Metody Programowania

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody Programowania"

Transkrypt

1 POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania Wykładowca: dr inż. Zbigniew Kokosiński

2 Wykład 8: Wyszukiwanie lokalne. Tabu search. 1. Wprowadzenie. Koncepcja wyszukiwania lokalnego. 2. Przykład: problem spełnialności (SAT). 3. Wyszukiwanie lokalne w optymalizacji. 4. Przykłady: pokrycie wierzchołkowe grafu (VCP), minimalne drzewo rozpinające (MST), problem komiwojażera (TSP). 5. Przykładowe operacje i definicje sąsiedztwa. 6. Ulepszenia i modyfikacje wyszukiwania lokalnego. 7. Algorytm wyszukiwania z listą tabu (TS). 8. Przykład : problem MST z ograniczeniami. 9. Podsumowanie. Zalety i wady wyszukiwania lokalnego.

3 Wprowadzenie Metoda wyszukiwania lokalnego (ang. local search) jest jedną z najbardziej intuicyjnych technik projektowania algorytmów. Polega ona na niewielkich modyfikacjach rozwiązania początkowego (np. losowego), ocenie wszystkich uzyskanych w ten sposób rozwiązań pochodnych i wyborze najlepszego z nich jako nowego rozwiązania początkowego. Postępowanie jest kontynuowane do momentu, aż dalsza poprawa nie będzie już możliwa albo wyczerpał się czas przeznaczony na poszukiwanie rozwiązania. Przykładowe zastosowanie: decyzyjny problem spełnialności formuł boolowskich (SAT, z ang. satisfiability).

4 Problem spełnialności (SAT)

5 Algorytmy dla problemu SAT GSAT (Greedy SAT) i WalkSAT są algorytmami wyszukiwania lokalnego dla problemu spełnialności formuł boolowskich. Oba algorytmy mają zastosowanie do formuł boolowskich w postaci konjunkcyjnej normalnej. Punktem wyjścia jest losowe przyporządkowanie wszystkim zmiennym wartości logicznych 0 i 1. Algorytm kończy pracę, jeśli przyporządkowanie zapewnia wszystkim implicentom wartości 1. W przeciwnym wypadku jedna ze zmiennych może zmienić swoją wartość na przeciwną. Postępowanie jest kontyuowane aż do pozytywnego rezultatu. WalkSAT i GSAT różnią się metodami wyboru zmiennej do zanegowania. GSAT wybiera tę zmienną, której negacja minimalizuje liczbę implicentów o wartości 0. WalkSAT wybiera losowo implicent o wartości 0 przy aktualnym przyporządkowaniu a następnie neguje w tym implicencie losową zmienną, zmianiając wartość tego implicentu na 1. GSAT i WalkSAT kontynuują swoje postępowanie aż cała formuła przyjmie wartość 1. W przypadku braku postępu w zadanym czasie algorytmy mogą wystartować ponownie z nowym losowym przyporządkowaniem. W ten sposób mogą opuścić osiągniete minima lokalne (w SAT chodzi o optimum globalne!).

6 Wyszukiwanie lokalne w optymalizacji Wyszukiwanie lokalne jest bardzo popularną techniką stosowaną rozwiązywaniu problemów optymalizacyjnych. Przestrzeń rozwiązań problemu jest przeszukiwana iteracyjnie. W każdym kroku przechodzimy od najlepszego znalezionego dotąd rozwiązania do kolejnego tymczasowego optimum, wyznaczonego w jego sąsiedztwie. Otoczenie (sąsiedztwo) bieżącego rozwiązania musi być odpowiednio zdefiniowane. Algorytm wyszukiwania lokalnego nie gwarantuje osiągnięcia optimum globalnego, najczęściej uzyskane rozwiazanie jest optymalne lokalnie. Zastosowania do problemów optymalizacyjnych: pokrycie wierzchołkowe grafu (VCP), minimalne drzewo rozpinające (MST), problem komiwojażera (TSP).

