1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe"

Transkrypt

1 Zjazd 7. SGGW, dn r. Matematyka i statystyka matematyczna Tematy 1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe nna Rajfura 1

2 Zagadnienia Przykład porównania wielu obiektów w doświadczeniu Idea analizy porównania wielu obiektów Terminologia doświadczenia jednoczynnikowego Metoda analizy statystycznej analiza wariancji Procedury porównań szczegółowych 2

3 Przykład Porównywano pięć odmian pszenicy ozimej O1, O2, O3, O4, O5 pod względem plonowania. Uzyskano wyniki o wysokości plonu w kg z poletka. Komentarz o powtórzeniach 3

4 Wyniki wysokości plonowania W tabeli zestawiono uzyskane wysokości plonowania (w kg z poletka): Plony Odmiana poletko 1 poletko 2 poletko 3 poletko 4 O1 1,47 1,41 1,40 1,43 O2 1,10 1,15 1,30 1,17 O3 1,41 1,32 1,28 1,33 O4 1,19 1,25 1,26 1,21 O5 1,20 1,35 1,25 1,28 4

5 Idea porównania pięciu obiektów Cecha X plonowanie pszenicy cecha X 1 plonowanie pszenicy odmiany O1, cecha X 2 plonowanie pszenicy odmiany O2, itd. 5

6 Idea porównania pięciu obiektów cd. Cecha X i plonowanie pszenicy odmiany Oi, i = 1, 2,..., 5 Modelem dla kaŝdej cechy jest zmienna losowa o rozkładzie normalnym. ZałoŜenia: X i ~ N (µ i, σ 2 ), i = 1, 2,..., 5 X 1, X 2,..., X 5 niezaleŝne zmienne losowe 6

7 Idea porównania pięciu obiektów cd. Jak zinterpretować wysokość plonowania odmian przy połoŝeniu krzywych Gaussa w tym przypadku? X 1 X 2 X 3 X 5 X 4 µ 1 µ 2 µ 3 µ 5 µ 4 wartości cechy 7

8 Idea porównania pięciu obiektów cd. Jak zinterpretować wysokość plonowania odmian przy połoŝeniu krzywych Gaussa w tym przypadku? X 1 =X 2 X 3 =X 4 =X 5 µ 1 = µ 2 µ 3 = µ 4 = µ 5 wartości cechy 8

9 Zapis hipotezy zerowej Pytanie Czy badane odmiany plonują na podobnym poziomie? µ 1 = µ 2 = µ 3 = µ 4 = µ 5? Hipoteza zerowa H 0 : µ 1 = µ 2 = µ 3 = µ 4 = µ 5 9

10 Interpretacja hipotezy zerowej Hipoteza zerowa H 0 : µ 1 = µ 2 = µ 3 = µ 4 = µ 5 Hipoteza o braku zróŝnicowania między pięcioma badanymi odmianami pod względem plonowania. Dygresja 10

11 Terminologia i oznaczenia W doświadczeniach czynnikowych: Problem badany w doświadczeniu porównanie plonowania odmian pszenicy ozimej O1, O2,..., O5 badanie wpływu odmiany na wysokość plonu 11

12 Terminologia i oznaczenia cd. Cecha mierzona w doświadczeniu X wielkość plonu z poletka Badany czynnik A odmiana Problem badany w doświadczeniu wpływ czynnika A na wartość cechy X. 12

13 Uwagi 1. Czy na wysokość plonowania wpływa odmiana? czynnik A 2. Czy na wysokość plonowania wpływa odmiana oraz nawoŝenie? czynnik A czynnik B 3. Czy na wysokość plonowania wpływa odmiana, nawoŝenie oraz termin siewu? czynnik A czynnik B czynnik C 13

14 Uwagi cd. Ogólniej MoŜna badać wpływ jednego czynnika (A), dwóch (A, B), trzech (A, B, C) lub większej liczby czynników na wartość mierzonej cechy. 14

15 Terminologia cd. Czynnik odmiana Obiekty (poziomy czynnika A) poszczególne odmiany O1, O2,... ; w tym doświadczeniu porównujemy 5 odmian, czyli 5 obiektów (5 poziomów czynnika A); a liczba poziomów czynnika A, a = 5. 15

16 Terminologia cd. Powtórzenia kaŝda z odmian występuje na czterech poletkach, czyli w czterech powtórzeniach; liczba powtórzeń n = 4. 16

17 Terminologia cd. Jednostki doświadczalne poletka; liczba jednostek doświadczalnych N = 20; N = a n, gdy liczba powtórzeń jest jednakowa dla kaŝdego poziomu czynnika A; N = n 1 + n n a, gdy liczby powtórzeń nie są jednakowe dla poziomów czynnika A). 17

18 Terminologia cd. Układ doświadczalny (plan doświadczenia) opisuje sposób rozmieszczenia jednostek doświadczalnych na powierzchni doświadczalnej. Układ całkowicie losowy - losowe przyporządkowanie obiektów do jednostek doświadczalnych. 18

19 Przykład cd. W celu porównania średnich wartości cechy X dla pięciu obiektów, załoŝono doświadczenie w układzie całkowicie losowym w czterech powtórzeniach. Obiekty (poziomy czynnika A) Wartości cechy X powt 1 powt 2 powt 3 powt4 O1 1,47 1,41 1,40 1,43 O2 1,10 1,15 1,30 1,17 O3 1,41 1,32 1,28 1,33 O4 1,19 1,25 1,26 1,21 O5 1,20 1,35 1,25 1,28 19

20 Terminologia cd. Jednokierunkowa klasyfikacja danych wyniki pomiaru cechy uzyskane w doświadczeniu przedstawione w tabeli. Jednokierunkowa bo doświadczenie jest jednoczynnikowe. 20

21 Jednokierunkowa klasyfikacja danych Poziomy Nr powtórzenia czynnika A n A 1 x 11 x x 1n 1 A 2 x 21 x x 2 n 2 M... A a x a1 a2 x... x a na x wartość cechy X dla i tego obiektu ij w j-tym powtórzeniu (plon dla i tej odmiany na j-tym poletku); i=1, 2,..., a; j=1, 2,..., n. 21

22 Przykład cd. Pytania 1. Czy wszystkie badane odmiany plonują na podobnym poziomie? 2. Jeśli nie wszystkie, to które odmiany plonują podobnie? 22

23 Sformułowanie problemu i analiza Cecha X badana w a populacjach: X 1, X 2,..., X a a > 2 ZałoŜenia X i ~ N (µ i, σ 2 ), i = 1, 2,..., a X 1, X 2,..., X a cechy (zmienne losowe) niezaleŝne 23

24 Sformułowanie problemu i analiza cd. Hipoteza H 0 : µ 1 = µ 2 =... = µ a poziom istotności α (w przykładzie α = 0,05); metoda weryfikacji analiza wariancji (jednoczynnikowa analizy wariancji); test statystyczny F 24

25 Tabela analizy wariancji (ANOVA TABLE) Źródła zmienności cechy X Source Sumy kwadratów Sum of Squares SS Stopnie swobody Df (degrees of freedom) Średni kwadrat Mean Square MS F emp F-Ratio wartość p p-value Czynnik A (odmiana) Between groups Błąd losowy Within groups SS A Df A = a - 1 SS E Df E = N - a MS = A MS = E SS Df SS Df A E A E MS MS A E Całkowita Total SS T N - 1 F kryt = F α, a - 1, N - a Wzory na sumy kwadratów 25

26 Zestawienia obliczeń Poziomy czynnika A Nr powtórzenia (nr poletka) (odmiany) n średnie obiektowe A 1 x 11 x x x1 = n1 1n 1 n j = 1 x 1 j A 2 x 21 x x x 2 = n 2 2 n 2 n j = 1 x 2 j M... A a x a1 x a2... a 1 x = n a a n a n x a x j = 1 a j i-ta średnia obiektowa SS A =..., SS T =..., SS E =..., 1 x i = x n i n i j= 1 ij 1, średnia ogólna x = N a n i i= 1 j= 1 x ij 26

27 Tabela ANOVA dla przykładu Źródła zmienności cechy X Sumy kwadratów SS Stopnie swobody Df Średni kwadrat MS F emp wartość p Czynnik A (odmiana) 0149, 4 0,149 4 = 0, , , 0033 = 11, 27 0,0002 Błąd losowy 0, , = 0, 0033 Całkowita 0,

28 Wartości krytyczne rozkładu F Snedecora X ~ F ν1, ν2 - X zmienna losowa o rozkładzie F- Snedecora z liczbami stopni swobody (ν1, ν2) poziom istotności α =0,05, F α, ν1, ν2 - wartość krytyczna - liczba taka, Ŝe P(X > F α, ν1, ν2 ) = α v1 v , , , , , , , , , , , , , , , ,513 19,000 19,164 19,247 19,296 19,329 19,353 19,371 19,385 19,396 19,405 19,412 19,419 19,424 19,429 : 9 5,117 4,256 3,863 3,633 3,482 3,374 3,293 3,230 3,179 3,137 3,102 3,073 3,048 3,025 3, ,965 4,103 3,708 3,478 3,326 3,217 3,135 3,072 3,020 2,978 2,943 2,913 2,887 2,865 2, ,844 3,982 3,587 3,357 3,204 3,095 3,012 2,948 2,896 2,854 2,818 2,788 2,761 2,739 2, ,747 3,885 3,490 3,259 3,106 2,996 2,913 2,849 2,796 2,753 2,717 2,687 2,660 2,637 2, ,667 3,806 3,411 3,179 3,025 2,915 2,832 2,767 2,714 2,671 2,635 2,604 2,577 2,554 2, ,600 3,739 3,344 3,112 2,958 2,848 2,764 2,699 2,646 2,602 2,565 2,534 2,507 2,484 2, ,543 3,682 3,287 3,056 2,901 2,790 2,707 2,641 2,588 2,544 2,507 2,475 2,448 2,424 2,403 W przykładzie: F kryt = F α, a-1, N-a = F 0,05, 4, 15 = 3,056 F emp = 11,27 28

29 Wnioskowanie Wnioskowanie 1 Jeśli F emp > F kryt, to H 0 odrzucamy, w przeciwnym przypadku H 0 nie moŝna odrzucić. Wnioskowanie 2 Jeśli wartość p < α, to H 0 odrzucamy, w przeciwnym przypadku H 0 nie moŝna odrzucić. 29

30 Wnioskowanie w przykładzie F emp = 11,27 F kryt = F 0,05, 4, 15 = 3,056 F emp > F kryt, więc H 0 odrzucamy 30

31 Terminologia cd. Gdy odrzucimy hipotezę H 0, to mówimy: stwierdzono statystycznie istotny wpływ czynnika A na badaną cechę albo: czynnik A wpływa istotnie róŝnicująco na badaną cechę. 31

32 Terminologia cd. Gdy nie odrzucimy hipotezy H 0, to mówimy: nie stwierdzono statystycznie istotnego wpływu czynnika A na badaną cechę albo: czynnik A nie wpływa istotnie róŝnicująco na badaną cechę. 32

33 Wniosek merytoryczny W przykładzie stwierdzono statystycznie istotne zróŝnicowanie odmian pszenicy ze względu na wysokość plonu. Po odrzuceniu hipotezy zerowej stosuje się porównania szczegółowe. 33

34 Wyniki z pakietu statystycznego ANOVA Table Analysis of Variance Source Sum of Squares Df Mean Square F-Ratio P-Value Between groups 0, , ,51 0,0002 Within groups 0, , Total (Corr.) 0, ,5 Means and 95,0 Percent Tukey HSD Intervals 1,4 Plony 1,3 1,2 1, odmiany 34

35 Porównania szczegółowe - idea X 1 X 2 X 3 X 5 X 4 µ 1 µ 2 µ 3 µ 5 µ 4 wartości cechy X 1 = X 2 = X 5 X 3 = X 4 µ 1 = µ 2 = µ 5 µ 3 = µ 4 wartości cechy 35

36 Obliczenia Means and 95,0 Percent LSD Intervals 1,5 1,4 plon 1,3 1,2 1,1 O1 O2 O3 O4 O5 odmiana Obliczenia na tablicy 36

37 Wartości krytyczne rozkładu Studenta X ~ t ν - X zmienna losowa o rozkładzie t-studenta z liczbą stopni swobody v, α - poziom istotności, t α, ν - wartość krytyczna - liczba taka, Ŝe P( X > t α, ν ) = α ν \ α 0,400 0,300 0,200 0,100 0,050 0,025 0,025 0,010 0,005 0, ,37641,96263,07776, , , ,451963, , , ,06071,38621,88562,9200 4,3027 6,2054 6,2054 9, , ,5998 : 13 0,87021,07951,35021,7709 2,1604 2,5326 2,5326 3,0123 3,3725 4, ,86811,07631,34501,7613 2,1448 2,5096 2,5096 2,9768 3,3257 4, ,8662 1,0735 1,3406 1,7531 2,1315 2,4899 2,4899 2,9467 3,2860 4, ,86471,07111,33681,7459 2,1199 2,4729 2,4729 2,9208 3,2520 4, ,86331,06901,33341,7396 2,1098 2,4581 2,4581 2,8982 3,2224 3, ,86201,06721,33041,7341 2,1009 2,4450 2,4450 2,8784 3,1966 3,

38 Wyniki z pakietu statystycznego Multiple Range Tests for plon by odmiana Method: 95,0 percent LSD odmiana Count Mean Homogeneous Groups O2 4 1,18 X O4 4 1,2275 XX O5 4 1,27 XX O3 4 1,335 X O1 4 1,4275 X 38

39 Procedury porównań szczegółowych Procedury te słuŝą do wydzielania grup jednorodnych, czyli grup obiektów nie róŝniących się między sobą. procedura Studenta procedura Tukeya Newmana-Keulsa 39

40 Procedura Studenta NIR - Najmniejsza Istotna RóŜnica (LSD, ang. Least Significant Difference) Procedura oparta na teście t-studenta NIR = t s α, Df r E s MS, r n = 2 E, t α, Df E -wartość kryt. rozkładu Studenta, s r -standardowy błąd róŝnicy średnich obiektowych, MSE -średni kwadrat dla błędu z tab. ANOVA 40

41 NIR Studenta w przykładzie MS E = 0,0033; n = 4, to s r = 0,0406; Df E = 15, t α, DfE = t 0,05, 15 = 2,1315 NIR = 2,1315 0,0406 = 0,087 41

42 Procedura Tukeya gdzie: T = q s s = MS α, Df,a x x n, NIR E E, q α, DfE,a - wartość krytyczna studentyzowanego rozstępu; a liczba średnich w całym doświadczeniu; s x - standardowy błąd średniej obiektowej z próby. 42

43 NIR Tukeya w przykładzie Df E = 15, a = 5, to q α, DfE, a = q 0,05, 15, 5 = 4,367; MS E = 0,0033, n = 4, to s x = 0,0287 ; NIR T = 4,367 0,0287 = 0,125. Obliczenia 43

44 Wyniki z pakietu statystycznego Multiple Range Tests for plon by odmiana Method: 95,0 percent Tukey HSD odmiana Count Mean Homogeneous Groups O2 4 1,18 X O4 4 1,2275 XX O5 4 1,27 XX O3 4 1,335 XX O1 4 1,4275 X

45 Wyniki z pakietu statystycznego 1,5 Means and 95,0 Percent Tukey HSD Intervals 1,4 Plony 1,3 1,2 1, odmiany 45

46 Procedura Newmana-Keulsa* NK = q s MS α, Df,k x, x n NIR E s = E, gdzie: q α, DfE,k - wartość krytyczna studentyzowanego rozstępu; k liczba średnich w grupie, s x - standardowy błąd średniej obiektowej z próby. 46

47 NIR-y Newmana-Keulsa w przykładzie* W przykładzie: s x = 0,0287, Df E = 15; q α, DfE, 2 = q 0,05, 15, 2 = 3,014, to NIR NK2 = 3,014 0,0287 = 0,087; q α, DfE, 3 = q 0,05, 15, 3 = 3,674, to NIR NK3 = 3,674 0,0287 = 0,105; q α, DfE, 4 = q 0,05, 15, 4 = 4,076, to NIR NK4 = 4,076 0,0287 = 0,117 47

48 Wyniki z pakietu statystycznego* Multiple Range Tests for plon by odmiana Method: 95,0 percent Student-Newman-Keuls odmiana Count Mean Homogeneous Groups O2 4 1,18 X O4 4 1,2275 X O5 4 1,27 XX O3 4 1,335 X O1 4 1,4275 X

49 Procedura Duncana* D = t D s α,df,k r, s MS r n NIR E = 2 E, gdzie: s r - standardowy błąd róŝnicy średnich obiektowych, t D α Df, E,k - wartość krytyczna wielokrotnego testu Duncana; k liczba średnich w grupie 49

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE Było: Przykład. W doświadczeniu polowym załoŝonym w układzie całkowicie losowym w czterech powtórzeniach porównano

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Porównanie wielu rozkładów normalnych

Porównanie wielu rozkładów normalnych Porównanie wielu rozkładów normalnych Założenia:. X i N(µ i, σi 2 ), i =,..., k 2. X,..., X k są niezależne Czy µ = = µ k? Czy σ 2 = = σ 2 k? Próby: X i,..., X ini, i =,..., k X i, varx i, s 2 i = varx

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?

Bardziej szczegółowo

JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA

JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA 1 Obserwowana (badana) cecha Y Czynnik wpływający na Y (badany) A A i i ty poziom czynnika A a liczba poziomów (j=1..a), n i liczba powtórzeń w i tej populacji

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

Elementy statystyki STA - Wykład 5

Elementy statystyki STA - Wykład 5 STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie

Bardziej szczegółowo

Testowanie hipotez statystycznych cd.

Testowanie hipotez statystycznych cd. Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:

Bardziej szczegółowo

, a ilość poziomów czynnika A., b ilość poziomów czynnika B. gdzie

, a ilość poziomów czynnika A., b ilość poziomów czynnika B. gdzie Test Scheffego, gdzie (1) n to ilość powtórzeń (pomiarów) w jednej grupie (zabiegu) Test NIR Istnieje wiele testów dla porównań wielokrotnych opartych o najmniejszą istotna różnicę między średnimi (NIR).

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Analiza wariancji i kowariancji

Analiza wariancji i kowariancji Analiza wariancji i kowariancji Historia Analiza wariancji jest metodą zaproponowaną przez Ronalda A. Fishera. Po zakończeniu pierwszej wojny światowej był on pracownikiem laboratorium statystycznego w

Bardziej szczegółowo

Wykład: Założenia analizy wariancji. Analiza wariancji złożona i testy wielokrotnych porównań.

Wykład: Założenia analizy wariancji. Analiza wariancji złożona i testy wielokrotnych porównań. Wykład: Założenia analizy wariancji. Analiza wariancji złożona i testy wielokrotnych porównań. Założenia analizy wariancji: Niezależność zmiennych objaśniających (czynników). Homogeniczność wariancji (równość

Bardziej szczegółowo

BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ

BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ WYKŁAD 3 BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ Było: Przykład. Z dziesięciu poletek doświadczalnych zerano plony ulw ziemniaczanych (cecha X) i oznaczono w nich procentową zawartość

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008

Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 Redaktor: Alicja Zagrodzka Korekta: Krystyna Chludzińska Projekt okładki: Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 ISBN 978-83-7383-296-1 Wydawnictwo Naukowe Scholar

Bardziej szczegółowo

hipotez statystycznych

hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Dwuczynnikowa analiza wariancji (2-way

Bardziej szczegółowo

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ, σ 2 X ),

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Analiza wariancji (ANalysis Of Variance - ANOVA)

Analiza wariancji (ANalysis Of Variance - ANOVA) Analiza wariancji (ANalysis Of Variance - ANOVA) W poprzednim rozdziale przedstawiono sposób porównywania dwóch wartości średnich. Często jednak zachodzi potrzeba porównywania większej liczby średnich

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407 Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne. #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji

Metody Statystyczne. Metody Statystyczne. #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji gkrol@mail.wz.uw.edu.pl #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji 1 Ryzyko błędu - powtórzenie Statystyka niczego nie dowodzi, czyni tylko wszystko mniej lub bardziej prawdopodobnym

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki Maszyna ustawiona jest tak, by produkowała kulki łożyskowe o średnicy 1 cm. Pomiar dziesięciu wylosowanych z produkcji kulek dał x = 1.1 oraz s 2 = 0.009. Czy można uznać, że maszyna nie rozregulowała

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Analiza wariancji - ANOVA

Analiza wariancji - ANOVA Analiza wariancji - ANOVA Analiza wariancji jest metodą pozwalającą na podział zmienności zaobserwowanej wśród wyników eksperymentalnych na oddzielne części. Każdą z tych części możemy przypisać oddzielnemu

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA 1

JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA 1 Powtórzenie: ANOVA 1 JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA 1 Obserwowana (badana) cecha Y Czynnik wpływający na Y (badany) A A i i ty poziom czynnika A (i=1..a), n i liczba powtórzeń w i tej populacji

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Katedra Genetyki i Podstaw Hodowli Zwierząt Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy

Katedra Genetyki i Podstaw Hodowli Zwierząt Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy Ćwiczenie: Analiza zmienności prosta Przykład w MS EXCEL Sprawdź czy genotyp jagniąt wpływa statystycznie na cechy użytkowości rzeźnej? Obliczenia wykonaj za pomocą modułu Analizy danych (jaganova.xls).

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie

Bardziej szczegółowo

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że dwie populacje o rozkładach normalnych mają jednakowe wartości średnie. Co jednak

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA narzędzie do opracowywania i interpretacji wyników pomiarów

STATYSTYKA MATEMATYCZNA narzędzie do opracowywania i interpretacji wyników pomiarów STATYSTYKA MATEMATYCZNA narzędzie do opracowywania i interpretacji wyników pomiarów Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Statystyka matematyczna - część matematyki

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 1

KARTA KURSU. Kod Punktacja ECTS* 1 KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni Przedmiot: Statystyczne Sterowanie Procesami Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu:

Bardziej szczegółowo

ISSN 1425-7351 PL9701513 INSTYTUT CHEMII I TECHNIKI JĄDROWEJ INSTITUTE OF NUCLEAR CHEMISTRY AND TECHNOLOGY WARSZAWA 7BM 1

ISSN 1425-7351 PL9701513 INSTYTUT CHEMII I TECHNIKI JĄDROWEJ INSTITUTE OF NUCLEAR CHEMISTRY AND TECHNOLOGY WARSZAWA 7BM 1 ISSN 1425-7351 PL9701513 INSTYTUT CHEMII I TECHNIKI JĄDROWEJ INSTITUTE OF NUCLEAR CHEMISTRY AND TECHNOLOGY WARSZAWA 7BM 1 RAPORTY IChTJ. SERIA B nr 2/96 TEST KOMETKOWY. 2. ANALIZA STATYSTYCZNA WYNIKÓW

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15 VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 19 kwietnia 2011 Testy dla dwóch grup 1 Analiza danych dla dwóch grup: test t-studenta dla dwóch grup sparowanych; test t-studenta dla dwóch grup niezależnych (jednakowe wariancje) test Z dla dwóch grup

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Przedmowa do wydania polskiego Przedmowa CZĘŚĆ I. PODSTAWY STATYSTYKI Rozdział 1 Podstawowe pojęcia statystyki

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.

Bardziej szczegółowo

Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich.

Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. EXCEL Do weryfikacji różnic między dwiema grupami jednostek doświadczalnych w Excelu wykorzystujemy funkcję o nazwie T.TEST. Zastosowana

Bardziej szczegółowo

Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym

Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym Wiesława MALSKA Politechnika Rzeszowska, Polska Anna KOZIOROWSKA Uniwersytet Rzeszowski, Polska Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym Wstęp Wnioskowanie statystyczne

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Rozwiązanie: MSFA MSAB

Rozwiązanie: MSFA MSAB Zadanie 1: Skompletuj poniższą tablicę analizy wariancji dwutorowej. Źródło SS? Wariancja? A 1828,09 2 MSFA=914,045? B 1102,34 3 =367,447 17,09? 88,91??? Błąd? 12??? 3277,34 23?? Rozwiązanie powyższego

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Karl Popper... no matter how many instances of white swans we may have observed, this does not

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

Regresja Analiza wariancji Regresja logistyczna. Regresja, Anova. Stanisław Jaworski. UM Zakład Profilaktyki...

Regresja Analiza wariancji Regresja logistyczna. Regresja, Anova. Stanisław Jaworski. UM Zakład Profilaktyki... UM Zakład Profilaktyki... Model regresji prostoliniowej Model regresji wielokrotnej Przykład W pewnej klinice badano związek między aktywnością enzymów aminotransferazy a stężeniem amoniaku we krwi u chorych

Bardziej szczegółowo

Testowanie hipotez dla frakcji. Wrocław, 29 marca 2017

Testowanie hipotez dla frakcji. Wrocław, 29 marca 2017 Testowanie hipotez dla frakcji Wrocław, 29 marca 2017 Powtórzenie z rachunku prawdopodobieństwa Centralne Twierdzenie Graniczne Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu o średniej µ i skończonej

Bardziej szczegółowo

PROBLEMY ROLNICTWA ŚWIATOWEGO

PROBLEMY ROLNICTWA ŚWIATOWEGO Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie PROBLEMY ROLNICTWA ŚWIATOWEGO Tom 11 (XXVI) Zeszyt 4 Wydawnictwo SGGW Warszawa 2011 Dorota Kozioł-Kaczorek 1 Katedra Ekonomiki Rolnictwa

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE

O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE Ryszard Zieliński, IMPAN Warszawa O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE XXXIX Ogólnopolska Konferencja Zastosowań Matematyki Zakopane-Kościelisko 7-14 września 2010 r Model statystyczny pomiaru: wynik pomiaru

Bardziej szczegółowo

1) Wprowadzenie; 2) Doświadczenia jednoczynnikowe; 3) Doświadczenia dwuczynnikowe; 4) Doświadczenia trójczynnikowe; 5) Badanie współzależności cech

1) Wprowadzenie; 2) Doświadczenia jednoczynnikowe; 3) Doświadczenia dwuczynnikowe; 4) Doświadczenia trójczynnikowe; 5) Badanie współzależności cech 1) Wprowadzenie; 2) Doświadczenia jednoczynnikowe; 3) Doświadczenia dwuczynnikowe; 4) Doświadczenia trójczynnikowe; 5) Badanie współzależności cech ilościowych; 6) Badanie zależności liniowej pomiędzy

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2011/2012 Wykład 2 Statystyka Do tej pory było: Wiadomości praktyczne o przedmiocie Podstawowe

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo