Układ równań liniowych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Układ równań liniowych"

Transkrypt

1 Układ równań liniowych 1 Cel zadania Wykształcenie umiejętności projektowania własnych klas modelujących pojęcia niezbędne do rozwiązania postawionego problemu. Rozwinięcie umiejętności przeciążania operatorów arytmetycznych oraz dostosowywania sposobu formatowania strumienia wejściowego i wyjściowego do potrzeb własnych struktur danych. 2 Opis zadania Należy napisać program, który umożliwia rozwiązanie układu równań liniowych z trzema niewiadomymi postaci: a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 Układ taki wygodnie jest reprezentować w postaci macierzowej jako a 11 a 12 a 13 x 1 b 1 a 21 a 22 a 23 x 2 = b 2 a 31 a 32 a 33 x 3 b 3 Tak więc można zapisać sformułowany problem w bardziej zwartej i ogólnej postaci: Ax=b gdzie A to macierz współczynników równania, x wektor nieznanych wartości, które należy wyliczyć, b wektor wyrazów wolnych. Ponadto program dla znalezionego rozwiązania powinien wyliczyć błąd wynikający z niedokładności obliczeń liczony jako norma wektora: ε= Ax b. Należy zbadać, kiedy wspomniany błąd staje się znaczący. Aby móc to określić należy odwołać się do interpretacji geometrycznej wspomnianego układu równań. Nie przypadkiem został wybrany układ z trzema niewiadomymi. Dla układu z czterema (i więcej) niewiadomymi byłoby to już niemożliwe (dlaczego?). UWAGA: Definiowane w programie klasy muszą odzwierciedlać kluczowe pojęcia znajdujące się w opisie problemu. Do pojęć takich należy między innymi układ równań liniowych. 3 Przykład działania programu W niniejszym rozdziale podany jest przykład działania programu. Przedstawioną formę interakcji z użytkownikiem należy traktować jako obowiązującą. 1

2 rozwiazanie>./rownanie3 Rozwiazywane rownanie: Ax = b a - Wczytaj macierz wspolczynnikow A b - Wczytaj wektor wyrazow wolnych b w - Wczytaj wszystkie wspolczynniki (A i b) p - Pokaz rownanie r - Rozwiaz, pokaz wynik i blad? - Wyswietl menu k - Koniec dzialania programu a Wprowadz wspolczynniki macierzy A. Nalezy je podac w kolejnosci: A_11 A_12 A_13 A_21 A_22 A_23 A_31 A_32 A_33 > w Wprowadz wspolczynniki dla calego ukladu rownan. Nalezy je podac w kolejnosci: A_11 A_12 A_13 b_1 A_21 A_22 A_23 b_2 A_31 A_32 A_33 b_3 > r Rozwiazanie (x1,x2,x3): (2, 3, -6) Blad: 0 b Wprowadz wspołczynniki wektora wyrazow wolnych. Nalezy je podac w kolejnosci: b[0] b[1] b[2] itd. > p 2*x1+1*x2+1*x3 = 1 1*x1+2*x2+1*x3 = 2 1*x1+1*x2+1*x3 = -1.1 r 2

3 Rozwiazanie (x1,x2,x3): (2.1, 3.1, -6.3) Blad: e-07 k Koniec dzialania programu. rozwiazanie> 4 Zalecenie W programie powinny znaleźć się przeciążenia pozwalające wczytywać macierz A oraz wektor wyrazów wolnych b. Osobne przeciążenia powinny zostać zdefiniowane dla układu równiań liniowych. 5 Testowanie programu Pomimo tego, że program dostarcza interfejs użytkownika przy jego uruchamianiu dobrze jest skorzystać z technik polegających na odpowiednim przekierowaniu strumienia wejściowego. Jest to przypadatne w momencie gdy testowana jest poprawność prowadzonych obliczeń (wyznaczanie rozwiązania równania oraz błędu). Zamiast wprowadzać za każdym razem odpowiednie sekwencje z klawiatury, należy zapisać je do pliku i zawartość pliku przekierować na wejście programu. Poniżej przedstawiony został przykład dla takiej właśnie sytuacji. Wywołanie programu: Zawartość pliku test_programu.txt: a b r k rowanie3 < test_programu.txt Działanie programu powinno sprowadzić się do wyświetlenia następującego tekstu: rozwiazanie> rowanie3 < test_programu.txt Rozwiazywane rownanie: Ax = b a - Wczytaj macierz wspolczynnikow A b - Wczytaj wektor wyrazow wolnych b w - Wczytaj wszystkie wspolczynniki (A i b) p - Pokaz rownanie r - Rozwiaz, pokaz wynik i blad 3

4 ? - Wyswietl menu k - Koniec dzialania programu Wprowadz wspolczynniki macierzy ukladu rownan. Nalezy je podac w kolejnosci: A[0,0] A[0,1] A[0,2] A[1,0] itd. A_11 A_12 A_13 A_21 A_22 A_23 A_31 A_32 A_33 > Twoj wybor?> Wprowadz wspolczynniki wektora wyrazow wolnych. Nalezy je podac w kolejnosci: b[0] b[1] b[2] itd. > Rozwiazanie (x1,x2,x3): (5.16, 6.14, ) Blad: e-07 Koniec dzialania programu. rozwiazanie> Odpowiedzi użytkownika nie są widoczne, gdyż będą one brane z pliku. UWAGA: Wewnątrz w programie, niezależnie do tego czy treść wcześniej przedstawionych odpowiedzi będzie brana z klawiatury, czy też z pliku, czytanie będzie odbywało się zawsze z wejścia standardowego (na tym polega idea przekierowania wejścia standardowego). 6 Rozszerzenie zadania (nieobowiazkowe) Program w wersji rozszerzonej powinien umożliwiać rozwiązanie układu równań o dowolnej liczbie (ograniczonej jedynie przez zakres zmiennych i dostępne zasoby) zmiennych przy założeniu, że jest ona większa od 1. Należy przewidzieć również możliwość wczytania współczynników rówania i wyrazów wolnych z pliku i zmiany pojedynczego współczynnika lub wyrazu wolnego. Na obecnym etapie kursu nie jest zalecane tworzenie tablic dynamicznych. Właściwe ich użycie jako elementów obiektu wymaga znajomości konstruktorów kopiujących i umiejętności ich definiowania. 7 Materiały pomocnicze Przykładową realizację zadania znaleźć można na serwerze diablo lub panamint w katalogu bk/edu/po/zad/z4. W katalogu tym znajdują się następujące podkatalogi i pliki: bk/edu/po/zad/z4/. 4

5 bin.diablo/ukladrownan3 bin.panamint/ukladrownan3 bin.diablo/ukladrownan3, bin.panamint/ukladrownan3 Są to programy binarne. Stanowią one przykład realizacji programu, w wersji podstawowej, który został skompilowany odpowiednio na serwerze diablo i na serwerze panamint. 5

Zad. 5: Układ równań liniowych liczb zespolonych

Zad. 5: Układ równań liniowych liczb zespolonych Zad. 5: Układ równań liniowych liczb zespolonych 1 Cel ćwiczenia Wykształcenie zdolności abstrahowania operacji arytmetycznych od konkretnych typów. Unaocznienie problemów związanych z programowaniem uogólnionym

Bardziej szczegółowo

Laboratorium nr 5: Mnożenie wektorów i macierzy

Laboratorium nr 5: Mnożenie wektorów i macierzy Laboratorium nr 5: Mnożenie wektorów i macierzy 1 Cel ćwiczenia Wykształcenie umiejętności definiowania przeciążeń operatorów indeksujących i funkcyjnych. Utrwalenie umiejętności definiowania przeciążeń

Bardziej szczegółowo

Zad. 6: Sterowanie robotem mobilnym

Zad. 6: Sterowanie robotem mobilnym Zad. 6: Sterowanie robotem mobilnym 1 Cel ćwiczenia Utrwalenie umiejętności modelowania kluczowych dla danego problemu pojęć. Tworzenie diagramu klas, czynności oraz przypadków użycia. Wykorzystanie dziedziczenia

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Dodatkowo klasa powinna mieć destruktor zwalniający pamięć.

Dodatkowo klasa powinna mieć destruktor zwalniający pamięć. Zadanie 1. Utworzyć klasę reprezentującą liczby wymierne. Obiekty klasy powinny przechowywać licznik i mianownik rozłożone na czynniki pierwsze. Klasa powinna mieć zdefiniowane operatory czterech podstawowych

Bardziej szczegółowo

1 Powtórzenie wiadomości

1 Powtórzenie wiadomości 1 Powtórzenie wiadomości Zadanie 1 Napisać program, który w trybie dialogu z użytkownikiem przyjmie liczbę całkowitą, a następnie wyświetli informację czy jest to liczba parzysta czy nieparzysta oraz czy

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F

Bardziej szczegółowo

Języki i techniki programowania Ćwiczenia 2

Języki i techniki programowania Ćwiczenia 2 Języki i techniki programowania Ćwiczenia 2 Autor: Marcin Orchel Spis treści: Język C++... 5 Przekazywanie parametrów do funkcji... 5 Przekazywanie parametrów w Javie.... 5 Przekazywanie parametrów w c++...

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

Zad. 7: Sterowanie manipulatorem przypadek 3D

Zad. 7: Sterowanie manipulatorem przypadek 3D Zad. 7: Sterowanie manipulatorem przypadek 3D 1 Cel ćwiczenia Wykorzystanie w praktyce mechanizmu dziedziczenia. Wykształcenie umiejętności korzystania z szablonu list oraz dalsze rozwijanie umiejętności

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Zad. 1: Sterowanie mimika

Zad. 1: Sterowanie mimika 1 Cel ćwiczenia Zad. 1: Sterowanie mimika twarzy Wykształcenie umiejętności posługiwania się złożonymi makrami preprocesora języka C. Stworzenie podstawowej struktury wizualizacji twarzy robota, która

Bardziej szczegółowo

Klasy abstrakcyjne i interfejsy

Klasy abstrakcyjne i interfejsy Klasy abstrakcyjne i interfejsy Streszczenie Celem wykładu jest omówienie klas abstrakcyjnych i interfejsów w Javie. Czas wykładu 45 minut. Rozwiązanie w miarę standardowego zadania matematycznego (i nie

Bardziej szczegółowo

Część XVII C++ Funkcje. Funkcja bezargumentowa Najprostszym przypadkiem funkcji jest jej wersja bezargumentowa. Spójrzmy na przykład.

Część XVII C++ Funkcje. Funkcja bezargumentowa Najprostszym przypadkiem funkcji jest jej wersja bezargumentowa. Spójrzmy na przykład. Część XVII C++ Funkcje Funkcja bezargumentowa Najprostszym przypadkiem funkcji jest jej wersja bezargumentowa. Spójrzmy na przykład. 2 3 Tworzymy deklarację i definicję funkcji o nazwie pobierzln() Funkcja

Bardziej szczegółowo

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7. Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego

Bardziej szczegółowo

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1

Bardziej szczegółowo

III TUTORIAL Z METOD OBLICZENIOWYCH

III TUTORIAL Z METOD OBLICZENIOWYCH III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Laboratorium z Podstaw Programowania Zajęcia 1

Laboratorium z Podstaw Programowania Zajęcia 1 Laboratorium z Podstaw Programowania Zajęcia 1 ZADANIE 1 Program obliczający pole odcinka kołowego o zadanym promieniu R oraz kącie rozwarcia. Promieo R oraz kąt (w stopniach) należy wczytad z klawiatury.

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Laboratorium nr 1. i 2.

Laboratorium nr 1. i 2. Laboratorium nr 1. i 2. Celem laboratorium jest zapoznanie się ze zintegrowanym środowiskiem programistycznym, na przykładzie podstawowych aplikacji z obsługą standardowego wejścia wyjścia, podstawowych

Bardziej szczegółowo

Język JAVA podstawy. wykład 2, część 1. Jacek Rumiński. Politechnika Gdańska, Inżynieria Biomedyczna

Język JAVA podstawy. wykład 2, część 1. Jacek Rumiński. Politechnika Gdańska, Inżynieria Biomedyczna Język JAVA podstawy wykład 2, część 1 1 Język JAVA podstawy Plan wykładu: 1. Rodzaje programów w Javie 2. Tworzenie aplikacji 3. Tworzenie apletów 4. Obsługa archiwów 5. Wyjątki 6. Klasa w klasie! 2 Język

Bardziej szczegółowo

Układy równań liniowych. Ax = b (1)

Układy równań liniowych. Ax = b (1) Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m