7 Minima lokalne i globalne

8 Problem minimalnego drzewa rozpinającego (MST) - wyszukiwanie lokalne Usuwana jest jedna losowa krawędź drzewa i dodawana jest losowa krawędź zapewniająca spójność grafu. W wszystkich rozwiązań sąsiednich wybierane jest rozwiązania najlepsze.

9 Problem komiwojażera operacja 2-opt Z trasy początkowej usuwamy 2 krawędzie : ab oraz cd. Trasy sąsiednie powstają przez dodanie dwóch nowych krawędzi, łączących powstałe odcinki ac oraz bd, tak aby nadal były ze sobą połaczone wszystkie miasta. Są to np. krawędzie ad i bc.

10 Problem komiwojażera (TSP) - wyszukiwanie lokalne za pomocą operacji 2-opt Trasa początkowa ma długość 25. W pierwszym kroku operacja 2-opt zamienia parę krawędzi ae i cd krawędziami ad i ce. Nowa trasa ma długość 23. W drugim kroku operacja 2-opt zamienia parę krawędzi ab i ce krawędziami ac i be. Otrzymana trasa ma długość 19.

11 Problem komiwojażera (TSP) - operacja 3-opt Z trasy początkowej usuwamy 3 krawędzie : ab, cd oraz ef. Trasy sąsiednie powstają przez dodanie trzech nowych krawędzi, łączących powstałe odcinki af, de oraz bc, tak aby nadal były ze sobą połaczone wszystkie miasta. Są to np. krawędzie ad, be i cf lub ad, bf i ce.

12 Problem komiwojażera (TSP) - wyszukiwanie lokalne za pomocą operacji 3-opt

13 Problem komiwojażera (TSP) - operacja 1-shift Z trasy początkowej usuwamy losową krawędź 78, oraz dwie krawędzie sąsiadujące z losowym wierzchołkiem 3 : 23 i 34. Trasa sąsiednia powstaje przez dodanie trzech nowych krawędzi: dwóch krawędzi łączących końce usuniętej krawędzi z wierzchołkiem 3 : 37 i 38 oraz krawędź 24, która jest bypassem omijającym wierzchołek 3.

14 Wyszukiwanie z listą tabu (Tabu Search) jako uogólnienie wyszukiwania lokalnego

15 Wyszukiwanie z listą tabu (Tabu Search) - schemat blokowy

16 Wyszukiwanie z listą tabu (Tabu Search) algorytm

17 Wyszukiwanie z listą tabu (Tabu Search) zastosowanie do problemu MST z ograniczeniami

18 Wyszukiwanie z listą tabu (Tabu Search) zastosowanie do problemu MST z ograniczeniami

19 Wyszukiwanie z listą tabu (Tabu Search) zastosowanie do problemu MST z ograniczeniami

20 Wyszukiwanie z listą tabu (Tabu Search) zastosowanie do problemu MST z ograniczeniami

21 Podsumowanie 1. Algorytm wyszukiwania lokalnego jest szczególnie cenny w optymalizacji kombinatorycznej. 2. Algorytm wyszukiwania lokalnego znajduje zwykle jedynie rozwiązanie przybliżone danego problemu. 3. Wyszukiwanie lokalne jest użyteczną techniką, która może być dalej ulepszana (np. algorytm wyszukiwania z listę tabu), albo stosowana jako uzupełniająca w bardziej zaawansowanych algorytmach łączących kilka różnych technik (w tzw. algorytmach hybrydowych).

22 Źródła przykładów i rysunków : 1. Aho A.V., Hopcroft J.E., Ullman J.D. : Algorytmy i struktury danych, Helion/Addison-Wesley Sait S.M., Youssef H. : Iterative computer algorithms with applications in engineering, IEEE computer Society Press Strony tematyczne w sieci.

