Jednakże, eżeli zamierza się symulacynie potwierdzić skuteczność ochrony planowanego terminu zakończenia proektu, wygodnie est przyąć, ako agresywne, wartości modalne rozkładów prawdopodobieństwa czasów wykonania poszczególnych czynności. Następnie, bilansue się zasoby do wykonania proektu, ustalaąc dodatkowe zależności nieformalne pomiędzy niektórymi czynnościami. Biorąc pod uwagę wszystkie zależności pomiędzy czynnościami, identyfikue się łańcuch krytyczny oraz łańcuchy zasilaące. Po redukci czasów wykonania robot, sporządza się buforowany harmonogram proektu. Wielkości buforów czasu wyznacza się analitycznie, agreguąc rezerwy czasu czynności tworzących łańcuch krytyczny i łańcuchy zasilaące. Wyznaczone wielkości buforów uwzględniaą długość danego łańcucha, liczbę czynności tworzących dany łańcuch oraz niepewność oszacowań czasów wykonania tych czynności. Jednak Herroelen i Leus (2001) oraz Herroelen i in. (2002) podważaą skuteczność tak wyznaczanych buforów czasu dla stabilizaci terminu zakończenia przedsięwzięcia. W przypadku dążenia do zapewnienia stabilności terminów rozpoczynania poszczególnych czynności, można wykorzystać metodę przedstawioną przez Al-Fawzana i Haouariego (2005) lub metodę przedstawioną przez Kobylańskiego i Kuchtę (2007). Istotą obu metod est odpowiednie rozwiązanie zadania uszeregowania czynności w harmonogramie z uwzględnieniem ograniczone dostępności zasobów odnawialnych. Natomiast, metody te różnicue przyęty miernik oceny odporności uszeregowania czynności w harmonogramie. W metodzie pierwsze (Al-Fawzan i Haouari, 2005), est to suma swobodnych zapasów czasu poszczególnych czynności. W metodzie drugie (Kobylański i Kuchta, 2007), est to minimalna wartość swobodnego zapasu czasu czynności lub minimalna wartość ilorazu swobodnego zapasu czasu czynności i e czasu wykonania. W obu metodach, rozwiązanie zadania uszeregowania czynności powinno zapewniać maksymalizacę wartości przyętego miernika oceny odporności harmonogramu. W większości źródeł literaturowych, przedstawia się ednak metody zapewnienia stabilności harmonogramu dzięki odpowiedniemu opóźnieniu planowanych terminów rozpoczynania poszczególnych czynności w stosunku do nawcześnieszych możliwych terminów ich rozpoczynania. Te opóźnienia wyznacza się w postaci buforów czasu, wprowadzanych przed poszczególne czynności w harmonogramie predyktywnym. Zadaniem każdego buforu est absorpca wydłużeń czasów poprzedników dane czynności. Tavares i in. (1998) przydzielaą dane czynności bufor o wielkości będące pewną częścią całkowitego zapasu czasu te czynności, wyznaczaną z wykorzystaniem wskaźnika zapasu. Odpowiednią wartość wskaźnika zapasu (ednakową dla wszystkich czynności) wyznacza się poszukuąc kompromisu pomiędzy ryzykiem niedotrzymania planowanego terminu zakończenia proektu a dyskontowanym kosztem ego realizaci. Oceny ryzyka nieterminowości realizaci proektu i dyskontowanego kosztu ego realizaci dokonue się z wykorzystaniem technik symulacynych. Alternatywą est wyznaczenie buforów czasu na podstawie rozwiązania zadania minimalizaci oczekiwanego kosztu niestabilności harmonogramu (Herroelen i Leus, 2004; Van de Vonder i in., 2005 i 2006). Przy założeniu, że nieterminowe rozpoczynanie czynności generue koszty dla wykonawcy, oczekiwany koszt niestabilności harmonogramu wyznacza się ako sumę oczekiwanych kosztów odchyleń pomiędzy terminami rozpoczynania czynności, prognozowanymi na podstawie wyników symulaci buforowanego harmonogramu predyktywnego, a terminami rozpoczynania czynności, ustalonymi w tym harmonogramie. Przy ustalaniu schematu symulaci przymue się, że czynności buforowane będą podczas realizaci proektu rozpoczynane nie wcześnie, niż w terminach ustalonych w buforowanym harmonogramie predyktywnym (ang. railway policy). Dlatego, ako nieterminowe rozpoczynanie czynności uznae się opóźnienie terminu 564

3 Janusz KULEJEWSKI, Jacek ZAWISTOWSKI e rozpoczęcia w stosunku do terminu planowanego z uwzględnieniem buforów. Harmonogram predyktywny sporządza się w dwóch etapach. W etapie pierwszym, powstae harmonogram początkowy, podaący nawcześniesze terminy realizaci czynności ustalone w wyniku rozwiązania problemu nadmierne alokaci zasobów odnawialnych o ograniczone dostępności. W etapie drugim, powstae predyktywny harmonogram bazowy z terminami rozpoczynania czynności zaplanowanymi z uwzględnieniem buforów czasu. Rozwiązanie zadania minimalizaci oczekiwanego kosztu niestabilności harmonogramu uzyskue się następuąco: przeprowadza się symulacę harmonogramu niebuforowanego i wybiera się czynność o nawyższym koszcie oczekiwanym opóźnienia terminu e rozpoczęcia z powodu propagaci zakłóceń; do harmonogramu wprowadza się ednostkowy bufor czasu, opóźniaący planowane rozpoczęcie wybrane czynności w stosunku do nawcześnieszego możliwego terminu e rozpoczęcia; ponownie przeprowadza się symulacę, oceniaąc wpływ wprowadzenia ednostkowego buforu czasu na zmianę oczekiwanego kosztu niestabilności harmonogramu w przypadku propagaci zakłóceń. Jeżeli powiększenie buforu planowanego terminu rozpoczynania dane czynności nie powodue uż zmnieszenia oczekiwanego kosztu niestabilności harmonogramu, wybiera się następną czynność do buforowania lub kończy się obliczenia. Zaletą metody est wyznaczenie buforów czasu zapewniaących, że maksymalna wartość zmienne losowe T terminu zakończenia realizaci proektu nie przekroczy terminu dyrektywnego t d. Natomiast, niedogodnością metody est czasochłonność obliczeń, spowodowana znaczną przestrzenią rozwiązań dopuszczalnych rozwiązywanego problemu. Dla usunięcia te niedogodności, można utworzyć listę priorytetową buforowanych czynności z wykorzystaniem heurystyki STC krytyczności terminów rozpoczynania czynności (ang. Starting Time Criticallity) Leus i Herroelen (2004) lub heurystyki CIW skumulowanego kosztu niestabilności (ang. Cumulative Instability Weight) Lambrechts i in. (2006). Krytyczność terminu rozpoczynania dane czynności wyznacza się ako iloczyn ednostkowego kosztu e nieterminowego rozpoczęcia i prawdopodobieństwa, że czynność ta nie rozpocznie się w planowanym terminie. Skumulowany koszt niestabilności dane czynności ustala się na podstawie zależności: CIW = k + k, (1) i i { Succ i } gdzie k i est ednostkowym kosztem opóźnienia terminu rozpoczynania czynności i, a {Succ(i)} oznacza zbiór czynności, następuących po czynności i. Priorytet w przydzielaniu buforów czasu, chroniących planowane terminy rozpoczynania czynności, przyznae się czynnościom o większe krytyczności terminu rozpoczynania (heurystyka STC) lub czynnościom o większych wartościach skumulowanego kosztu niestabilności (heurystyka CIW). Należy wskazać, że również Jaśkowski i Biruk (2010) przedstawili metodę alokaci buforów czasu w odpornym harmonogramie predyktywnym z wykorzystaniem kryterium oczekiwanego kosztu niestabilności harmonogramu. W tym przypadku, wielkość buforu opóźniaącego planowany termin rozpoczynania dane czynności wyznacza się analitycznie, dokonuąc rozdziału całkowitego zapasu czasu ciągu czynności w harmonogramie początkowym. Eksperymenty symulacyne wykorzystue się do ustalenia, aka część całkowitego zapasu czasu ciągu czynności powinna być przydzielona dane czynności w postaci buforu opóźniaącego e planowany termin rozpoczynania oraz do oceny, czy wprowadzone bufory zmnieszaą oczekiwany koszt niestabilności harmonogramu. 3. Proponowana metoda symulacynego wyznaczania buforów czasu stabilizuących harmonogram budowy Przyęto założenie, że zamawiaący wyznacza pożądany termin zakończenia budowy t dt (ang. due to time), którego przekroczenie skutkue płaceniem przez wykonawcę kar umownych oraz termin zakończenia budowy t dl (ang. deadline), którego przekroczenie skutkue odstąpieniem zamawiaącego od umowy z winy wykonawcy. Dlatego, harmonogram sporządzony przez wykonawcę robót musi spełniać następuące warunki podstawowe: planowany termin zakończenia budowy nie może przekraczać terminu t dt ; zakłócenia opóźniaące terminy rozpoczynania poszczególnych robót nie mogą powodować, że rzeczywisty termin zakończenia budowy nastąpi po terminie t dl. Uwzględniono również, że opóźnienia terminów rozpoczynania poszczególnych robót powoduą straty finansowe wykonawcy z tytułu dodatkowych kosztów organizacynych. Skalę tych strat można ocenić, przypisuąc poszczególnym robotom ednostkowe koszty opóźnień terminów ich rozpoczynania w stosunku do terminów planowanych i analizuąc różne scenariusze zakłóceń budowy. Wobec powyższego, celem proponowane metody est wygenerowanie harmonogramu, podlegaącego ak namnieszym zmianom pomimo różnorodnych zakłóceń realizaci budowy. Tym zmianom można przeciwdziałać, odpowiednio buforuąc terminy rozpoczynania poszczególnych robót, to znaczy planuąc terminy rozpoczynania poszczególnych robót z pewnym, ustalonym, opóźnieniem w stosunku do terminów zakończenia robót poprzedzaących. Skuteczność ochrony planowanych w ten sposób terminów rozpoczynania poszczególnych robót można ocenić z wykorzystaniem kryterium oczekiwanego kosztu niestabilności harmonogramu. Wygenerowany harmonogram budowy powinien zapewniać minimum 565

