Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach"

Transkrypt

1 Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital Budgeting Problem. The main idea is to embed genetic algorithm into simulation model so that the algorithm is able to solve any problem with uncertain inputs. Experimental tests quantify the power of the proposed technique. 1. Wprowadzenie Celem pracy jest pokazanie możliwości współpracy symulacji oraz algorytmu genetycznego do rozwiązania problemu alokacji portfela inwestycyjnego przy ograniczonych zasobach. Tradycyjne techniki (pełny przegląd, programowanie dynamiczne) są nieadekwatne w przypadku problemów o dużych rozmiarach bądź zawierających zmienne o charakterze losowym. 2. Problem alokacji portfela inwestycji Każdego roku organizacje gospodarcze muszą określić, jakie projekty realizować. Powszechnie przyjętym kryterium jest maksymalizacja sumy NPV wnoszonych przez wybrane projekty, przy uwzględnieniu ograniczonych nakładów kapitałowych [5]. Problem ten można zapisać: znaleźć maksimum przy warunkach x i = 0 lub 1, i=1,...,n gdzie: n - liczba projektów, N i - nakłady początkowe na projekt i, NPV i - NPV projektu i, B - dysponowany budżet, dr inż., Wydział Zarządzania, Akademia Górniczo-Hutnicza, Kraków

2 Jest to w zasadzie wersja zero-jedynkowego zagadnienia plecakowego (ang. zero-one knapsack problem), przy czym funkcję ograniczonej wielkości plecaka spełnia ograniczona wartość możliwego do zainwestowania kapitału. Z obliczeniowego punktu widzenia problemy plecakowe są trudne; prawdopodobnie nie istnieją algorytmy wielomianowe dla tych problemów [3]. Proponowane w literaturze [1] techniki dzielą się na: metody redukcji i aproksymacji (typu zachłannego i Lagrange a), metody dokładne: o techniki sieciowe, o programowanie dynamiczne, o metody przeglądu (w tym technika przeglądu i ograniczeń). Klasyczną pozycją poświęconą zagadnieniu lokaty kapitału jest praca Weingartnera [4], w której zaproponował metodę programowania dynamicznego dającą optymalne rozwiązanie problemu. Tradycyjne techniki są nieadekwatne w przypadku problemów o dużych rozmiarach bądź zawierających zmienne o charakterze losowym. Losowość może dotyczyć zarówno efektów (mierzonych NPV) jak i nakładów na poszczególne projekty. W tabeli 1. przedstawiono typologię problemów i metody ich rozwiązania. Tabela 1. Typologia problemów lokaty kapitału L.p. 1 Nakłady NPV Metoda zdeterminowane dla wszystkich projektów zdeterminowane dla wszystkich projektów 2 zdeterminowane wielkości losowe 3 wielkości losowe wielkości losowe Źródło: opracowanie własne techniki tradycyjne TS, SA, EA, CBP symulacja techniki hybrydowe symulacja rozmyte programowanie liniowe 3. Algorytm hybrydowy dla zagadnienia lokaty kapitału Proponowany algorytm przeznaczony jest dla problemów 2. typu. Algorytm hybrydowy składa się z 2 elementów: symulacja jest odpowiedzialna za obliczanie wartości NPV projektowanych inwestycji w warunkach niepewności, algorytm genetyczny służy do optymalizacji struktury portfela inwestycyjnego. Technika symulacji służy do obliczenia wartości NPV dla wszystkich projektów, przy czym na wejściu mamy najczęściej zmienne opisane rozkładem trójkątnym (np. kursy walut, spodziewane ilości i ceny sprzedaży, ceny materiałów, energii - założenia te są jednakowe dla wszystkich projektów).