Bardziej szczegółowo

Kilka prostych programów

Kilka prostych programów Ćwiczenie 1 Kilka prostych programów Ćwiczenie to poświęcone jest tworzeniu krótkich programów, pozwalających na zapoznanie się z takimi elementami programowania jak: definiowanie stałych, deklarowanie

Bardziej szczegółowo

znajdowały się różne instrukcje) to tak naprawdę definicja funkcji main.

znajdowały się różne instrukcje) to tak naprawdę definicja funkcji main. Część XVI C++ Funkcje Jeśli nasz program rozrósł się już do kilkudziesięciu linijek, warto pomyśleć o jego podziale na mniejsze części. Poznajmy więc funkcje. Szybko się przekonamy, że funkcja to bardzo

Bardziej szczegółowo

PROE wykład 3 klasa string, przeciążanie funkcji, operatory. dr inż. Jacek Naruniec

PROE wykład 3 klasa string, przeciążanie funkcji, operatory. dr inż. Jacek Naruniec PROE wykład 3 klasa string, przeciążanie funkcji, operatory dr inż. Jacek Naruniec Przypomnienie z ostatnich wykładów Konstruktory/destruktory i kolejność ich wywołania w złożonej klasie. Referencja Obiekty

Bardziej szczegółowo

- wszystkie elementy - wszystkie elementy

- wszystkie elementy - wszystkie elementy Tablice: indeksy całkowite >=0 tworzenie: TABLICA[0]=45 TABLICA[1]=23 TABLICA[2]=78 lub TABLICA=(45 23 78) lub TABLICA=($@) odwołanie echo ${TABLICA[3] echo ${TABLICA[*] echo ${TABLICA[@] Długość zmiennej:

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania binarnego.

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Laboratorium Metod Optymalizacji

Laboratorium Metod Optymalizacji Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena

Bardziej szczegółowo

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach

Bardziej szczegółowo

Schematy blokowe I. 1. Dostępne bloki: 2. Prosty program drukujący tekst.

Schematy blokowe I. 1. Dostępne bloki: 2. Prosty program drukujący tekst. Schematy blokowe I Jeżeli po schematach blokowych będzie używany język C, to należy używać operatorów: '&&', ' ', '!=', '%' natomiast jeśli Ruby to 'and', 'or', '%', '!='. 1. Dostępne bloki: a) początek:

Bardziej szczegółowo

1 Przygotował: mgr inż. Maciej Lasota

1 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 1 1/7 Język C Instrukcja laboratoryjna Temat: Programowanie w powłoce bash (shell scripting) 1 Przygotował: mgr inż. Maciej Lasota 1) Wprowadzenie do programowania w powłoce Skrypt powłoki

Bardziej szczegółowo

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika)

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) 1 1 Cel ćwiczenia Celem ćwiczenia jest rozwiązanie równań ruchu ciała (kuli) w ośrodku

Bardziej szczegółowo

Zad. 7: Sterowanie robotami mobilnymi w obecności przeszkód

Zad. 7: Sterowanie robotami mobilnymi w obecności przeszkód Zad. 7: Sterowanie robotami mobilnymi w obecności przeszkód 1 Cel ćwiczenia Utrwalenie umiejętności modelowania kluczowych dla danego problemu pojęć. Tworzenie diagramu klas oraz czynności. Wykorzystanie

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Dariusz Brzeziński. Politechnika Poznańska, Instytut Informatyki

Dariusz Brzeziński. Politechnika Poznańska, Instytut Informatyki Dariusz Brzeziński Politechnika Poznańska, Instytut Informatyki zaprojektowany jako rozszerzenie języka C o obiektowe mechanizmy abstrakcji danych jest to język pozwalający na programowanie zarówno proceduralne

Bardziej szczegółowo

Pliki. Informacje ogólne. Obsługa plików w języku C

Pliki. Informacje ogólne. Obsługa plików w języku C Pliki Informacje ogólne Plik jest pewnym zbiorem danych, zapisanym w systemie plików na nośniku danych (np. dysku twardym, pendrive, płycie DVD itp.). Może posiadać określone atrybuty, a odwołanie do niego

Bardziej szczegółowo

DOKUMENTACJA CMS/Framework BF5.0

DOKUMENTACJA CMS/Framework BF5.0 Wstęp DOKUMENTACJA CMS/Framework BF5.0 Niniejsza dokumentacja poświęcona jest obsłudze Systemu Zarządzania Treścią, który uruchomiony został przy serwisie internetowym: [nazwa]. Logowanie do systemu odbywa

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Ogólne zasady projektowania algorytmów i programowania

Ogólne zasady projektowania algorytmów i programowania Ogólne zasady projektowania algorytmów i programowania Pracuj nad właściwie sformułowanym problemem dokładna analiza nawet małego zadania może prowadzić do ogromnych korzyści praktycznych: skrócenia długości

Bardziej szczegółowo

Jeśli chcesz łatwo i szybko opanować podstawy C++, sięgnij po tę książkę.

Jeśli chcesz łatwo i szybko opanować podstawy C++, sięgnij po tę książkę. Języki C i C++ to bardzo uniwersalne platformy programistyczne o ogromnych możliwościach. Wykorzystywane są do tworzenia systemów operacyjnych i oprogramowania użytkowego. Dzięki niskiemu poziomowi abstrakcji

Bardziej szczegółowo

5. Mechanizm szablonów.

5. Mechanizm szablonów. 5. Mechanizm szablonów. Moduł szablonów daje możliwość definicji dowolnej ilości szablonów strony publicznej serwisu. W połączeniu z modułami Marketing MIX oraz Wzorców Elementów został opracowany tak

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium Zadanie nr 3 Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania

Bardziej szczegółowo

Utworzenie funkcji użytkownika w Visual Basic

Utworzenie funkcji użytkownika w Visual Basic Utworzenie funkcji użytkownika w Visual Basic Po co? Potrzebna jest nam funkcja, która nie występuje w Excelu. Zadanie 1. Utwórz funkcję użytkownika kotek, która będzie funkcją dwóch zmiennych b i h i

Bardziej szczegółowo

Informacja o języku. Osadzanie skryptów. Instrukcje, komentarze, zmienne, typy, stałe. Operatory. Struktury kontrolne. Tablice.

Informacja o języku. Osadzanie skryptów. Instrukcje, komentarze, zmienne, typy, stałe. Operatory. Struktury kontrolne. Tablice. Informacja o języku. Osadzanie skryptów. Instrukcje, komentarze, zmienne, typy, stałe. Operatory. Struktury kontrolne. Tablice. Język PHP Język interpretowalny, a nie kompilowany Powstał w celu programowania

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

Elementy animacji sterowanie manipulatorem

Elementy animacji sterowanie manipulatorem Elementy animacji sterowanie manipulatorem 1 Cel zadania Wykształcenie umiejętności korzystania z zapisu modelu aplikacji w UML oraz definiowania właściwego interfejsu klasy. 2 Opis zadania Należy napisać

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Laboratorium 1. Wstęp do programowania w języku Java. Narzędzia 1. Aby móc tworzyć programy w języku Java, potrzebny jest zestaw narzędzi Java Development Kit, który można ściągnąć

Bardziej szczegółowo

PROE wykład 2 operacje na wskaźnikach. dr inż. Jacek Naruniec

PROE wykład 2 operacje na wskaźnikach. dr inż. Jacek Naruniec PROE wykład 2 operacje na wskaźnikach dr inż. Jacek Naruniec Zmienne automatyczne i dynamiczne Zmienne automatyczne: dotyczą kontekstu, po jego opuszczeniu są usuwane, łatwiejsze w zarządzaniu od zmiennych

Bardziej szczegółowo

Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2

Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2 Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2 1 program Kontynuujemy program który wczytuje dystans i ilości paliwa zużytego na trasie, ale z kontrolą danych. A więc jeśli coś

Bardziej szczegółowo

Definiowanie drukarek w programie ZAFIR

Definiowanie drukarek w programie ZAFIR Definiowanie drukarek w programie ZAFIR Zbiór drukarek jest widoczny w przeglądarce, która jest dostępna z pierwszego menu programu w zakładce 1D-Drukarki 1D-Drukarki w systemie. Najczęściej baza

Bardziej szczegółowo

Wstęp do programowania. Wykład 1

Wstęp do programowania. Wykład 1 Wstęp do programowania Wykład 1 1 / 49 Literatura Larry Ullman, Andreas Signer. Programowanie w języku C++. Walter Savitch, Kenrick Mock. Absolute C++. Jerzy Grębosz. Symfonia C++. Standard. Stephen Prata.

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych - wykład 2 i 3

Wprowadzenie do badań operacyjnych - wykład 2 i 3 Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j

Bardziej szczegółowo

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76 . p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Wprowadzenie do programu Mathcad 15 cz. 1

Wprowadzenie do programu Mathcad 15 cz. 1 Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania

Bardziej szczegółowo

Rekurencja (rekursja)

Rekurencja (rekursja) Rekurencja (rekursja) Rekurencja wywołanie funkcji przez nią samą wewnątrz ciała funkcji. Rekurencja może być pośrednia funkcja jest wywoływana przez inną funkcję, wywołaną (pośrednio lub bezpośrednio)

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika

Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Napisanie programu komputerowego: Zasada rozwiązania zadania Stworzenie sekwencji kroków algorytmu Przykłady algorytmów z życia codziennego (2/1 6)

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH

UKŁADY RÓWNAŃ LINIOWYCH Projekt dofinansowała Fundacja mbanku UKŁADY RÓWNAŃ LINIOWYCH CZĘŚĆ I Układ równań to przynajmniej dwa równania spięte z lewej strony klamrą, np.: x + 0 Każde z równań musi zawierać przynajmniej jedną

Bardziej szczegółowo

MATLAB tworzenie własnych funkcji

MATLAB tworzenie własnych funkcji MATLAB tworzenie własnych funkcji Definiowanie funkcji anonimowych Własne definicje funkcji możemy tworzyć bezpośrednio w Command Window, są to tzw. funkcje anonimowe; dla funkcji jednej zmiennej składnia

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych

Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych dr inż. Ryszard Rębowski 1 OPIS ZJAWISKA Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych 8 listopada 2015 1 Opis zjawiska Będziemy obserwowali proces tworzenia

Bardziej szczegółowo

Programowanie strukturalne i obiektowe. Funkcje

Programowanie strukturalne i obiektowe. Funkcje Funkcje Często w programach spotykamy się z sytuacją, kiedy chcemy wykonać określoną czynność kilka razy np. dodać dwie liczby w trzech miejscach w programie. Oczywiście moglibyśmy to zrobić pisząc trzy

Bardziej szczegółowo

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci:

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: 1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: * Jan Kowalski * * ul. Zana 31 * 3. Zadeklaruj zmienne przechowujące

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

Systemy operacyjne. System operacyjny Linux - wstęp. Anna Wojak

Systemy operacyjne. System operacyjny Linux - wstęp. Anna Wojak Systemy operacyjne System operacyjny Linux - wstęp Anna Wojak 1 1 Wstęp Linux jest systemem z rodziny Unix. Pierwsza wersja systemu została opracowana w 1969 roku przez K.Thompsona i D.Ritchie Jest to

Bardziej szczegółowo

2. Klasy cz. 2 - Konstruktor kopiujący. Pola tworzone statycznie i dynamicznie - Funkcje zaprzyjaźnione - Składowe statyczne

2. Klasy cz. 2 - Konstruktor kopiujący. Pola tworzone statycznie i dynamicznie - Funkcje zaprzyjaźnione - Składowe statyczne Tematyka wykładów 1. Wprowadzenie. Klasy cz. 1 - Język C++. Programowanie obiektowe - Klasy i obiekty - Budowa i deklaracja klasy. Prawa dostępu - Pola i funkcje składowe - Konstruktor i destruktor - Tworzenie

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

PIA PANEL INŻYNIERA AUTOMATYKA

PIA PANEL INŻYNIERA AUTOMATYKA ul. Bajana Jerzego 31d tel. + 48 399 50 42 45 01-904 Warszawa PANEL INŻYNIERA AUTOMATYKA Wszystkie nazwy handlowe i towarów występujące w niniejszej publikacji są znakami towarowymi zastrzeżonymi odpowiednich

Bardziej szczegółowo

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4  5 3$ 7&=0 5$+7&=4 17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,

Bardziej szczegółowo

MentorGraphics ModelSim

MentorGraphics ModelSim MentorGraphics ModelSim 1. Konfiguracja programu Wszelkie zmiany parametrów systemu symulacji dokonywane są w menu Tools -> Edit Preferences... Wyniki ustawień należy zapisać w skrypcie startowym systemu

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa II technikum

Wymagania edukacyjne z matematyki klasa II technikum Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą

Bardziej szczegółowo

Wprowadzenie do algorytmiki

Wprowadzenie do algorytmiki Wprowadzenie do algorytmiki Pojecie algorytmu Powszechnie przyjmuje się, że algorytm jest opisem krok po kroku rozwiązania postawionego problemu lub sposób osiągnięcia jakiegoś celu. Wywodzi się z matematyki

Bardziej szczegółowo

Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka

Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka 1. Kompilacja aplikacji konsolowych w środowisku programistycznym Microsoft Visual Basic. Odszukaj w menu startowym systemu

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Zadania rachunkowe z termokinetyki w programie Maxima

Zadania rachunkowe z termokinetyki w programie Maxima Zadania rachunkowe z termokinetyki w programie Maxima pliku, polecenia do wpisywania w programie Maxima zapisane są czcionką typu: zmienna_w_maximie: 10; inny przykład f(x):=x+2*x+5; Problem 1 komorze

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

TOZ -Techniki optymalizacji w zarządzaniu

TOZ -Techniki optymalizacji w zarządzaniu TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Wskaźniki a tablice Wskaźniki i tablice są ze sobą w języku C++ ściśle związane. Aby się o tym przekonać wykonajmy cwiczenie.

Wskaźniki a tablice Wskaźniki i tablice są ze sobą w języku C++ ściśle związane. Aby się o tym przekonać wykonajmy cwiczenie. Część XXII C++ w Wskaźniki a tablice Wskaźniki i tablice są ze sobą w języku C++ ściśle związane. Aby się o tym przekonać wykonajmy cwiczenie. Ćwiczenie 1 1. Utwórz nowy projekt w Dev C++ i zapisz go na

Bardziej szczegółowo

1 Moduł Modbus ASCII/RTU 3

1 Moduł Modbus ASCII/RTU 3 Spis treści 1 Moduł Modbus ASCII/RTU 3 1.1 Konfigurowanie Modułu Modbus ASCII/RTU............. 3 1.1.1 Lista elementów Modułu Modbus ASCII/RTU......... 3 1.1.2 Konfiguracja Modułu Modbus ASCII/RTU...........

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Programowanie dla początkujących w 24 godziny / Greg Perry, Dean Miller. Gliwice, cop Spis treści

Programowanie dla początkujących w 24 godziny / Greg Perry, Dean Miller. Gliwice, cop Spis treści Programowanie dla początkujących w 24 godziny / Greg Perry, Dean Miller. Gliwice, cop. 2017 Spis treści O autorach 11 Podziękowania 12 Wprowadzenie 13 CZĘŚĆ I ZACZNIJ PROGRAMOWAĆ JUŻ DZIŚ Godzina 1. Praktyczne

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania

Bardziej szczegółowo

finiownia loginów. W zależności od ustawionej opcji użytkownik login:

finiownia loginów. W zależności od ustawionej opcji użytkownik login: SYSTEM INFORMATYCZNY KS-ASW 2016 z dnia 2016-01-19 Raport Nr 1/2016 MODUŁ ksasw.exe OPIS ZMIAN, MODYFIKACJI i AKTUALIZACJI 1. Wersja 2016 modułu aswplan.exe 1. Wersja 2016 programu aswzsby.dll 1. Wersja

Bardziej szczegółowo

Nazwa wariantu modułu (opcjonalnie): Laboratorium programowania w języku C++

Nazwa wariantu modułu (opcjonalnie): Laboratorium programowania w języku C++ Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, poziom pierwszy Sylabus modułu: Laboratorium programowania (0310-CH-S1-019) Nazwa wariantu modułu (opcjonalnie): Laboratorium programowania

Bardziej szczegółowo

Numeryczne rozwiązywanie równań i układów równań

Numeryczne rozwiązywanie równań i układów równań Lekcja Strona z 2 Numeryczne rozwiązywanie równań i układów równań Rozwiązywanie pojedynczego równania - funkcja root Do rozwiązywania jednego równania z jedną niewiadomą służy funkcja root(f(z), z), gdzie:

Bardziej szczegółowo