4 Civil and Environmental Engineering / Budownictwo i Inżynieria Środowiska 2 (2011) oczekiwanego kosztu niestabilności, z ednoczesnym spełnieniem wskazanych wyże warunków podstawowych. Podstawą modelowania i rozwiązania opisanego zagadnienia est odwzorowanie budowy przez acykliczny i spóny graf skierowany G = <W, U, P>, z ednym wierzchołkiem początkowym i z ednym wierzchołkiem końcowym (Biernacki i Cyunel, 1989). Zbiór wierzchołków grafu W = {w 1,..., w J } odpowiada poszczególnym czynnościom (robotom budowlanym). Poszczególne elementy zbioru wierzchołków W oznacza się z zachowaniem warunku: (i, ) W i <, (2) gdzie i est symbolem czynności poprzedzaące czynność. Zbiór łuków grafu U = {u 1,..., u N } przedstawia zależności technologiczne i organizacyne pomiędzy czynnościami. Relaca tróczłonowa P W U W określa relace bezpośredniego poprzedzania czynności w : w W Czynności = 1 i = J o zerowych czasach wykonania oznaczaą rozpoczęcie i zakończenie budowy. Czasy wykonania pozostałych czynności są zmiennymi losowymi o rozkładach prawdopodobieństwa z parametrami ustalonymi z uwzględnieniem przewidywanych zakłóceń dane czynności. Każda z czynności = 1,..., J o nieuemnym czasie oczekiwanym wykonania t, rozpoczyna się w terminie s 0 i kończy się w terminie f 0 takim, że: s + t = f. (3) Przyęto założenie, że podczas realizaci budowy, czynności o ednostkowych kosztach opóźnień k > 0 będą rozpoczynane nie wcześnie, niż w terminach planowanych z uwzględnieniem buforów czasu. Na te podstawie, zadanie stabilizaci harmonogramu z uwzględnieniem kryterium minimalizaci oczekiwanego kosztu opóźnień terminów rozpoczynania czynności można sformułować następuąco: min : E( J 1 K ns) = k E( S s ) + kj E( FJ fj ), (4) = 2 gdzie s to planowany termin rozpoczynania czynności, ustalony w harmonogramie buforowanym, S est zmienną losową terminu rozpoczęcia czynności, prognozowana na podstawie analizy propagaci zakłóceń w modelu sieciowym budowy, k est to koszt ednostkowy (przypadaący na ednostkę czasu), będący karą za opóźnienie terminu rozpoczęcia czynności w stosunku do terminu planowanego, f est planowanym terminem zakończenia budowy, ustalony w harmonogramie buforowanym, F J est zmienną losową terminu zakończenia budowy, prognozowana na podstawie analizy propagaci zakłóceń w modelu sieciowym budowy, k est kosztem ednostkowym (przypadaącym na ednostkę czasu), będącym karą za opóźnienie terminu zakończenia budowy w stosunku do terminu t dt, K ns est zmienną losową kosztu niestabilności harmonogramu, E(X) est wartością oczekiwaną zmienne losowe X. Rozwiązanie zadania stabilizaci harmonogramu musi spełniać następuące warunki: żadna czynność nie może rozpocząć się przed zakończeniem e poprzedników: s b fi, i { Pred( )}, (5) gdzie b est buforem czasu, stabilizuącym termin rozpoczynania -te czynności; budowa rozpoczyna się w umownym, zerowym momencie czasu: s 1 = 0, (6) liczby, przedstawiaące terminy rozpoczynania poszczególnych czynności, muszą być nieuemne: s 0, = 2,..., J, (7) planowany termin zakończenia budowy nie może być późnieszy, niż termin t dt : f J t dt, (8) liczby, przedstawiaące bufory czasu b, muszą być nieuemne: b 0 gdy { B}, (6) gdzie {B} est zbiorem czynności o buforowanych terminach rozpoczynania; są to czynności o niezerowych kosztach ednostkowych k ; liczby, przedstawiaące bufory czasu b, muszą być całkowite: b = int, (7) czynności, nie należące do zbioru {B}, nie wymagaą buforowania: b = 0 gdy { B}. (8) Istotą proponowane metody est połączenie modelu symulaci przebiegu budowy i modelu optymalizaci rozwiązania zadania stabilizaci harmonogramu. Skłaniaą do tego następuące przyczyny: metoda symulacyna umożliwia modelowanie różnych scenariuszy zakłóceń przebiegu budowy, powoduących opóźnienia terminów rozpoczynania poszczególnych czynności w stosunku do terminów zaplanowanych; wyniki buforowania harmonogramu przedstawione przez Jaśkowskiego i Biruka (2010) wskazuą, że optymalne wymiary buforów nie muszą być proporconalne do wag czynności, wyznaczanych ako iloczyn ich ednostkowych kosztów opóźnień i wartości ich oczekiwanych opóźnień w stosunku do terminów zaplanowanych; połączenie modelu symulaci przebiegu budowy i modelu optymalizaci rozwiązania zadania stabilizaci harmonogramu umożliwia szybką ocenę 566

5 Janusz KULEJEWSKI, Jacek ZAWISTOWSKI akości danego wariantu rozwiązania zadania oraz znalezienie rozwiązania, nalepie spełniaącego ustalone kryteria, warunki i ograniczenia. Do wyznaczania wielkości buforów przystępue się po rozwiązaniu problemu nadmierne alokaci zasobów odnawialnych o ograniczone dostępności i ustaleniu nawcześnieszych możliwych terminów rozpoczynania czynności w harmonogramie początkowym. Procedura wyznaczania wielkości buforów w proponowane metodzie obemue: (1) ustalenie zbioru czynności, wymagaących buforowania terminów rozpoczynania; (2) ustalenie maksymalnych dopuszczalnych wartości buforów b {B} ; (3) generowanie próbnych wartości buforów b { B} [ 0; b { }]; B (4) ustalenie, na podstawie przyętego modelu obliczeniowego, terminów rozpoczynania i zakończenia czynności w harmonogramie buforowanym; (5) symulaca harmonogramu buforowanego i sprawdzenie, czy średnia wartość zmienne losowe terminu zakończenia realizaci budowy nie przekracza terminu t dt oraz czy maksymalna wartość te zmienne nie przekracza terminu t dl ; (6) w przypadku dotrzymania terminów t dt i t dl : wyznaczenie średniego kosztu k ns niestabilności harmonogramu i przeście do kroku (7); w przeciwnym przypadku: powrót do kroku (3), (7)sprawdzenie, czy uzyskano redukcę średniego kosztu k ns niestabilności harmonogramu w porównaniu do wyniku uzyskanego w poprzednie symulaci oraz podęcie decyzi o kontynuowaniu obliczeń. Maksymalne dopuszczalne wartości b buforów {B} wyznacza się z zależności: b p = tf { B} { B} gdzie tf p { B } + t dt f p J, (9) est całkowitym zapasem czasu czynności {B}, ustalonym na podstawie harmonogramu początkowego, a f est nawcześnieszym możliwym p J terminem zakończenia budowy, ustalonym na podstawie harmonogramu początkowego. W realizaci kroku (3) i kroku (7) można wykorzystać znane algorytmy metaheurystyczne inteligentnego przeszukiwania przestrzeni rozwiązań zadania optymalizaci, na przykład algorytm przeszukiwania z ruchami zabronionymi (ang. Tabu Search TS). Algorytmy metaheurystyczne funkconuą w postaci programów obliczeniowych, rozwiązuących zadania optymalizaci harmonogramu, dzięki: przeszukiwaniu obszarów dziedziny funkci celu, w których może znadować się rozwiązanie bliskie optimum te funkci i ednocześnie spełniaące ustalone warunki oraz ograniczenia; a po znalezieniu tego rozwiązania: przechodzeniu do sąsiednich obszarów dziedziny funkci celu, w których może się znadować rozwiązanie lepsze. Przeszukiwanie z ruchami zabronionymi (ang. tabu search TS) est metaheurystyką polegaącą na unikaniu oscylaci wokół optimów lokalnych funkci celu dzięki przechowywaniu informaci o rozwiązaniach uż sprawdzonych w poprzednich poszukiwaniach. Jako ruch traktue się przeście do następnego rozwiązania. Metaheurystykę TS przedstawili Glover (1989 i 1990) oraz Glover i Laguna (1997), a e wykorzystanie w rozwiązywaniu problemów szeregowania czynności w harmonogramie przedsięwzięcia opisali między innymi Baar i in. (1998), Thomas i Salhi (1998) oraz De Reyck i Herroelen (1999). Algorytm działaący zgodnie z metaheurystyką TS realizue proces iteracynego ustalania rozwiązania optymalnego, dokonuąc w każde iteraci pełnego przeszukania otoczenia każdego aktualnego rozwiązania suboptymalnego, uzyskanego w poprzednie iteraci. Każde przeszukanie polega na wykonywaniu ruchów z ednego z rozwiązań początkowych do następnego rozwiązania, zlokalizowanego w ego sąsiedztwie. Każde nowe rozwiązanie est porównywane ze wszystkimi przechowywanymi rozwiązaniami dotychczasowymi. Jeżeli nowe rozwiązanie est lepsze od rozwiązania uzyskanego uprzednio, stae się rozwiązaniem początkowym dla kolene iteraci. Rozwiązania, zgodne z uż uzyskanymi, są traktowane ako zabronione i eliminowane. Kiedy pamięć ruchów zabronionych zapełnia się, ruch wpisany nawcześnie est z nie usuwany, a w ego miesce est dopisywany bieżący ruch zabroniony. Warunki zakończenia działania algorytmu ustala się w postaci maksymalne liczby iteraci lub maksymalnego czasu przeprowadzania iteraci. 4. Przykład liczbowy W przedstawionym przykładzie przyęto następuące założenia: model sieciowy budowy po zbilansowaniu zasobów odnawialnych przedstawia rysunek 1; Rys. 1. Model sieciowy budowy po zbilansowaniu zasobów (opr. wł.) 567

6 Civil and Environmental Engineering / Budownictwo i Inżynieria Środowiska 2 (2011) czasy wykonania robót są zmiennymi losowymi o trókątnych rozkładach prawdopodobieństwa z parametrami t (czas optymistyczny), t (czas opt pes nabardzie prawdopodobny) i t (czas pesymistyczny); pożądany termin zakończenia budowy wynosi t dt = 30 dni roboczych od dnia rozpoczęcia robot; nieprzekraczalny termin zakończenia budowy wynosi t dl = 35 dni roboczych od dnia rozpoczęcia robot; opóźnienie rzeczywistych terminów rozpoczynania czynności = 3,, 7 w stosunku do terminów zaplanowanych powodue niepożądane koszty organizacyne dla wykonawcy robót, naliczane za każdy dzień opóźnienia; opóźnienie rzeczywistego terminu zakończenia budowy w stosunku do terminu t dt skutkue karami umownymi, naliczanymi wykonawcy za każdy dzień opóźnienia. np Dane liczbowe do przykładu przedstawiono w tabeli 1. Symbolem t oznaczono oczekiwany czas wykonania dane czynności. Symbolami es p i ef p oznaczono terminy nawcześnieszego rozpoczynania i zakończenia ef dane czynności. Następnie, przeprowadzono symulacę niebuforowanego harmonogramu przy założeniu, że podczas realizaci budowy, wszystkie roboty będą rozpoczynały się nie wcześnie, niż w terminach ustalonych w tym harmonogramie (railway policy). Terminy rozpoczynania i zakończenia czynności, planowane w harmonogramie niebuforowanym i prognozowane symulacynie, wyznaczano na podstawie modelu obliczeniowego, przedstawionego w tabeli 2. Symbolami t, s i f oznaczono realizace zmiennych losowych czasu wykonania, terminu rozpoczęcia oraz terminu zakończenia dane czynności w każde symulaci. Tab. 1. Dane liczbowe do przykładu (opr. wł.) Czynność, opt t np t pes t t Symbole zespołów Liczba zespołów p es p ef p tf k b S = W W W W W W F = Tab. 2. Model obliczeniowy dla wyznaczania terminów rozpoczynania i zakończenia czynności, planowanych w harmonogramie niebuforowanym i prognozowane symulacynie (opr. wł.) Czynność, Harmonogram niebuforowany Symulaca s f s f S = s 2 + t {13, f 2, f 5 } s 3 + t {17, f 3 } s 4 + t {6, f 2 } s 5 + t {13, f 5 } s 6 + t {22; f 6 } s 7 + t 7 F = {25, f 7 } f 8 = s 8 568

7 Janusz KULEJEWSKI, Jacek ZAWISTOWSKI Do symulaci harmonogramu wykorzystano program Crystal Ball ver (licenca edukacyna). Empiryczny rozkład zmienne losowe F 8 terminu zakończenia budowy przedstawiono na rysunku 2. Realizaca zmienne losowe F 8 przymue wartości z przedziału [25; 31] dni roboczych, z wartością średnią f 8 = 26 dni roboczych. Z kolei, na rysunku 3 przedstawiono empiryczny rozkład zmienne losowe K ns kosztu niestabilności harmonogramu. Realizaca zmienne losowe K ns przymue wartości z przedziału [0; ] ednostek pieniężnych, z wartością średnią k ns = ednostek pieniężnych. Pozostałe wyniki symulaci harmonogramu niebuforowanego przedstawiono w tabeli 3. Symbolem K ns oznaczono zmienną losową kosztu niestabilności terminu rozpoczynania -te czynności: Rys. 2. Empiryczny rozkład zmienne losowe terminu zakończenia realizaci proektu harmonogram niebuforowany (opr. wł.) Rys. 3. Empiryczny rozkład zmienne losowe kosztu niestabilności harmonogramu niebuforowanego (opr. wł.) Tab. 3. Zestawienie wyników symulaci harmonogramu niebuforowanego (opr. wł.) Czynność, min s S s s K ns min k ns k ns k ns k k ns ns S = ,44 3,95 0, ,34 3,03 0, ,94 1,66 0, ,33 1,69 0, ,73 7,38 0,37 F = ,13 2,45 0,12 569

8 Civil and Environmental Engineering / Budownictwo i Inżynieria Środowiska 2 (2011) Do symulaci przebiegu budowy i optymalizaci rozwiązania zadania stabilizaci harmonogramu wykorzystano program Crystal Ball ver (licenca edukacyna) z wbudowanym narzędziem OptQuest, realizuącym procedurę optymalizaci zgodnie z algorytmem przeszukiwania z ruchami zabronionymi. W przedstawionym przykładzie, zadaniem algorytmu było ustalenie wymiarów buforów b 3, b 4, b 5, b 6, b 7 i b 8, minimalizuących średni koszt k ns niestabilności harmonogramu pod warunkiem, że średnia wartość zmienne losowe terminu zakończenia budowy nie przekroczy 30 dni roboczych oraz że maksymalna wartość te zmienne nie przekroczy 35 dni roboczych. Terminy rozpoczynania i zakończenia czynności, planowane (w harmonogramie buforowanym) i prognozowane symulacynie, wyznaczano na podstawie modelu obliczeniowego, przedstawionego w tabeli 4. Symbolami t, s i f oznaczono realizace zmiennych losowych czasu wykonania, terminu rozpoczęcia oraz terminu zakończenia dane czynności w każde symulaci. Algorytm symulacyno optymalizacyny wskazał następuące rozwiązanie: b 3 = 1, b 4 = 1, b 5 = 0, b 6 = 4, b 7 = 1, b 8 = 1. Wyznaczone bufory nie są proporconalne do średniego udziału kosztu niestabilności terminu rozpoczynania dane czynności w średnim koszcie niestabilności harmonogramu. Buforowany harmonogram budowy przedstawiono na rysunku 4. Tab. 4. Model obliczeniowy dla wyznaczania terminów rozpoczynania i zakończenia czynności, planowanych w harmonogramie buforowanym i prognozowanych symulacynie (opr. wł.) Czyn/ność, Harmonogram buforowany Symulaca s f s f S = s 2 + t 2 0 s 2 + t 2 3 b 3 + { f 2, f 5 } s 3 + t 3 {s 3, f 2, f 5 } s 3 + t 3 4 b 4 + f 3 s 4 + t 4 {s 4, f 3 } s 4 + t 4 5 b 5 + f 2 s 5 + t 5 {s 5, f 2 } s 5 + t 5 6 b 6 + f 5 s 6 + t 6 {s 6, f 5 } s 6 + t 6 7 b 7 + {f 4 ; f 6 } s 7 + t 7 {s 7, f 4, f 6 } s 7 + t 7 F = 8 b 8 + f 7 f 8 = s 8 {s 8, f 7 } f 8 = s 8 Dni robocze Rys. 4. Harmonogram buforowany (opr. wł.) 570

9 Janusz KULEJEWSKI, Jacek ZAWISTOWSKI Empiryczny rozkład zmienne losowe F 8 terminu zakończenia budowy przedstawiono na rysunku 5. Realizaca zmienne losowe F 8 przymue wartości z przedziału [29; 30] dni roboczych, z wartością średnią f 8 = 29 dni roboczych. Jest widoczne, że wyznaczone bufory zapewniaą zakończenie budowy nie późnie, niż w pożądanym terminie t dt = 30 dni roboczych od rozpoczęcia robót. Z kolei, na rysunku 6 przedstawiono empiryczny rozkład zmienne losowe kosztu niestabilności harmonogramu. Zmienna przymue wartości z przedziału [0; 76.28] ednostek pieniężnych, z wartością średnią 3,48 ednostek pieniężnych. Otrzymane wyniki są znacznie lepsze w stosunku do uzyskanych uprzednio na podstawie symulaci harmonogramu niebuforowanego. Pozostałe wyniki symulaci harmonogramu buforowanego przedstawiono w tabeli 5. Rys. 5. Empiryczny rozkład zmienne losowe terminu zakończenia realizaci proektu harmonogram buforowany (opr. wł.) Rys. 6. Empiryczny rozkład zmienne losowe kosztu niestabilności harmonogramu buforowanego (opr. wł.) Tab. 5. Zestawienie wyników symulaci harmonogramu buforowanego (opr. wł.) Czynność, min s S s s K ns min k ns k ns k ns k k ns ns S = ,24 0,97 0, ,48 0,33 0, ,82 1,66 0, ,60 0,52 0,15 F =

10 Civil and Environmental Engineering / Budownictwo i Inżynieria Środowiska 2 (2011) Wnioski Wprowadzenie buforów czasu do harmonogramu zapewnia ego aktualność w rzeczywistych warunkach realizaci budowy. Jednak, dotychczasowe metody wyznaczania buforów czasu posiadaą pewne wady, ograniczaące ich praktyczne wykorzystanie. Analityczne metody wyznaczania buforów czasu nie uwzględniaą specyfiki formułowania ograniczeń czasu realizaci budowy. Natomiast, metody symulacyne wymagaą realizaci czasochłonnego algorytmu iteracynego. W ninieszym referacie, przedstawiono metodę symulacyną wyznaczania buforów czasu z wykorzystaniem metaheurystyki inteligentnego przeszukiwania przestrzeni rozwiązań dopuszczalnych rozpatrywanego problemu stabilizaci harmonogramu. Przedstawiona metoda umożliwia szybkie wyznaczenie buforów czasu i raconalizacę ich rozmiarów. Ponadto, ednoczesna realizaca procedury symulacyne i optymalizacyne zapewnia uzyskanie rozwiązania, spełniaącego zadane ograniczenia terminu zakończenia budowy pomimo niepewności oszacowań czasów wykonania robot. Literatura Al-Fawzan M. A., Haouari M. (2005). A bi-obective model for robust resource constrained proect scheduling. International Journal of Production Economics, Vol. 96, No. 2, Baar T., Brucker P., Kunst S. (1998). Tabu search algorithms and lower bounds for the resource-constrained proect scheduling problem. W: Meta Heuristics: Advances and Trends in Local Search Paradigms for Optimization, Voss S., Martello S., Osman I., Roucairol C. (eds), Kluwer Academic Publishers, Amsterdam, Biernacki J., Cyunel B. (1989), Metody sieciowe w budownictwie. Arkady, Warszawa. De Reyck B., Herroelen W. (1999). The multi mode resource constrained proect scheduling problem with generalized precedence relations. European Journal of Operational Research, Vol. 119, Glover F. (1989). Tabu search part I. ORSA Journal on Computing, Vol. 1, No. 3, Glover F. (1990). Tabu search part II. ORSA Journal on Computing, Vol. 2, No. 1, Glover F., Laguna M. (1997). Tabu search. Kluwer Academic Publishers Group, Boston. Goldratt E. (1997). Critical Chain. North River Press, Great Barrington. Herroelen W., Leus R. (2001). On the merit and pitfalls of critical chain scheduling. Journal of Operations Management, Vol. 19, Herroelen W., Leus R., Demeulemeester E. (2002). Critical chain scheduling: do not oversimplify. Proect Management Journal, Vol. 33, No. 4, Herroelen W., Leus R. (2005). Proect scheduling under uncertainty: survey and research potential. European Journal of Operational Research, Vol. 165, No. 2, Herroelen W., Leus R. (2004). The construction of stable proect baseline schedules. European Journal of Operational Research, Vol. 156, No. 3, Jaśkowski P., Biruk S. (2010). Określanie buforów czasu w odpornych harmonogramach budowlanych. Zeszyty Naukowe Wyższa Szkoła Oficerska Wosk Lądowych we Wrocławiu, Vol. 3, No. 157, ,. Jaworski K.M. (1980). Proektowanie realizaci budowy według kryterium niezawodności. Teoria i metoda. Zeszyty Naukowe: Budownictwo, Nr 66, Wydawnictwa Politechniki Warszawskie, Warszawa. Kobylański P., Kuchta D. (2007). A note on the paper by M.A. Al-Fawzan and M. Haouari about a bi obective problem for robust resource constrained proect scheduling. International Journal of Production Economics, Vol. 107, No. 2, Lambrechts O., Demeulemeester E.L., Herroelen W. (2006). Proactive and reactive strategies for resource constrained proect scheduling with uncertain resource availabilities. KU Leuven Working Paper No. KBI 0606, Faculty of Economics and Applied Economics, Katholieke Universiteit Leuven. Leach L.P. (2000). Critical Chain Proect Management. Artech House, Boston-London. Leus R., Herroelen W. (2004). Stability and resource allocation in proect planning. IIE Transactions, Vol. 36, No. 7, Tavares L.V., Ferreira J.A.A., Coelho J.S. (1998). On the optimal management of proect risk. European Journal of Operational research, Vol. 107, No. 2, Thomas P.R., Salhi S. (1998). A tabu search approach for the resource constrained proect scheduling problem. Journal of Heuristics, Van de Vonder S., Demeulemesser E., Herroelen W., Leus R. (2005). The use of buffers in proect management: The trade-off between stability and makespan. International Journal of Production Economics, Vol. 97, No. 2, Van de Vonder S., Demeulemesser E., Herroelen W., Leus R. (2006). The trade-off between stability and makespan in resource-constrained scheduling. International Journal of Production Research, Vol. 44, No. 2, TIME BUFFER SIZE SIMULATION STABILIZING CONSTRUCTION SCHEDULES Abstract: This paper presents the method for the determination of time buffers, stabilizing construction schedules against disruptions during execution of a construction proect. The method is based upon the idea of simultaneous simulation and optimization procedure. For the optimization of buffers sizes under given time constraints for the proect execution, the taboo search metaheuristic was used. The method significantly speeds up the appointment of time buffers and allows for the rationalization of their sizes, in proportion to the mean share of the cost of instability of start date of given activity in the mean cost of the proect instability. In addition, the implementation of simultaneous simulation and optimization procedure yields the solution which fully protects the planned completion date of a proect against random variations of durations of works. 572

OCENA PORÓWNAWCZA MIERNIKÓW ODPORNOŚCI HARMONOGRAMÓW BUDOWLANYCH

OCENA PORÓWNAWCZA MIERNIKÓW ODPORNOŚCI HARMONOGRAMÓW BUDOWLANYCH OCENA PORÓWNAWCZA MIERNIKÓW ODPORNOŚCI HARMONOGRAMÓW BUDOWLANYCH Piotr JAŚKOWSKI, Sławomir BIRUK Wydział Budownictwa i Architektury, Politechnika Lubelska, ul. Nadbystrzycka 40, 20-618 Lublin Streszczenie:

Bardziej szczegółowo

Poszukiwanie optymalnego wyrównania harmonogramu zatrudnienia metodą analityczną

Poszukiwanie optymalnego wyrównania harmonogramu zatrudnienia metodą analityczną Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowiska, Szkoła Główna Gospodarstwa Wieskiego, Warszawa, ul. Nowoursynowska 159 e-mail: mieczyslaw_polonski@sggw.pl Poszukiwanie optymalnego wyrównania

Bardziej szczegółowo

ZASTOSOWANIE BUFORÓW W HARMONOGRAMOWANIU PROJEKTÓW 1

ZASTOSOWANIE BUFORÓW W HARMONOGRAMOWANIU PROJEKTÓW 1 Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 235 2015 Robin Cahierre École des Ponts ParisTech robincahierre@gmail.com Dorota Kuchta Politechnika Wrocławska

Bardziej szczegółowo

Zarządzanie projektami

Zarządzanie projektami Dr Adam Kucharski Spis treści Podstawowe pojęcia Metoda CPM 3 3 Przykład analizy metodą CPM 5 Podstawowe pojęcia Przedsięwzięcia złożone z wielu czynności spotykane są na każdym kroku. Jako przykład może

Bardziej szczegółowo

Planowanie przedsięwzięć

Planowanie przedsięwzięć K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania

Bardziej szczegółowo

PROCEDURY GENEROWANIA HARMONOGRAMU DLA PROBLEMU MAKSYMALIZACJI ZDYSKONTOWANYCH PRZEPŁYWÓW PIENIĘŻNYCH DLA PROJEKTU ROZLICZANEGO ETAPOWO 1

PROCEDURY GENEROWANIA HARMONOGRAMU DLA PROBLEMU MAKSYMALIZACJI ZDYSKONTOWANYCH PRZEPŁYWÓW PIENIĘŻNYCH DLA PROJEKTU ROZLICZANEGO ETAPOWO 1 PROCEDURY GENEROWANIA HARMONOGRAMU DLA PROBLEMU MAKSYMALIZACJI ZDYSKONTOWANYCH PRZEPŁYWÓW PIENIĘŻNYCH DLA PROJEKTU ROZLICZANEGO ETAPOWO 1 Marcin KLIMEK, Piotr ŁEBKOWSKI Streszczenie: Harmonogramowanie

Bardziej szczegółowo

Dr inż. Piotr Jaśkowski

Dr inż. Piotr Jaśkowski Dr inż. Piotr Jaśkowski Faculty of Civil Engineering and Architecture Lublin University of Technology Nadbystrzycka str. 40, 20-816 Lublin, Poland E-mail: p.askowski@pollub.pl Metodyka zwiększenia niezawodności

Bardziej szczegółowo

Inżynieria oprogramowania. Część 8: Metoda szacowania ryzyka - PERT

Inżynieria oprogramowania. Część 8: Metoda szacowania ryzyka - PERT UNIWERSYTET RZESZOWSKI KATEDRA INFORMATYKI Opracował: mgr inż. Przemysław Pardel v1.01 2010 Inżynieria oprogramowania Część 8: Metoda szacowania ryzyka - PERT ZAGADNIENIA DO ZREALIZOWANIA (3H) PERT...

Bardziej szczegółowo

HARMONOGRAMOWANIE PRACY BRYGAD REALIZUJĄCYCH BUDOWLANE PROCESY POWTARZALNE

HARMONOGRAMOWANIE PRACY BRYGAD REALIZUJĄCYCH BUDOWLANE PROCESY POWTARZALNE ZESZYTY NAUKOWE WSOWL Nr () 0 ISSN - DOI: 0.0/. HARMONOGRAMOWANIE PRACY BRYGAD REALIZUJĄCYCH BUDOWLANE PROCESY POWTARZALNE Piotr JAŚKOWSKI, Sławomir BIRUK Wydział Budownictwa i Architektury, Politechnika

Bardziej szczegółowo

Zarządzanie projektami

Zarządzanie projektami Zarządzanie projektami Dorota Kuchta www.ioz.pwr.wroc.pl/pracownicy/kuchta/dydaktyka.htm Projekt Ma jasny cel Unikatowy zdefiniowany koniec Angażuje zasoby ludzkie Procesy zarządzani projektem Zarządzanie

Bardziej szczegółowo

6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego

6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego 6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego Analiza wrażliwości est studium analizy wpływu zmian wartości różnych parametrów modelu PL na rozwiązanie optymalne. Na optymalne

Bardziej szczegółowo

PROBLEM Z IDENTYFIKACJĄ ŁAŃCUCHA KRYTYCZNEGO I LOKALIZACJĄ BUFORÓW ZASILAJĄCYCH W HARMONOGRAMIE SIECIOWYM Z OGRANICZONĄ DOSTĘPNOŚCIĄ ZASOBU

PROBLEM Z IDENTYFIKACJĄ ŁAŃCUCHA KRYTYCZNEGO I LOKALIZACJĄ BUFORÓW ZASILAJĄCYCH W HARMONOGRAMIE SIECIOWYM Z OGRANICZONĄ DOSTĘPNOŚCIĄ ZASOBU Dane bibliograficzne o artykule: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje Mieczysław POŁOŃSKI 1 PROBLEM Z IDENTYFIKACJĄ ŁAŃCUCHA KRYTYCZNEGO I LOKALIZACJĄ BUFORÓW ZASILAJĄCYCH W HARMONOGRAMIE

Bardziej szczegółowo

Instrukcja. Laboratorium Metod i Systemów Sterowania Produkcją.

Instrukcja. Laboratorium Metod i Systemów Sterowania Produkcją. Instrukcja do Laboratorium Metod i Systemów Sterowania Produkcją. 2010 1 Cel laboratorium Celem laboratorium jest poznanie metod umożliwiających rozdział zadań na linii produkcyjnej oraz sposobu balansowania

Bardziej szczegółowo

WIELOKRYTERIALNE HARMONOGRAMOWANIE PROJEKTU W PRZYPADKU ROZMYTYCH CZASÓW TRWANIA CZYNNOŚCI 1

WIELOKRYTERIALNE HARMONOGRAMOWANIE PROJEKTU W PRZYPADKU ROZMYTYCH CZASÓW TRWANIA CZYNNOŚCI 1 Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 08-86 Nr 7 05 Informatyka i Ekonometria Bogumiła Krzeszowska-Zakrzewska Uniwersytet Ekonomiczny w Katowicach Wydział Informatyki

Bardziej szczegółowo

Metoda łańcucha krytycznego w zarządzaniu projektem. Dorota Kuchta

Metoda łańcucha krytycznego w zarządzaniu projektem. Dorota Kuchta Metoda łańcucha krytycznego w zarządzaniu projektem Dorota Kuchta Zarządzanie czasem projektu : 1.Definicja zadań 2.Ustalanie kolejności zadań 3.Szacowanie czasu trwania zadań 4.Harmonogramowanie 5.Kontrola

Bardziej szczegółowo

(Dantzig G. B. (1963))

(Dantzig G. B. (1963)) (Dantzig G.. (1963)) Uniwersalna metoda numeryczna dla rozwiązywania zadań PL. Ideą metody est uporządkowany przegląd skończone ilości rozwiązań bazowych układu ograniczeń, które możemy utożsamiać, w przypadku

Bardziej szczegółowo

BADANIA OPERACYJNE. dr Adam Sojda Pokój A405

BADANIA OPERACYJNE. dr Adam Sojda  Pokój A405 BADANIA OPERACYJNE dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Przedsięwzięcie - zorganizowanie działanie ludzkie zmierzające do osiągnięcia określonego

Bardziej szczegółowo

Ograniczenia projektu. Zakres (co?) Czas (na kiedy?) Budżet (za ile?)

Ograniczenia projektu. Zakres (co?) Czas (na kiedy?) Budżet (za ile?) Harmonogram Ograniczenia projektu Zakres (co?) Czas (na kiedy?) Budżet (za ile?) Pojęcia podstawowe Harmonogram: Daty wykonania działań Daty osiągnięcia kamieni milowych Działanie: Element składowy pakietu

Bardziej szczegółowo

Harmonogramowanie przedsięwzięć

Harmonogramowanie przedsięwzięć Harmonogramowanie przedsięwzięć Mariusz Kaleta Instytut Automatyki i Informatyki Stosowanej Politechnika Warszawska luty 2014, Warszawa Politechnika Warszawska Harmonogramowanie przedsięwzięć 1 / 25 Wstęp

Bardziej szczegółowo

Risk-Aware Project Scheduling. SimpleUCT

Risk-Aware Project Scheduling. SimpleUCT Risk-Aware Project Scheduling SimpleUCT DEFINICJA ZAGADNIENIA Resource-Constrained Project Scheduling (RCPS) Risk-Aware Project Scheduling (RAPS) 1 tryb wykonywania działań Czas trwania zadań jako zmienna

Bardziej szczegółowo

t i L i T i

t i L i T i Planowanie oparte na budowaniu modelu struktury przedsięwzięcia za pomocą grafu nazywa sie planowaniem sieciowym. Stosuje się do planowania i kontroli realizacji założonych przedsięwzięć gospodarczych,

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - szeregowanie zadań. Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Optymalizacja harmonogramów budowlanych - szeregowanie zadań. Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Optymalizacja harmonogramów budowlanych - szeregowanie zadań Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Opis zagadnienia Zadania dotyczące szeregowania zadań należą do szerokiej

Bardziej szczegółowo

Zarządzanie projektami. Zarządzanie czasem w projekcie

Zarządzanie projektami. Zarządzanie czasem w projekcie Zarządzanie projektami Zarządzanie czasem w projekcie Zarządzanie czasem w projekcie PROJECT TIME MANAGEMENT Zarządzanie czasem - elementy 1. Zarządzanie harmonogramem 2. Określanie działań (określanie

Bardziej szczegółowo

RISK-AWARE PROJECT SCHEDULING

RISK-AWARE PROJECT SCHEDULING RISK-AWARE PROJECT SCHEDULING METODA GRASP KAROL WALĘDZIK DEFINICJA ZAGADNIENIA RESOURCE-CONSTRAINED PROJECT SCHEDULING (RCPS) Karol Walędzik - RAPS 3 RISK-AWARE PROJECT SCHEDULING (RAPS) 1 tryb wykonywania

Bardziej szczegółowo

Rozdział 7 ZARZĄDZANIE PROJEKTAMI

Rozdział 7 ZARZĄDZANIE PROJEKTAMI Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 7 ZARZĄDZANIE PROJEKTAMI 7.2. Ćwiczenia komputerowe Ćwiczenie 7.1 Wykorzystując

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie

Bardziej szczegółowo

Zarządzanie projektami. Tadeusz Trzaskalik

Zarządzanie projektami. Tadeusz Trzaskalik Zarządzanie projektami Tadeusz Trzaskalik 7.1. Wprowadzenie Słowa kluczowe Projekt Sieć czynności zynność bezpośrednio poprzedzająca Zdarzenie, zdarzenie początkowe, zdarzenie końcowe Właściwa numeracja

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Optymalizacja. Przeszukiwanie lokalne

Optymalizacja. Przeszukiwanie lokalne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x

Bardziej szczegółowo

PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ

PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE Metody programowania sieciowego wprowadzono pod koniec lat pięćdziesiatych Ze względu na strukturę

Bardziej szczegółowo

Rysunek 8. Rysunek 9.

Rysunek 8. Rysunek 9. Ad 2. Dodatek Excel Add-Ins for Operations Management/Industral Engineering został opracowany przez Paul A. Jensen na uniwersytecie w Teksasie. Dodatek można pobrać ze strony http://www.ormm.net. Po rozpakowaniu

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Wprowadzenie Maciej Hapke maciej.hapke at put.poznan.pl Literatura D.E. Goldberg Algorytmy genetyczne i zastosowania, WNT, 1995 Z. Michalewicz Algorytmy genetyczne + struktury danych

Bardziej szczegółowo

Zarządzanie zasobami w harmonogramowaniu wieloobiektowych przedsięwzięć budowlanych z wykorzystaniem teorii szeregowania zadań

Zarządzanie zasobami w harmonogramowaniu wieloobiektowych przedsięwzięć budowlanych z wykorzystaniem teorii szeregowania zadań Zarządzanie zasobami w harmonogramowaniu wieloobiektowych przedsięwzięć budowlanych z wykorzystaniem teorii szeregowania zadań 42 Dr inż Michał Podolski Politechnika Wrocławska 1 Wprowadzenie Harmonogramowanie

Bardziej szczegółowo

Próba wyznaczenia wielkości buforów czasu przy deterministycznej ocenie czasu zadań

Próba wyznaczenia wielkości buforów czasu przy deterministycznej ocenie czasu zadań Pełne dane bibliograficzne artykułu: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje.html Próba wyznaczenia wielkości buforów czasu przy deterministycznej ocenie czasu zadań Mieczysław Połoński 1

Bardziej szczegółowo

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital

Bardziej szczegółowo

WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW

WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW Uniwersytet Ekonomiczny we Wrocławiu WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW Wprowadzenie Wrażliwość wyników analizy wielokryterialnej na zmiany wag kryteriów, przy

Bardziej szczegółowo

Metody optymalizacji dyskretnej

Metody optymalizacji dyskretnej Metody optymalizacji dyskretnej Spis treści Spis treści Metody optymalizacji dyskretnej...1 1 Wstęp...5 2 Metody optymalizacji dyskretnej...6 2.1 Metody dokładne...6 2.2 Metody przybliżone...6 2.2.1 Poszukiwanie

Bardziej szczegółowo

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz K.Pieńkosz Wprowadzenie 1 dr inż. Krzysztof Pieńkosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej pok. 560 A tel.: 234-78-64 e-mail: K.Pienkosz@ia.pw.edu.pl K.Pieńkosz Wprowadzenie

Bardziej szczegółowo

WYZNACZANIE WIELKOŚCI BUFORÓW CZASU I TERMINU ZAKOŃCZENIA PRZEDSIĘWZIĘCIA W HARMONOGRAMACH BUDOWLANYCH

WYZNACZANIE WIELKOŚCI BUFORÓW CZASU I TERMINU ZAKOŃCZENIA PRZEDSIĘWZIĘCIA W HARMONOGRAMACH BUDOWLANYCH Dane bibliograficzne o artykule: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje Mieczysław POŁOŃSKI* Kamil PRUSZYŃSKI * harmonogramy budowlane, metoda łańcucha krytycznego, metoda CCPM, bufor czasu

Bardziej szczegółowo

RISK-AWARE PROJECT SCHEDULING

RISK-AWARE PROJECT SCHEDULING RISK-AWARE PROJECT SCHEDULING PROUCT - GRASP KAROL WALĘDZIK DEFINICJA ZAGADNIENIA RESOURCE-CONSTRAINED PROJECT SCHEDULING (RCPS) Karol Walędzik - RAPS 3 RISK-AWARE PROJECT SCHEDULING (RAPS) 1 tryb wykonywania

Bardziej szczegółowo

METODA PERT. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA PERT. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA PERT Maciej Patan Programowanie sieciowe. Metoda PERT 1 WPROWADZENIE PERT (ang. Program Evaluation and Review Technique) Metoda należy do sieci o strukturze logicznej zdeterminowanej Parametry opisujace

Bardziej szczegółowo

Przykład: budowa placu zabaw (metoda ścieżki krytycznej)

Przykład: budowa placu zabaw (metoda ścieżki krytycznej) Przykład: budowa placu zabaw (metoda ścieżki krytycznej) Firma budowlana Z&Z podjęła się zadania wystawienia placu zabaw dla dzieci w terminie nie przekraczającym 20 dni. Listę czynności do wykonania zawiera

Bardziej szczegółowo

RISK-AWARE PROJECT SCHEDULING

RISK-AWARE PROJECT SCHEDULING RISK-AWARE PROJECT SCHEDULING Z WYKORZYSTANIEM UCT KAROL WALĘDZIK DEFINICJA ZAGADNIENIA RESOURCE-CONSTRAINED PROJECT SCHEDULING (RCPS) Karol Walędzik - RAPS 3 RISK-AWARE PROJECT SCHEDULING (RAPS) 1 tryb

Bardziej szczegółowo

METODY PROJEKTOWANIA TECHNOLOGII ROBÓT

METODY PROJEKTOWANIA TECHNOLOGII ROBÓT Katedra Mostów i Kolei dr inż. Jacek Makuch ZAJĘCIA PROJEKTOWE 1 METODY PROJEKTOWANIA TECHNOLOGII ROBÓT TECHNOLOGIA ROBÓT KOLEJOWYCH studia I stopnia, specjalność ILB / DK, semestr 7 rok akademicki 2018/19

Bardziej szczegółowo

SYMULACJA RYZYKA CZASOWO-KOSZTOWEGO PRZEDSIĘWZIĘĆ NA TLE METODY PERT/COST

SYMULACJA RYZYKA CZASOWO-KOSZTOWEGO PRZEDSIĘWZIĘĆ NA TLE METODY PERT/COST Dr inż. Tomasz WIATR Politechnika Poznańska SYMULACJA RYZYKA CZASOWO-KOSZTOWEGO PRZEDSIĘWZIĘĆ NA TLE METODY PERT/COST Słowa kluczowe: PERT/cost, symulacja Monte Carlo, Pertmaster Streszczenie Referat stanowi

Bardziej szczegółowo

Harmonogramowanie robót budowlanych z wykorzystaniem metody CCPM Construction schedule using CCPM method

Harmonogramowanie robót budowlanych z wykorzystaniem metody CCPM Construction schedule using CCPM method Kamil PRUSZYŃSKI Katedra Geoinżynierii SGGW w Warszawie Department of Geotechnical Engineering WULS SGGW Harmonogramowanie robót budowlanych z wykorzystaniem metody CCPM Construction schedule using CCPM

Bardziej szczegółowo

ZAŁĄCZNIK 2. Autoreferat przedstawiający opis dorobku i osiągnięć naukowych w języku polskim

ZAŁĄCZNIK 2. Autoreferat przedstawiający opis dorobku i osiągnięć naukowych w języku polskim ZAŁĄCZNIK 2 Autoreferat przedstawiający opis dorobku i osiągnięć naukowych w języku polskim Autoreferat 1. Imię i nazwisko Piotr Jaśkowski 2. Posiadane dyplomy, stopnie naukowe z podaniem nazwy, miejsca

Bardziej szczegółowo

Dane bibliograficzne o artykule:

Dane bibliograficzne o artykule: Dane bibliograficzne o artykule: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje Mieczysław POŁOŃSKI Aneta ZIÓŁKOWSKA Katedra Geoinżynierii SGGW w Warszawie Department of Geotechnical Engineering

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

WPŁYW TYPU ROZKŁADU CZASU TRWANIA CZYNNOŚCI NA WYNIKI ANALIZY RYZYKA W PLANOWANIU REALIZACJI PRZEDSIĘWZIĘĆ

WPŁYW TYPU ROZKŁADU CZASU TRWANIA CZYNNOŚCI NA WYNIKI ANALIZY RYZYKA W PLANOWANIU REALIZACJI PRZEDSIĘWZIĘĆ Dane bibliograficzne o artykule: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje mgr inż. Wojciech Bogusz dr hab. inż. Mieczysław Połoński, prof. SGGW mgr inż. Kamil Pruszyński Szkoła Główna Gospodarstwa

Bardziej szczegółowo

Heurystyki. Strategie poszukiwań

Heurystyki. Strategie poszukiwań Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja

Bardziej szczegółowo

REAKTYWNE HARMONOGRAMOWANIE PROJEKTU 1

REAKTYWNE HARMONOGRAMOWANIE PROJEKTU 1 REAKTYWNE HARMONOGRAMOWANIE PROJEKTU 1 Marcin KLIMEK, Piotr ŁEBKOWSKI Streszczenie: W artykule przedstawiono wybrane zagadnienia reaktywnego harmonogramowania projektu z ograniczoną dostępnością zasobów.

Bardziej szczegółowo

Algorytmy heurystyczne w UCB dla DVRP

Algorytmy heurystyczne w UCB dla DVRP Algorytmy heurystyczne w UCB dla DVRP Seminarium IO na MiNI 24.03.2015 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP UCB na potrzeby DVRP Algorytmy

Bardziej szczegółowo

KONCEPCJA MONITOROWANIA ZUŻYCIA BUFORÓW CZASU W HARMONOGRAMIE BUDOWLANYM

KONCEPCJA MONITOROWANIA ZUŻYCIA BUFORÓW CZASU W HARMONOGRAMIE BUDOWLANYM KONCEPCJA MONITOROWANIA ZUŻYCIA BUFORÓW CZASU W HARMONOGRAMIE BUDOWLANYM Kamil PRUSZYŃSKI Wydział Budownictwa i Inżynierii Środowiska, Szkoła Główna Gospodarstwa Wiejskiego, ul. Nowoursynowska 166, 02-787

Bardziej szczegółowo

OPTYMALIZACJA HARMONOGRAMU DOSTAW MATERIAŁÓW BUDOWLANYCH PRZY ZASTOSOWANIU METODY GRAFICZNEJ WSPOMAGANEJ TEORIĄ KOLEJEK

OPTYMALIZACJA HARMONOGRAMU DOSTAW MATERIAŁÓW BUDOWLANYCH PRZY ZASTOSOWANIU METODY GRAFICZNEJ WSPOMAGANEJ TEORIĄ KOLEJEK OPTYMALIZACJA HARMONOGRAMU DOSTAW MATERIAŁÓW BUDOWLANYCH PRZY ZASTOSOWANIU METODY GRAFICZNEJ WSPOMAGANEJ TEORIĄ KOLEJEK Michał Krzemiński*, Paweł Nowak ** 1. Wprowadzenie Problem opracowania harmonogramu

Bardziej szczegółowo

LINIOWY MODEL OPTYMALIZACJI CZASOWO-KOSZTOWEJ PLANOWANIA REALIZACJI INWESTYCJI WIELOOBIEKTOWYCH

LINIOWY MODEL OPTYMALIZACJI CZASOWO-KOSZTOWEJ PLANOWANIA REALIZACJI INWESTYCJI WIELOOBIEKTOWYCH acta_architectura.sggw.pl ARTYKUŁ NAUKOWY Acta Sci. Pol. Architectura 16 (2) 2017, 3 12 ISSN 1644-0633 DOI: 10.22630/ASPA.2017.16.2.01 Otrzymano: 31.01.2017 Zaakceptowano: 12.04.2017 LINIOWY MODEL OPTYMALIZACJI

Bardziej szczegółowo

Zarządzanie ryzykiem w tworzeniu wartości przedsiębiorstwa na przykładzie przedsiębiorstwa z branży odzieżowej. Working paper

Zarządzanie ryzykiem w tworzeniu wartości przedsiębiorstwa na przykładzie przedsiębiorstwa z branży odzieżowej. Working paper Ł. Kandzior, Wroclaw University of Economics Zarządzanie ryzykiem w tworzeniu wartości przedsiębiorstwa na przykładzie przedsiębiorstwa z branży odzieżowej Working paper JEL Classification: A 10 Słowa

Bardziej szczegółowo

OPTYMALIZACJA STRUKTUR ELEKTROENERGETYCZNYCH SIECI PROMIENIOWYCH Z WYKORZYSTANIEM ALGORYTMÓW SZTUCZNEJ INTELIGENCJI

OPTYMALIZACJA STRUKTUR ELEKTROENERGETYCZNYCH SIECI PROMIENIOWYCH Z WYKORZYSTANIEM ALGORYTMÓW SZTUCZNEJ INTELIGENCJI POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Wociech BĄCHOREK* Janusz BROŻEK* OPTYMALIZACJA STRUKTUR ELEKTROENERGETYCZNYCH SIECI PROMIENIOWYCH Z WYKORZYSTANIEM

Bardziej szczegółowo

Sterowanie wykonaniem produkcji

Sterowanie wykonaniem produkcji STEROWANIE WYKONANIEM PRODUKCJI (Production Activity Control - PAC) Sterowanie wykonaniem produkcji (SWP) stanowi najniŝszy, wykonawczy poziom systemu zarządzania produkcją, łączący wyŝsze poziomy operatywnego

Bardziej szczegółowo

Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky

Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky ego Marek Kałuszka Michał Krzeszowiec Ogólnopolska Konferencja Naukowa Zagadnienia

Bardziej szczegółowo

BADANIA OPERACYJNE ANALITYKA GOSPODARCZA

BADANIA OPERACYJNE ANALITYKA GOSPODARCZA BADANIA OPERACYJNE ANALITYKA GOSPODARCZA Egzamin pisemny 8.4.7 piątek, salae-6, godz. 8:-9:3 OBECNOŚĆ OBOWIĄZKOWA!!! Układ egzaminu. TEST z teorii: minut (test wielostronnego wyboru; próg 75%). ZADANIA:

Bardziej szczegółowo

Szacowanie ryzyka z wykorzystaniem zmiennej losowej o pramatkach rozmytych w oparciu o język BPFPRAL

Szacowanie ryzyka z wykorzystaniem zmiennej losowej o pramatkach rozmytych w oparciu o język BPFPRAL Szacowanie ryzyka z wykorzystaniem zmiennej losowej o pramatkach rozmytych w oparciu o język BPFPRAL Mgr inż. Michał Bętkowski, dr inż. Andrzej Pownuk Wydział Budownictwa Politechnika Śląska w Gliwicach

Bardziej szczegółowo

Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski

Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski Podejście memetyczne do problemu DCVRP - wstępne wyniki Adam Żychowski Na podstawie prac X. S. Chen, L. Feng, Y. S. Ong A Self-Adaptive Memeplexes Robust Search Scheme for solving Stochastic Demands Vehicle

Bardziej szczegółowo

Zasady sporządzania modelu sieciowego (Wykład 1)

Zasady sporządzania modelu sieciowego (Wykład 1) Zasady sporządzania modelu sieciowego (Wykład 1) Metody planowania sieciowego są stosowane w budownictwie do planowania i kontroli dużych przedsięwzięć, w których z powodu wielu zależności istnieje konieczność

Bardziej szczegółowo

Każde zadanie (ang. task) ma wyróżnione dwa stany:

Każde zadanie (ang. task) ma wyróżnione dwa stany: fie skierowanym (rys 1). Pomiędzy zadaniami rzeczywistymi modelującymi określone działania i stany w realizacji przedsięwzięcia definiuje się zależności, wprowadzając do modelu zadania pozorne. Zadania

Bardziej szczegółowo

ANALIZA SIECIOWA PROJEKTÓW REALIZACJI

ANALIZA SIECIOWA PROJEKTÓW REALIZACJI WYKŁAD 5 ANALIZA SIECIOWA PROJEKTÓW REALIZACJI Podstawowe problemy rozwiązywane z wykorzystaniem programowania sieciowego: zagadnienia transportowe (rozdział zadań przewozowych, komiwojażer najkrótsza

Bardziej szczegółowo

Zarządzanie czasem projektu

Zarządzanie czasem projektu Zarządzanie czasem projektu Narzędzia i techniki szacowania czasu zadań Opinia ekspertów Szacowanie przez analogię (top-down estimating) stopień wiarygodności = f(podobieństwo zadań), = f(dostęp do wszystkich

Bardziej szczegółowo

Seminarium IO. Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem. Michał Okulewicz

Seminarium IO. Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem. Michał Okulewicz Seminarium IO Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem Michał Okulewicz 05.11.2013 Plan prezentacji Przypomnienie Problem DVRP Algorytm UCT Zastosowanie algorytmu UCT/PSO w DVRP Zastosowanie

Bardziej szczegółowo

Zarządzanie projektem budowlanym

Zarządzanie projektem budowlanym Zarządzanie projektem budowlanym Praktyczny warsztat oparty na analizie case studies Termin: 22-23 listopada 2018 r. Warszawa Cena: 2100 zł + VAT Kontakt: Weronika Kowalczyk tel. +48 519 098 072 Weronika.Kowalczyk@pl.ey.com

Bardziej szczegółowo

Wykład Zarządzanie projektami Zajęcia 3 Zarządzanie czasem w projekcie Zarządzanie kosztami projektu

Wykład Zarządzanie projektami Zajęcia 3 Zarządzanie czasem w projekcie Zarządzanie kosztami projektu Wykład Zarządzanie projektami Zajęcia Zarządzanie czasem w projekcie Zarządzanie kosztami projektu dr Stanisław Gasik s.gasik@vistula.edu.pl www.sybena.pl/uv/014-wyklad-eko-zp-9-pl/wyklad.pdf Zarządzanie

Bardziej szczegółowo

ROZMYTE LICZBY PRZEDZIAŁOWE W HARMONOGRAMOWANIU PRZEDSIĘWZIĘĆ METODĄ ŁAŃCUCHA KRYTYCZNEGO

ROZMYTE LICZBY PRZEDZIAŁOWE W HARMONOGRAMOWANIU PRZEDSIĘWZIĘĆ METODĄ ŁAŃCUCHA KRYTYCZNEGO Barbara Gładysz Politechnika Wrocławska ROZMYTE LICZBY PRZEDZIAŁOWE W HARMONOGRAMOWANIU PRZEDSIĘWZIĘĆ METODĄ ŁAŃCUCHA KRYTYCZNEGO Wstęp Pierwszą przedstawioną w literaturze techniką planowania przedsięwzięć

Bardziej szczegółowo

HEURYSTYCZNY ALGORYTM SZEREGOWANIA ZADAŃ W SYSTEMIE MASZYN RÓWNOLEGŁYCH Z KRYTERIUM MINIMALNO-CZASOWYM

HEURYSTYCZNY ALGORYTM SZEREGOWANIA ZADAŃ W SYSTEMIE MASZYN RÓWNOLEGŁYCH Z KRYTERIUM MINIMALNO-CZASOWYM EURYSTYCZNY ALGORYTM SZEREGOWANIA ZADAŃ W SYSTEMIE MASZYN RÓWNOLEGŁYC Z KRYTERIUM MINIMALNO-CZASOWYM Zbigniew BUCALSKI Streszczenie: Artykuł dotyczy zagadnienia czasowo-optymalnego przydziału zasobu podzielnego

Bardziej szczegółowo

Ocena ryzyka czasu i kosztów w planowaniu produkcji budowlanej

Ocena ryzyka czasu i kosztów w planowaniu produkcji budowlanej Ocena ryzyka czasu i kosztów w planowaniu produkcji budowlanej Dr hab. inż. Roman Marcinkowski, mgr inż. Artur Koper, Wydział Budownictwa, Mechaniki i Petrochemii, Politechnika Warszawska, Płock 70 1.

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

RISK-AWARE PROJECT SCHEDULING

RISK-AWARE PROJECT SCHEDULING RISK-AWARE PROJECT SCHEDULING SIMPLEUCT CZ. 2 KAROL WALĘDZIK DEFINICJA ZAGADNIENIA RESOURCE-CONSTRAINED PROJECT SCHEDULING (RCPS) Karol Walędzik - RAPS 3 RISK-AWARE PROJECT SCHEDULING (RAPS) 1 tryb wykonywania

Bardziej szczegółowo

POLITYKA ZARZĄDZANIA RYZYKIEM W SZKOLE PODSTAWOWEJ NR 2 W KROŚNIE ODRZAŃSKIM

POLITYKA ZARZĄDZANIA RYZYKIEM W SZKOLE PODSTAWOWEJ NR 2 W KROŚNIE ODRZAŃSKIM Załącznik nr 3 do Zarządzenia Dyrektora Nr 6/2011 z dnia 14.12.2011 POLITYKA ZARZĄDZANIA RYZYKIEM W SZKOLE PODSTAWOWEJ NR 2 W KROŚNIE ODRZAŃSKIM POLITYKA ZARZĄDZANIA RYZYKIEM 1.1.Ilekroć w dokumencie jest

Bardziej szczegółowo

Dobór buforów czasowych oraz ich umiejscowienie w harmonogramie produkcji

Dobór buforów czasowych oraz ich umiejscowienie w harmonogramie produkcji Marek Kozik Instytut Automatyki Politechnika Śląska ul. Akademicka 2A 44-1 Gliwice Jolanta Krystek 1 Instytut Automatyki Politechnika Śląska ul. Akademicka 2A 44-1 Gliwice Tomasz Trznadel Instytut Automatyki

Bardziej szczegółowo

ZARZĄDZANIE PROJEKTAMI

ZARZĄDZANIE PROJEKTAMI ZARZĄDZANIE PROJEKTAMI Marek Janczura Politechnika Wrocławska Dorota Kuchta Politechnika Wrocławska Wyższa Szkoła Oficerska Wojsk Lądowych im. gen. Tadeusza Kościuszki we Wrocławiu HARMONOGRAMOWANIE REAKTYWNE

Bardziej szczegółowo

POLITYKA ZARZĄDZANIA RYZYKIEM

POLITYKA ZARZĄDZANIA RYZYKIEM POLITYKA ZARZĄDZANIA RYZYKIEM ROZDZIAŁ I Postanowienia ogólne 1.1.Ilekroć w dokumencie jest mowa o: 1) ryzyku należy przez to rozumieć możliwość zaistnienia zdarzenia, które będzie miało wpływ na realizację

Bardziej szczegółowo

Inżynieria Morska i Geotechnika nr 5/2013 str. 376-381

Inżynieria Morska i Geotechnika nr 5/2013 str. 376-381 dr hab. inż. Roman Marcinkowski, prof. PW Politechnika Warszawska, Wydział Budownictwa, Mechaniki i Petrochemii dr hab. inż. Mieczysław Połoński, prof. SGGW Szkoła Główna Gospodarstwa Wiejskiego, Wydział

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 4. Projektowanie i harmonogramowanie produkcji metoda CPM-COST. Logistyka w Hutnictwie Ćw. L. 4

Ćwiczenia laboratoryjne - 4. Projektowanie i harmonogramowanie produkcji metoda CPM-COST. Logistyka w Hutnictwie Ćw. L. 4 Ćwiczenia laboratoryjne - 4 Projektowanie i harmonogramowanie produkcji metoda CPM-COST Ćw. L. 4 Metody analizy sieciowej 1) Deterministyczne czasy trwania czynności są określane jednoznacznie (jedna liczba)

Bardziej szczegółowo

Programowanie dynamiczne. Tadeusz Trzaskalik

Programowanie dynamiczne. Tadeusz Trzaskalik Programowanie dynamiczne Tadeusz Trzaskalik 9.. Wprowadzenie Słowa kluczowe Wieloetapowe procesy decyzyjne Zmienne stanu Zmienne decyzyjne Funkcje przejścia Korzyści (straty etapowe) Funkcja kryterium

Bardziej szczegółowo

BADANIE WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO

BADANIE WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO BADANIE WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Lis Anna Lis Marcin Kowalik Stanisław 2 Streszczenie. W pracy przedstawiono rozważania dotyczące określenia zależności pomiędzy wydobyciem

Bardziej szczegółowo

Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A

Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A Ostatnim elementem przykładu jest określenie związku pomiędzy czasem trwania robót na planowanym obiekcie a kosztem jego wykonania. Związek ten określa wzrost kosztów wykonania realizacji całego przedsięwzięcia

Bardziej szczegółowo

METODYKA DIAGNOZOWANIA STANU MASZYN 1. Henryk Tylicki, Joanna Wilczarska, Marzena Bartol

METODYKA DIAGNOZOWANIA STANU MASZYN 1. Henryk Tylicki, Joanna Wilczarska, Marzena Bartol MOTROL, 2006, 8, 230 239 METOYKA IAGNOZOWANIA STANU MASZYN Henryk Tylicki, Joanna Wilczarska, Marzena Bartol Akademia Techniczno-Rolnicza w Bydgoszczy Streszczenie. W opracowaniu przedstawiono problematykę

Bardziej szczegółowo

Optymalizacja struktury produkcji na przykładzie kopalni

Optymalizacja struktury produkcji na przykładzie kopalni 1) Dr hab inż.; Wydział Górnictwa i Geoinżynierii, AGH University of Science and Technology, Kraków, Mickiewicza 30, 30-059, Poland; tel.: 48 12 617 21 00, email: t-zak@agh.edu.pl 2) Dr inż.; Wydział Górnictwa

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:

Bardziej szczegółowo

METODA ŁAŃCUCHA KRYTYCZNEGO I ZARZĄDZANIA WOLNYMI ZAPASAMI W ASTA POWERPROJECT

METODA ŁAŃCUCHA KRYTYCZNEGO I ZARZĄDZANIA WOLNYMI ZAPASAMI W ASTA POWERPROJECT METODA ŁAŃCUCHA KRYTYCZNEGO I ZARZĄDZANIA WOLNYMI ZAPASAMI W ASTA POWERPROJECT W projektach budowlanych, jednym z głównych problemów w planowaniu i kontroli jest sporządzenie harmonogramu projektu. Kierownicy

Bardziej szczegółowo

POŁĄCZENIE ALGORYTMÓW SYMULACYJNYCH ORAZ DZIEDZINOWYCH METOD HEURYSTYCZNYCH W ZAGADNIENIACH DYNAMICZNEGO PODEJMOWANIA DECYZJI

POŁĄCZENIE ALGORYTMÓW SYMULACYJNYCH ORAZ DZIEDZINOWYCH METOD HEURYSTYCZNYCH W ZAGADNIENIACH DYNAMICZNEGO PODEJMOWANIA DECYZJI POŁĄCZENIE ALGORYTMÓW SYMULACYJNYCH ORAZ DZIEDZINOWYCH METOD HEURYSTYCZNYCH W ZAGADNIENIACH DYNAMICZNEGO PODEJMOWANIA DECYZJI mgr inż. Karol Walędzik k.waledzik@mini.pw.edu.pl prof. dr hab. inż. Jacek

Bardziej szczegółowo

PLANOWANIE REALIZACJI PROJEKTÓW W ŚRODOWISKU WIELOPROJEKTOWYM Z WYKORZYSTANIEM METODY ŁAŃCUCHA KRYTYCZNEGO

PLANOWANIE REALIZACJI PROJEKTÓW W ŚRODOWISKU WIELOPROJEKTOWYM Z WYKORZYSTANIEM METODY ŁAŃCUCHA KRYTYCZNEGO ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2017 Seria: ORGANIZACJA I ZARZĄDZANIE z. 114 Nr kol. 1993 Jolanta ŁOPATOWSKA Politechnika Gdańska Wydział Zarządzania i Ekonomii Jolanta.Lopatowska@zie.pg.gda.pl PLANOWANIE

Bardziej szczegółowo

DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI

DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI mgr Marcin Pawlak Katedra Inwestycji i Wyceny Przedsiębiorstw Plan wystąpienia

Bardziej szczegółowo

Analiza czasowo-kosztowa

Analiza czasowo-kosztowa Analiza czasowo-kosztowa Aspekt ekonomiczny: należy rozpatrzyć techniczne możliwości skrócenia terminu wykonania całego przedsięwzięcia, w taki sposób aby koszty związane z jego realizacją były jak najniższe.

Bardziej szczegółowo

PROGRAMOWANIE SIECIOWE. METODY CPM i PERT

PROGRAMOWANIE SIECIOWE. METODY CPM i PERT PROGRAMOWANIE SIECIOWE. METODY CPM i PERT Maciej Patan Programowanie sieciowe. 1 WPROWADZENIE Metody programowania sieciowego wprowadzono pod koniec lat pięćdziesiatych Ze względu na strukturę logiczna

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Symulowane wyżarzanie Maciej Hapke maciej.hapke at put.poznan.pl Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne zmniejszanie

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Dokładne algorytmy optymalizacji Maciej Hapke maciej.hapke at put.poznan.pl Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem minimalizacji

Bardziej szczegółowo

The method for selection and combining the means of transportation according to the Euro standards

The method for selection and combining the means of transportation according to the Euro standards Article citation info: TKACZYK S. The method for selection and combining the means of transportation according to the Euro standards. Combustion Engines. 2015, 162(3), 958-962. ISSN 2300-9896. Sławomir

Bardziej szczegółowo

Algorytmy konstrukcyjne dla problemu harmonogramowania projektu z ograniczonymi zasobami. Marcin Klimek *

Algorytmy konstrukcyjne dla problemu harmonogramowania projektu z ograniczonymi zasobami. Marcin Klimek * Zeszyty Naukowe WWSI, No 15, Vol. 10, 2016, s. 41-52 Algorytmy konstrukcyjne dla problemu harmonogramowania projektu z ograniczonymi zasobami Marcin Klimek * Państwowa Szkoła Wyższa w Białej Podlaskiej,

Bardziej szczegółowo

Analiza stanów gry na potrzeby UCT w DVRP

Analiza stanów gry na potrzeby UCT w DVRP Analiza stanów gry na potrzeby UCT w DVRP Seminarium IO na MiNI 04.11.2014 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP DVRP na potrzeby UCB Analiza

Bardziej szczegółowo

Planowanie drogi robota, algorytm A*

Planowanie drogi robota, algorytm A* Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy

Bardziej szczegółowo