3 Powstały w wyniku symulacji wektor NPV oraz stały wektor nakładów są wielkościami używanymi do optymalizacji struktury portfela. W następnym kroku następuje ponowne obliczenie wektora NPV i optymalizacja struktury portfela. Symulacja i optymalizacja są powtarzane 1000 razy. To rozwiązanie, które zwycięży najwięcej razy jest uznawane za rozwiązanie problemu. Do optymalizacji struktury portfela użyto algorytmu genetycznego w klasycznej wersji [2] - jest to zrozumiałe, jako że rozwiązanie problemu jest wektorem składającym się z 0 i 1. Populację początkową stanowi 15 rozwiązań otrzymanych losowo. Selekcja odbywa się na zasadzie ruletki, podstawowym operatorem jest jednopunktowa krzyżówka. Prawdopodobieństwo krzyżowania wynosi 1.00, a prawdopodobieństwo mutacji Algorytm kończy działanie po wygenerowaniu 25 pokoleń, tak wiec badanych jest zaledwie 375 rozwiązań. W algorytmie maksymalizowano następującą funkcję: FD N i 1 gdzie: s - stała kary, taka że: 1 jeśli s 1000 jeśli reszta oznaczeń jak w (1) 4. Badania eksperymentalne F i F i C C Realizację programową algorytmu wykonano przy użyciu arkusza oraz języka VBA: arkusz EXCEL jest odpowiedzialny za interfejs oraz symulację NPV projektów, VBA posłużył do oprogramowania algorytmu genetycznego. W celu ilustracji działania algorytmu prześledźmy jego działanie na prostym przykładzie. Opis sytuacji 2 Fi s C N Przedsiębiorstwo rozpatruje realizację 16 projektów o nakładach przedstawionych w tabeli 1. Na realizację projektów przedsiębiorstwo dysponuje środkami w wysokości zł. Oszacowano rozkłady podstawowych zmiennych mających wpływ na efektywność inwestycji. Należy tak dobrać realizację projektów, by spodziewane efekty były jak największe, przy nakładach nie przekraczających dysponowanych środków. (2)

4 Tabela 1. Nakłady początkowe na rozpatrywane projekty. Projekt Nakłady początkowe Projekt Nakłady początkowe zł zł zł zł zł zł zł zł zł zł zł zł zł zł zł zł Krok 1. Symulacja wartości NPV dla wszystkich projektów W wyniku obliczeń symulacyjnych otrzymano wektor wartości NPV przedstawiony w tabeli 2. Tabela 2. Obliczone w kroku 1. NPV dla rozpatrywanych projektów. Projekt NPV Projekt NPV zł zł zł zł zł zł zł zł zł zł zł zł zł zł zł zł Krok 2. Optymalizacja struktury portfela Po zastosowaniu algorytmu genetycznego, dla danych zebranych w tabelach 1 i 2, uzyskano następujące rozwiązanie: Projekt Decyzja W tej konkretnej (zasymulowanej) sytuacji należałoby zrealizować projekty nr 1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 15, 16, przy czym sumaryczna wartość NPV wyniosłaby zł, a nakłady zł. Następne iteracje: powtórzenie kroków 1. i 2. Powtarzamy symulację i optymalizację zadaną ilość razy. Dla każdego wektora NPV otrzymujemy wektor rozwiązań problemu. Na końcu porównujemy

5 wszystkie kolejne rozwiązania i wybieramy to, które otrzymaliśmy najczęściej w trakcie działania algorytmu hybrydowego. W naszym przykładzie byłby to wektor: Projekt Decyzja dający średnią wartość sumy NPV w wysokości (odchylenie standardowe ), przy nakładach zł. W trakcie badań algorytmu rozwiązywano bez trudności problemy o rozmiarach 200 projektów. 5. Wnioski końcowe W pracy zaproponowano połączenie symulacji z algorytmem genetycznym w celu rozwiązania problemu lokaty kapitału w warunkach niepewności. Okazało się, że taką hybrydyzację można przeprowadzić stosunkowo prosto, a uzyskiwane rezultaty są bardzo zadowalające. Algorytm nie wymaga dużych nakładów obliczeniowych, jest prosty w konstrukcji i zastosowaniu. Literatura [1] Beasley J. E.: OR-notes: integer programming, [2] Michalewicz Z.: Algorytmy genetyczne + struktury danych = programy ewolucyjne, WNT, Warszawa [3] Sysło M., Deo N., Kowalik J.: Algorytmy optymalizacji dyskretnej, PWN, Warszawa [4] Weingartner H.: "Capital Budgeting and interrelated projects: survey and synthesis". Management Science, vol. 2, no. 1, 1968, str [5] Winston W. L.: Financial models using simulation and optimization, Palisade Corporation, Newfield 2000.

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż. Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Programowanie genetyczne, gra SNAKE

Programowanie genetyczne, gra SNAKE STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW 33/01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Optymalizacja systemów Nazwa w języku angielskim System optimization Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

Gospodarcze zastosowania algorytmów genetycznych

Gospodarcze zastosowania algorytmów genetycznych Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym

Bardziej szczegółowo

1 Programowanie całkowitoliczbowe PLC

1 Programowanie całkowitoliczbowe PLC Metody optymalizacji, wykład nr 9 Paweł Zieliński Programowanie całkowitoliczbowe PLC Literatura [] S.P. Bradley, A.C. Hax, T. L. Magnanti Applied Mathematical Programming Addison-Wesley Pub. Co. (Reading,

Bardziej szczegółowo

Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02

Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02 Optymalizacja całkowitoliczbowa Przykład. Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02 Firma stolarska produkuje dwa rodzaje stołów Modern i Classic, cieszących się na rynku dużym zainteresowaniem,

Bardziej szczegółowo

WSTĘP ZAŁOŻENIA DO PROJEKTU

WSTĘP ZAŁOŻENIA DO PROJEKTU UNIWERSYTET ZIELONOGÓRSKI WYDZIAŁ ZARZĄDZANIA Przykład analizy opłacalności przedsięwzięcia inwestycyjnego WSTĘP Teoria i praktyka wypracowały wiele metod oceny efektywności przedsięwzięć inwestycyjnych.

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM

IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM Artykuł zawiera opis eksperymentu, który polegał na uyciu algorytmu genetycznego przy wykorzystaniu kodowania

Bardziej szczegółowo

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)

Bardziej szczegółowo

6. Klasyczny algorytm genetyczny. 1

6. Klasyczny algorytm genetyczny. 1 6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu

Bardziej szczegółowo

Eksperymenty obliczeniowe z algorytmami ewolucyjnymi i porównania algorytmów.

Eksperymenty obliczeniowe z algorytmami ewolucyjnymi i porównania algorytmów. Eksperymenty obliczeniowe z algorytmami ewolucyjnymi i porównania algorytmów. 1 Wprowadzenie Do tej pory nie rozważaliśmy odpowiedzi na pytanie, Po co uruchamiam algorytm ewolucyjny Kilka możliwych odpowiedzi:

Bardziej szczegółowo

Metody niedyskontowe. Metody dyskontowe

Metody niedyskontowe. Metody dyskontowe Metody oceny projektów inwestycyjnych TEORIA DECYZJE DŁUGOOKRESOWE Budżetowanie kapitałów to proces, który ma za zadanie określenie potrzeb inwestycyjnych przedsiębiorstwa. Jest to proces identyfikacji

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

ZARZĄDZANIE FINANSAMI W PROJEKTACH C.D. OCENA FINANSOWA PROJEKTU METODY OCENY EFEKTYWNOŚCI FINANSOWEJ PROJEKTU. Sabina Rokita

ZARZĄDZANIE FINANSAMI W PROJEKTACH C.D. OCENA FINANSOWA PROJEKTU METODY OCENY EFEKTYWNOŚCI FINANSOWEJ PROJEKTU. Sabina Rokita ZARZĄDZANIE FINANSAMI W PROJEKTACH C.D. OCENA FINANSOWA PROJEKTU METODY OCENY EFEKTYWNOŚCI FINANSOWEJ PROJEKTU Sabina Rokita Podział metod oceny efektywności finansowej projektów 1.Metody statyczne: Okres

Bardziej szczegółowo

Equity free cash flow based approach to valuation of credit default option embedded in project finance

Equity free cash flow based approach to valuation of credit default option embedded in project finance Equity free cash flow based approach to valuation of credit default option embedded in project finance dr Paweł Mielcarz, Akademia Leona Koźmińskiego dr Bolesław Kołodziejczyk Cushman & Wakefield Seminarium

Bardziej szczegółowo

Modyfikacje i ulepszenia standardowego algorytmu genetycznego

Modyfikacje i ulepszenia standardowego algorytmu genetycznego Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Rozkład zgodny

Bardziej szczegółowo

Standardowy algorytm genetyczny

Standardowy algorytm genetyczny Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria

Bardziej szczegółowo

Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Badania Operacyjne w Informatyce Operations Research in Computer Science

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change Raport 4/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych

Bardziej szczegółowo

Algorytmy ewolucyjne

Algorytmy ewolucyjne Algorytmy ewolucyjne Dr inż. Michał Bereta p. 144 / 10, Instytut Modelowania Komputerowego mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Problemy świata rzeczywistego często wymagają

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

Sympozjum Trwałość Budowli

Sympozjum Trwałość Budowli Sympozjum Trwałość Budowli Andrzej ownuk ROJEKTOWANIE UKŁADÓW Z NIEEWNYMI ARAMETRAMI Zakład Mechaniki Teoretycznej olitechnika Śląska pownuk@zeus.polsl.gliwice.pl URL: http://zeus.polsl.gliwice.pl/~pownuk

Bardziej szczegółowo

OCENA EFEKTYWNOŚCI INWESTYCJI. Jerzy T. Skrzypek

OCENA EFEKTYWNOŚCI INWESTYCJI. Jerzy T. Skrzypek OCENA EFEKTYWNOŚCI INWESTYCJI Jerzy T. Skrzypek 1 2 3 4 5 6 7 8 Analiza płynności Analiza rentowności Analiza zadłużenia Analiza sprawności działania Analiza majątku i źródeł finansowania Ocena efektywności

Bardziej szczegółowo

Dynamiczne metody oceny opłacalności inwestycji tonażowych

Dynamiczne metody oceny opłacalności inwestycji tonażowych Dynamiczne metody oceny opłacalności inwestycji tonażowych Dynamiczne formuły oceny opłacalności inwestycji tonażowych są oparte na założeniu zmiennej (malejącej z upływem czasu) wartości pieniądza. Im

Bardziej szczegółowo

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski ANALIZA PROJEKTÓW INWESTYCYJNYCH Wykład 6 Trzy elementy budżetowania kapitałowego Proces analizy decyzji inwestycyjnych nazywamy budżetowaniem kapitałowym.

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Sprawozdanie z Pracowni Naukowej 1 Optymalizacja wielomianowa

Sprawozdanie z Pracowni Naukowej 1 Optymalizacja wielomianowa Sprawozdanie z Pracowni Naukowej 1 Optymalizacja wielomianowa Michał Przyłuski 4380/D 28 stycznia 2011 r. Przypuśćmy, że w każdej chwili t, pewna wielkość x przyjmuje wartość x(t) zgodnie z zależnością

Bardziej szczegółowo

Spis treści 377 379 WSTĘP... 9

Spis treści 377 379 WSTĘP... 9 Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...

Bardziej szczegółowo

Rozdział 7 ZARZĄDZANIE PROJEKTAMI

Rozdział 7 ZARZĄDZANIE PROJEKTAMI Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 7 ZARZĄDZANIE PROJEKTAMI 7.2. Ćwiczenia komputerowe Ćwiczenie 7.1 Wykorzystując

Bardziej szczegółowo

Zasady sporządzania modelu sieciowego (Wykład 1)

Zasady sporządzania modelu sieciowego (Wykład 1) Zasady sporządzania modelu sieciowego (Wykład 1) Metody planowania sieciowego są stosowane w budownictwie do planowania i kontroli dużych przedsięwzięć, w których z powodu wielu zależności istnieje konieczność

Bardziej szczegółowo

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej Efekty na kierunku AiR drugiego stopnia - Wiedza K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 Ma rozszerzoną wiedzę dotyczącą dynamicznych modeli dyskretnych stosowanych

Bardziej szczegółowo

Algorytmy genetyczne w interpolacji wielomianowej

Algorytmy genetyczne w interpolacji wielomianowej Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego

Bardziej szczegółowo

Programowanie genetyczne - gra SNAKE

Programowanie genetyczne - gra SNAKE PRACOWNIA Z ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne - gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

Skrócone opisy pryncypiów architektury korporacyjnej podmiotów publicznych

Skrócone opisy pryncypiów architektury korporacyjnej podmiotów publicznych Skrócone opisy pryncypiów architektury korporacyjnej podmiotów publicznych Wersja: 1.0 17.06.2015 r. Wstęp W dokumencie przedstawiono skróconą wersję pryncypiów architektury korporacyjnej podmiotów publicznych.

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300

Bardziej szczegółowo

Opis modułu kształcenia Programowanie liniowe

Opis modułu kształcenia Programowanie liniowe Opis modułu kształcenia Programowanie liniowe Nazwa podyplomowych Nazwa obszaru kształcenia, w zakresie którego są prowadzone studia podyplomowe Nazwa kierunku, z którym jest związany zakres podyplomowych

Bardziej szczegółowo

Zastosowanie symulacji Monte Carlo do zarządzania ryzykiem przedsięwzięcia z wykorzystaniem metod sieciowych PERT i CPM

Zastosowanie symulacji Monte Carlo do zarządzania ryzykiem przedsięwzięcia z wykorzystaniem metod sieciowych PERT i CPM SZKOŁA GŁÓWNA HANDLOWA w Warszawie STUDIUM MAGISTERSKIE Kierunek: Metody ilościowe w ekonomii i systemy informacyjne Karol Walędzik Nr albumu: 26353 Zastosowanie symulacji Monte Carlo do zarządzania ryzykiem

Bardziej szczegółowo

Logistyka I stopień Ogólnoakademicki. Niestacjonarne. Zarządzanie logistyczne Katedra Inżynierii Produkcji Dr Sławomir Luściński

Logistyka I stopień Ogólnoakademicki. Niestacjonarne. Zarządzanie logistyczne Katedra Inżynierii Produkcji Dr Sławomir Luściński KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOGN1-1071 Techniki komputerowe we wspomaganiu decyzji logistycznych

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz K.Pieńkosz Wprowadzenie 1 dr inż. Krzysztof Pieńkosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej pok. 560 A tel.: 234-78-64 e-mail: K.Pienkosz@ia.pw.edu.pl K.Pieńkosz Wprowadzenie

Bardziej szczegółowo

LABORATORIUM 1: Program Evolutionary Algorithms

LABORATORIUM 1: Program Evolutionary Algorithms Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 1: Program Evolutionary Algorithms opracował:

Bardziej szczegółowo

Algorytmy ewolucyjne (2)

Algorytmy ewolucyjne (2) Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania

Bardziej szczegółowo

Katowice GPW 2013. Zintegrowany system informatyczny do kompleksowego zarządzania siecią wodociągową. Jan Studziński

Katowice GPW 2013. Zintegrowany system informatyczny do kompleksowego zarządzania siecią wodociągową. Jan Studziński Katowice GPW 2013 Zintegrowany system informatyczny do kompleksowego zarządzania siecią wodociągową Jan Studziński 1 1. Wstęp Cel pracy Usprawnienie zarządzania siecią wodociągową za pomocą nowoczesnych

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

PROGRAM SPOTKAŃ AKADEMICKICH INFORMATYKA. umożliwienie uczniowi kontaktu ze środowiskiem pracowników naukowych i infrastruktury wyższej uczelni,

PROGRAM SPOTKAŃ AKADEMICKICH INFORMATYKA. umożliwienie uczniowi kontaktu ze środowiskiem pracowników naukowych i infrastruktury wyższej uczelni, PROGRAM SPOTKAŃ AKADEMICKICH INFORMATYKA 1. Opis celów spotkań akademickich a) Cele ogólne: umożliwienie uczniowi kontaktu ze środowiskiem pracowników naukowych i infrastruktury wyższej uczelni, intensyfikacja

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Temat: Analiza właściwości pilotażowych samolotu Specjalność: Pilotaż lub Awionika 1. Analiza stosowanych kryteriów

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości

Bardziej szczegółowo

Algorytmy ewolucyjne. wprowadzenie

Algorytmy ewolucyjne. wprowadzenie Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

HARMONOGRAMOWANIE ROBÓT BUDOWLANYCH Z MINIMALIZACJĄ ŚREDNIEGO POZIOMU ZATRUDNIENIA

HARMONOGRAMOWANIE ROBÓT BUDOWLANYCH Z MINIMALIZACJĄ ŚREDNIEGO POZIOMU ZATRUDNIENIA HARMONOGRAMOWANIE ROBÓT BUDOWLANYCH Z MINIMALIZACJĄ ŚREDNIEGO POZIOMU ZATRUDNIENIA Wojciech BOśEJKO, Zdzisław HEJDUCKI, Michał PODOLSKI, Mariusz UCHROŃSKI Streszczenie: w pracy proponujemy zastosowanie

Bardziej szczegółowo

PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH

PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH ( Na przykładzie POWERSIM) M. Berndt-Schreiber 1 Plan Zasady modelowania Obiekty symbole graficzne Dyskretyzacja modelowania Predefiniowane

Bardziej szczegółowo

4.3 Grupowanie według podobieństwa

4.3 Grupowanie według podobieństwa 4.3 Grupowanie według podobieństwa Przykłady obiektów to coś więcej niż wektory wartości atrybutów. Reprezentują one poszczególne rasy psów. Ważnym pytaniem, jakie można sobie zadać, jest to jak dobrymi

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

Modyfikacja algorytmów retransmisji protokołu TCP.

Modyfikacja algorytmów retransmisji protokołu TCP. Modyfikacja algorytmów retransmisji protokołu TCP. Student Adam Markowski Promotor dr hab. Michał Grabowski Cel pracy Celem pracy było przetestowanie i sprawdzenie przydatności modyfikacji klasycznego

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

Punkt Informacyjny Funduszy Europejskich, styczeń 2014 r.

Punkt Informacyjny Funduszy Europejskich, styczeń 2014 r. Punkt Informacyjny Funduszy Europejskich, styczeń 2014 r. Definicja PPP: wspólna realizacja przedsięwzięcia oparta na podziale zadań i ryzyk pomiędzy podmiotem publicznym i partnerem prywatnym; przedmiotem

Bardziej szczegółowo

PILNA KOREKTA URZĄDZENIA MEDYCZNEGO PILNE ZAWIADOMIENIE DOTYCZĄCE BEZPIECZEŃSTWA

PILNA KOREKTA URZĄDZENIA MEDYCZNEGO PILNE ZAWIADOMIENIE DOTYCZĄCE BEZPIECZEŃSTWA Temat: Prawdopodobieństwo uzyskania niepoprawnych wyników w przypadku skonfigurowania wiązki emc (electron Monte Carlo) z wykorzystaniem nierównoodległych punktów danych w profilach w systemie Eclipse

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

Algorytmy ewolucyjne w zarządzaniu - stan i perspektywy zastosowania

Algorytmy ewolucyjne w zarządzaniu - stan i perspektywy zastosowania Algorytmy ewolucyjne w zarządzaniu - stan i perspektywy zastosowania Adam Stawowy Wydział Zarządzania Akademia Górniczo-Hutnicza Streszczenie Algorytmy ewolucyjne (ang. Evolutionary Algorithms - EA) są

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja

Bardziej szczegółowo

STOPA PROCENTOWA I STOPA ZWROTU

STOPA PROCENTOWA I STOPA ZWROTU Piotr Cegielski, MAI, MRICS, CCIM STOPA PROCENTOWA I STOPA ZWROTU (Wybrane fragmenty artykułu opublikowanego w C.H. Beck Nieruchomości, numer 9 z 2011 r. Całość dostępna pod adresem internetowym: www.nieruchomosci.beck.pl)

Bardziej szczegółowo

Laboratorium Metod Optymalizacji

Laboratorium Metod Optymalizacji Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Algorytmy i programowanie Algorithms and Programming Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: kierunkowy Poziom studiów: studia I stopnia forma studiów: studia

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Zarządzanie ryzykiem w tworzeniu wartości na przykładzie przedsiębiorstwa z branży upraw rolnych

Zarządzanie ryzykiem w tworzeniu wartości na przykładzie przedsiębiorstwa z branży upraw rolnych N.Niziołek Wroclaw Univeristy of Economics Zarządzanie ryzykiem w tworzeniu wartości na przykładzie przedsiębiorstwa z branży upraw rolnych JEL Classification: A10 Słowa kluczowe: Zarządzanie ryzykiem,

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW /01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Identyfikacja systemów Nazwa w języku angielskim System identification Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

KARTA PRZEDMIOTU. Egzamin / zaliczenie. Egzamin / zaliczenie. ocenę*

KARTA PRZEDMIOTU. Egzamin / zaliczenie. Egzamin / zaliczenie. ocenę* WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim: Programowanie w języku C Nazwa w języku angielskim C language programming Kierunek studiów (jeśli

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

WYKORZYSTANIE WYBRANYCH MODELI ANALIZY FINANSOWEJ DLA OCENY MOŻLIWOŚCI AKTYWIZOWANIA SIĘ ORGANIZACJI POZARZĄDOWYCH W SEKTORZE TRANSPORTU

WYKORZYSTANIE WYBRANYCH MODELI ANALIZY FINANSOWEJ DLA OCENY MOŻLIWOŚCI AKTYWIZOWANIA SIĘ ORGANIZACJI POZARZĄDOWYCH W SEKTORZE TRANSPORTU Mirosław rajewski Uniwersytet Gdański WYORZYSTANIE WYBRANYCH MODELI ANALIZY FINANSOWEJ DLA OCENY MOŻLIWOŚCI ATYWIZOWANIA SIĘ ORGANIZACJI POZARZĄDOWYCH W SETORZE TRANSPORTU Wprowadzenie Problemy związane

Bardziej szczegółowo

EGZAMIN MATURALNY 2011 INFORMATYKA

EGZAMIN MATURALNY 2011 INFORMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 2011 INFORMATYKA POZIOM ROZSZERZONY MAJ 2011 2 Zadanie 1. a) (0 1) Egzamin maturalny z informatyki poziom rozszerzony CZĘŚĆ I Obszar standardów

Bardziej szczegółowo

Automatyczny dobór parametrów algorytmu genetycznego

Automatyczny dobór parametrów algorytmu genetycznego Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja

Bardziej szczegółowo

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Mariusz Próchniak Katedra Ekonomii II, SGH PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Ekonomia menedżerska 1 2 Wartość przyszła (FV future value) r roczna stopa procentowa B kwota pieniędzy, którą

Bardziej szczegółowo

Biznes plan innowacyjnego przedsięwzięcia

Biznes plan innowacyjnego przedsięwzięcia Biznes plan innowacyjnego przedsięwzięcia 1 Co to jest biznesplan? Biznes plan można zdefiniować jako długofalowy i kompleksowy plan działalności organizacji gospodarczej lub realizacji przedsięwzięcia

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: Systemy sterowania Rodzaj zajęć: Projekt I KARTA PRZEDMIOTU CEL PRZEDMIOTU PROJEKT INŻYNIERSKI Engineer s project

Bardziej szczegółowo

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Wykorzystanie nowoczesnych technik prognozowania popytu i zarządzania zapasami do optymalizacji łańcucha dostaw na przykładzie dystrybucji paliw cz.

Wykorzystanie nowoczesnych technik prognozowania popytu i zarządzania zapasami do optymalizacji łańcucha dostaw na przykładzie dystrybucji paliw cz. 14.12.2005 r. Wykorzystanie nowoczesnych technik prognozowania popytu i zarządzania zapasami do optymalizacji łańcucha dostaw na przykładzie dystrybucji paliw cz. 2 3.2. Implementacja w Excelu (VBA for

Bardziej szczegółowo

Poprawa efektywności portfela aktywów z wykorzystaniem optymalizacji hybrydowej

Poprawa efektywności portfela aktywów z wykorzystaniem optymalizacji hybrydowej Rozenberg Leonard 1 Rychcicki Robert 2 Poprawa efektywności portfela aktywów z wykorzystaniem optymalizacji hybrydowej Streszczenie: W artykule omówiono przykład zastosowania hybrydowej procedury optymalizacji

Bardziej szczegółowo

Obliczenia Naturalne - Algorytmy genetyczne

Obliczenia Naturalne - Algorytmy genetyczne Literatura Kodowanie Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 27 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura

Bardziej szczegółowo