Algorytmy i struktury danych

Algorytmy i struktury danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i struktury danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 5: Algorytmy

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Projektowanie i analiza algorytmów

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Projektowanie i analiza algorytmów Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Elektrycznej i Komputerowej obowiązuje w roku akademickim 01/013 Kierunek studiów: Elektrotechnika Forma studiów: Niestacjonarne

Bardziej szczegółowo

Metody Optymalizacji: Przeszukiwanie z listą tabu

Metody Optymalizacji: Przeszukiwanie z listą tabu Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek

Bardziej szczegółowo

Projektowanie i Analiza Algorytmów

Projektowanie i Analiza Algorytmów POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Projektowanie i Analiza Algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Wprowadzenie Maciej Hapke maciej.hapke at put.poznan.pl Literatura D.E. Goldberg Algorytmy genetyczne i zastosowania, WNT, 1995 Z. Michalewicz Algorytmy genetyczne + struktury danych

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Dokładne algorytmy optymalizacji Maciej Hapke maciej.hapke at put.poznan.pl Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem minimalizacji

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

Programowanie sieciowe. Tadeusz Trzaskalik

Programowanie sieciowe. Tadeusz Trzaskalik Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 9: Programowanie

Bardziej szczegółowo

Projektowanie i analiza algorytmów

Projektowanie i analiza algorytmów POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Projektowanie i analiza algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład

Bardziej szczegółowo

Optymalizacja. Przeszukiwanie lokalne

Optymalizacja. Przeszukiwanie lokalne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x

Bardziej szczegółowo

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

Zaawansowane programowanie

Zaawansowane programowanie Zaawansowane programowanie wykład 3: inne heurystyki prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Heurystyką nazywamy algorytm (metodę) zwracający rozwiązanie przybliżone.

Bardziej szczegółowo

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia

Bardziej szczegółowo

Wyznaczanie optymalnej trasy problem komiwojażera

Wyznaczanie optymalnej trasy problem komiwojażera Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji

Bardziej szczegółowo

10. Kolorowanie wierzchołków grafu

10. Kolorowanie wierzchołków grafu p. 10. Kolorowanie wierzchołków grafu 10.1 Definicje i twierdzenia Przez k-kolorowanie wierzchołków grafu G rozumiemy przyporzadkowanie każdemu wierzchołkowi grafu G jednego z k kolorów 1, 2,...,k. p.

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.

Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich. Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów Klasy zgodności Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 12: Wstęp

Bardziej szczegółowo

Przykład planowania sieci publicznego transportu zbiorowego

Przykład planowania sieci publicznego transportu zbiorowego TRANSPORT PUBLICZNY Przykład planowania sieci publicznego transportu zbiorowego Źródło: Bieńczak M., 2015 Politechnika Poznańska, Wydział Maszyn Roboczych i Transportu 1 METODYKA ZAŁOśENIA Dostarczanie

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 15: Klasyczne techniki

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Minimalizacja form boolowskich

Minimalizacja form boolowskich Sławomir Kulesza Technika cyfrowa Minimalizacja form boolowskich Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Minimalizacja form boolowskich Minimalizacja proces przekształcania form

Bardziej szczegółowo

Metody optymalizacji dyskretnej. Metody przybliżone

Metody optymalizacji dyskretnej. Metody przybliżone Metody optymalizacji dyskretnej Metody przybliżone Metody optymalizacji dyskretnej Większość problemów optymalizacji dyskretnej pochodzących z praktyki (szeregowanie, harmonogramowanie, transport, plany

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie

Bardziej szczegółowo

Problem kodowania w automatach

Problem kodowania w automatach roblem kodowania w automatach Kodowanie stanów to przypisanie kolejnym stanom automatu odpowiednich kodów binarnych. Minimalna liczba bitów b potrzebna do zakodowania automatu, w którym liczność zbioru

Bardziej szczegółowo

Elementy teorii grafów Elementy teorii grafów

Elementy teorii grafów Elementy teorii grafów Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę

Bardziej szczegółowo

Wstęp do Sztucznej Inteligencji

Wstęp do Sztucznej Inteligencji Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -

Bardziej szczegółowo

Algorytmy ewolucyjne (3)

Algorytmy ewolucyjne (3) Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera

Bardziej szczegółowo

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań

Bardziej szczegółowo

Sterowniki Programowalne (SP) Wykład 11

Sterowniki Programowalne (SP) Wykład 11 Sterowniki Programowalne (SP) Wykład 11 Podstawy metody sekwencyjnych schematów funkcjonalnych (SFC) SP 2016 WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA INŻYNIERII SYSTEMÓW STEROWANIA Kierunek: Automatyka

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Algorytmy i struktury danych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP

Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Łukasz Strąk lukasz.strak@gmail.com Uniwersytet Śląski, Instytut Informatyki, Będzińska 39, 41-205 Sosnowiec 9 grudnia

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 3: Wprowadzenie do algorytmów i ich

Bardziej szczegółowo

Algorytmy aproksymacyjne i parametryzowane

Algorytmy aproksymacyjne i parametryzowane Algorytmy aproksymacyjne i parametryzowane Marek Cygan Uniwersytet Warszawski 18 października 2012 Marek Cygan Algorytmy aproksymacyjne i parametryzowane 1/22 Wstęp W algorytmice problemy dzielimy na obliczeniowo

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

5c. Sieci i przepływy

5c. Sieci i przepływy 5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje

Bardziej szczegółowo

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Praktyczne metody weryfikacji. Wykład 9: Weryfikacja ograniczona.. p.1/40

Praktyczne metody weryfikacji. Wykład 9: Weryfikacja ograniczona.. p.1/40 Praktyczne metody weryfikacji Wykład 9: Weryfikacja ograniczona. p.1/40 Symboliczna weryfikacja modelowa (SMC) model kodowanie boolowskie QBF implementacja OBDD weryfikacja modelowa = operacje na OBDDs.

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

7. Teoria drzew - spinanie i przeszukiwanie

7. Teoria drzew - spinanie i przeszukiwanie 7. Teoria drzew - spinanie i przeszukiwanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7. wteoria Krakowie) drzew - spinanie i przeszukiwanie

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

Szeregowanie zadań. Wykład nr 2. dr Hanna Furmańczyk. 12 października 2014

Szeregowanie zadań. Wykład nr 2. dr Hanna Furmańczyk. 12 października 2014 Wykład nr 2 12 października 2014 Złożoność problemów szeregowania zadań Problemy: wielomianowe NP-trudne otwarte Złożoność problemów szeregowania zadań Problemy: wielomianowe NP-trudne otwarte Jak sobie

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu.

Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu. Tytuł: 01 Budowa portfela produktowego. Zastosowanie programowania liniowego Autor: Piotr SAWICKI Zakład Systemów Transportowych WMRiT PP piotr.sawicki@put.poznan.pl www.put.poznan.pl/~piotr.sawicki www.facebook.com/piotr.sawicki.put

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH ALGORYTMY I STRUKTURY DANYCH wykład 1 wprowadzenie, struktury sterujace, projektowanie algorytmów dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych UZ p. 425 A2 tel.

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule

Bardziej szczegółowo

Eksploracja logów procesów. Process mining

Eksploracja logów procesów. Process mining Eksploracja logów procesów Process mining Eksploracja logów procesów Celem eksploracji logów procesów biznesowych jest: Odkrywanie modelu procesów biznesowych Analiza procesów biznesowych Ulepszanie procesów

Bardziej szczegółowo

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2 Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z

Bardziej szczegółowo

Sortowanie Shella Shell Sort

Sortowanie Shella Shell Sort Sortowanie Shella Shell Sort W latach 50-tych ubiegłego wieku informatyk Donald Shell zauważył, iż algorytm sortowania przez wstawianie pracuje bardzo efektywnie w przypadku gdy zbiór jest w dużym stopniu

Bardziej szczegółowo

Podstawy programowania.

Podstawy programowania. Kod przedmiotu: PPR Podstawy programowania. Rodzaj przedmiotu: kierunkowy; obowiązkowy Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Poziom studiów: pierwszego stopnia Profil

Bardziej szczegółowo

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność

Bardziej szczegółowo

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Technologie cyfrowe Artur Kalinowski Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.pl Semestr letni 2014/2015 Zadanie algorytmiczne: wyszukiwanie dane wejściowe:

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Adam Meissner SZTUCZNA INTELIGANCJA

Adam Meissner SZTUCZNA INTELIGANCJA Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGANCJA Podstawy programowania z ograniczeniami

Bardziej szczegółowo

Algorytmy mrówkowe w dynamicznych problemach transportowych

Algorytmy mrówkowe w dynamicznych problemach transportowych y w dynamicznych problemach transportowych prof. dr hab Jacek Mandziuk MiNI, PW 3 czerwca 2013 Cel pracy Zbadanie zachowania algorytmu go zwykłego oraz z zaimplementowanymi optymalizacjami dla problemów

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z

Bardziej szczegółowo

Planowanie drogi robota, algorytm A*

Planowanie drogi robota, algorytm A* Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy

Bardziej szczegółowo

BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych

BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych BADANIA OPERACYJNE i teoria optymalizacji Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych e-mail: tpisula@prz.edu.pl 1 Literatura podstawowa wykorzystywana podczas zajęć wykładowych: 1. Gajda J.,

Bardziej szczegółowo

BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych

BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych BADANIA OPERACYJNE i teoria optymalizacji Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych e-mail: tpisula@prz.edu.pl 1 Literatura podstawowa wykorzystywana podczas zajęć wykładowych: 1. Gajda J.,

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA WYDZIAŁ INŻYNIERII ELEKTRYCZNEJ i KOMPUTEROWEJ Katedra Automatyki i Technik Informacyjnych Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew

Bardziej szczegółowo

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 Kierunek: INFORMATYKA Specjalność: PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH STUDENTÓW. Tryb studiów: NIESTACJONARNE PIERWSZEGO STOPNIA

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem

Bardziej szczegółowo

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:

Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy: Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,

Bardziej szczegółowo

Definicja układu kombinacyjnego była stosunkowo prosta -tabela prawdy. Opis układu sekwencyjnego jest zadaniem bardziej złożonym.

Definicja układu kombinacyjnego była stosunkowo prosta -tabela prawdy. Opis układu sekwencyjnego jest zadaniem bardziej złożonym. 3.4. GRF UTOMTU, TBELE PRZEJŚĆ / WYJŚĆ Definicja układu kombinacyjnego była stosunkowo prosta -tabela prawdy. Opis układu sekwencyjnego jest zadaniem bardziej złożonym. Proste przypadki: Opis słowny, np.:

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne 9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce. POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie

Bardziej szczegółowo

Heurystyczne metody przeszukiwania

Heurystyczne metody przeszukiwania Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.

Bardziej szczegółowo

Załącznik Nr 5 do Zarz. Nr 33/11/ Kod przedmiotu:aisd2

Załącznik Nr 5 do Zarz. Nr 33/11/ Kod przedmiotu:aisd2 Załącznik Nr 5 do Zarz. Nr 33/11/12 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: ALGORYTMY I STRUKTURY DANYCH 2 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

Algorytmy stochastyczne laboratorium 03

Algorytmy stochastyczne laboratorium 03 Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Lista 6 Problemy NP-zupełne

Lista 6 Problemy NP-zupełne 1 Wprowadzenie Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Teoretyczne Podstawy Informatyki Lista 6 Problemy NP-zupełne Problem abstrakcyjny Q jest to relacja dwuargumentowa

Bardziej szczegółowo

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca

Bardziej szczegółowo

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45 METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 TWIERDZENIE PONCELETA-STEINERA W roku 1833, Szwajcarski matematyk Jakob Steiner udowodnił, że wszystkie klasyczne konstrukcje (za pomocą cyrkla i linijki)

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Metaheurystyki oparte na algorytmach lokalnego przeszukiwania Maciej Hapke maciej.hapke at put.poznan.pl GRASP Greedy Randomized Adaptive Search Procedure T.A. Feo, M.G.C. Resende,

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Metoda Karnaugh. B A BC A

Metoda Karnaugh. B A BC A Metoda Karnaugh. Powszechnie uważa się, iż układ o mniejszej liczbie elementów jest tańszy i bardziej niezawodny, a spośród dwóch układów o takiej samej liczbie elementów logicznych lepszy jest ten, który

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo