hipotez statystycznych

Wielkość: px
Rozpocząć pokaz od strony:

Download "hipotez statystycznych"

Transkrypt

1 Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi. W jaki sposób ma to zrobić? Krok 1. Zakładamy, że partia ma wadliwość 2%. Krok 2. Pobierana jest próba elementów z partii towaru (np. 100 elementów). k P {X = k} P {X k} W Z W SEI Statystyka 64

2 Krok 3 (wnioskowanie). Zaobserwowano k = 7 wadliwych: 1. Przypuszczenie jest słuszne i próba pechowa lub 2. Próba jest dobra, a przypuszczenie złe. Uznać twierdzenie producenta za nieprawdziwe! Zaobserwowano co najmniej siedem wadliwych Wnioski jak wyżej Ostatecznie: Po zaobserwowaniu więcej niż sześciu wadliwych elementów raczej uznać twierdzenie producenta za nieprawdziwe. W przeciwnym przypadku można uznać twierdzenie producenta za uzasadnione. W Z W SEI Statystyka 65

3 Hipotezą statystyczną nazywamy dowolne przypuszczenie dotyczące rozkładu prawdopodobieństwa cechy w populacji. Oznaczenie H 0 Testem hipotezy statystycznej nazywamy postępowanie mające na celu odrzucenie lub nie odrzucenie hipotezy statystycznej. Statystyką testową nazywamy funkcję próby na podstawie której wnioskuje się o odrzuceniu lub nie hipotezy statystycznej. Rzeczywistość: Wniosek o hipotezie H 0 hipoteza H 0 nie odrzucać odrzucić prawdziwa prawidłowy nieprawidłowy nieprawdziwa nieprawidłowy prawidłowy W Z W SEI Statystyka 66

4 Błędem I rodzaju nazywamy błąd wnioskowania polegający na odrzuceniu hipotezy, gdy w rzeczywistości jest ona prawdziwa. Błędem II rodzaju nazywamy błąd wnioskowania polegający na nieodrzuceniu hipotezy, gdy w rzeczywistości jest ona fałszywa. Poziomem istotności nazywamy dowolną liczbę z przedziału (0, 1) określającą prawdopodobieństwo popełnienia błędu I rodzaju. Oznaczenie: α Mocą testu nazywamy prawdopodobieństwo odrzucenia testowanej hipotezy, gdy jest ona nieprawdziwa, czyli prawdopodobieństwo nie popełnienia błędu II rodzaju. Oznaczenie: 1 β W Z W SEI Statystyka 67

5 Rozkład normalny Porównanie z normą H 0 : µ = µ 0 Cecha X ma rozkład normalny N(µ, σ 2 ) Średnia µ oraz wariancja σ 2 są nieznane Test Studenta (poziom istotności α) Próba: X 1,..., X n Statystyka testowa t emp = X µ 0 S Wartość krytyczna t(α; n 1) n. Jeżeli t emp > t(α; n 1), to hipotezę H 0 : µ = µ 0 odrzucamy. W Z W SEI Statystyka 68

6 Przykład. Przypuszczenie: maszyna pakująca kostki masła nastawiona na jednostkową masę 250 g uległa po pewnym czasie rozregulowaniu. W celu weryfikacji tego przypuszczenia z bieżącej produkcji pobrano próbę otrzymując wyniki 254, 269, 254, 248, 263, 256, 258, 261, 264, 258. Czy można na tej podstawie sądzić, że maszyna uległa rozregulowaniu? Populacja: paczkowane kostki masła Cecha X: masa kostki masła Założenie: cecha X ma rozkład normalny N(µ, σ 2 ) Formalizacja: Rozregulowanie maszyny może być interpretowane jako odejście od nominalnej wagi. Zatem należy zbadać, czy średnia µ wynosi 250, czyli weryfikujemy hipotezę H 0 : µ = 250 W Z W SEI Statystyka 69

7 Technika statystyczna: test Studenta (test t) poziom istotności α = 0.05 Obliczenia x = 258.5, s 2 = 36.05, t emp = 4.47 Wartość krytyczna: t(0.05; 9) = Odpowiedź: hipotezę odrzucamy Wniosek: maszyna uległa rozregulowaniu W Z W SEI Statystyka 70

8 Moc testu Moc testu = 1 P {błąd II rodzaju} Moc testu = P {odrzucenie nieprawdziwej H 0 } Moc testu Studenta hipotezy H 0 : µ = µ 0 M(µ) = P { t emp > t(α; n 1) X N(µ, σ 2 )} M(µ 0 ) = α n = 10 n = 20 n = 30 W Z W SEI Statystyka 71

9 Przedział ufności a test hipotezy H 0 : µ = µ 0 Cecha X N(µ, σ 2 ) H 0 : µ = µ 0 H 0 nie odrzucamy na poziomie istotności α µ 0 t emp < t(α; n 1) t(α; n 1) < X µ 0 S ( n < t(α; n 1) X t(α; n 1) S n, X + t(α; n 1) S n ) µ 0 należy do przedziału ufności na poziomie ufności 1 α W Z W SEI Statystyka 72

10 H 0 : µ µ 0 Cecha X ma rozkład normalny N(µ, σ 2 ) Średnia µ oraz wariancja σ 2 są nieznane Test Studenta (poziom istotności α) Próba: X 1,..., X n Statystyka testowa t emp = X µ 0 S Wartość krytyczna t(2α; n 1) n. Jeżeli t emp > t(2α; n 1), to hipotezę H 0 : µ µ 0 odrzucamy. W Z W SEI Statystyka 73

11 H 0 : σ 2 = σ 2 0 Cecha X ma rozkład normalny N(µ, σ 2 ) Średnia µ oraz wariancja σ 2 są nieznane Test chi kwadrat (poziom istotności α) Próba: X 1,..., X n Statystyka testowa χ 2 emp = varx σ 2 0 Wartości krytyczne χ 2 ( 1 α 2 ; n 1) oraz χ 2 ( α 2 ; n 1) Jeżeli χ 2 emp < χ 2 ( 1 α 2 ; n 1) lub χ 2 emp > χ 2 ( α 2 ; n 1), to hipotezę H 0 : σ 2 = σ 2 0 odrzucamy. W Z W SEI Statystyka 74

12 H 0 : σ 2 σ 2 0 Cecha X ma rozkład normalny N(µ, σ 2 ) Średnia µ oraz wariancja σ 2 są nieznane Test chi kwadrat (poziom istotności α) Próba: X 1,..., X n Statystyka testowa χ 2 emp = varx σ 2 0 Wartość krytyczna χ 2 (α; n 1) Jeżeli χ 2 emp > χ 2 (α; n 1), to hipotezę H 0 : σ 2 σ 2 0 odrzucamy. W Z W SEI Statystyka 75

13 Przykład. Na podstawie obserwacji prowadzonych przez długi okres czasu stwierdzono, że dzienny udój uzyskiwany w pewnym stadzie krów jest wielkością losową, zaś przeciętny dzienny udój mleka wyraża sie liczbą z przedziału (900, 1200). Rachunek finansowy pokazał, że produkcja mleka jest opłacalna, jeżeli całkowity dzienny udój będzie wynosił nie mniej niż d = 700 l mleka przez co najmniej 280 dni w roku. W jaki sposób można zbadać, czy produkcja mleka jest opłacalna? Populacja: Cecha: całkowity dzienny udój Założenia: Cecha X ma rozkład N(µ, σ 2 ) µ d = 900 µ µ g = 1200 W Z W SEI Statystyka 76

14 Formalizacja problemu P {X d} p = P {X d} = 1 F ( ) d µ σ 1 F ( ) d µd σ 1 F ( ) d µd σ 1 p F ( ) d µd σ 1 p d µ d σ d, µ d oraz p są ustalone, więc F 1 (1 p) = u 1 p σ 2 σ 2 0 = ( ) 2 d µd = u 1 p Produkcja mleka jest opłacalna, jeżeli wariancja σ 2 dziennych udojów jest większa niż σ 2 0 = H 0 : σ W Z W SEI Statystyka 77

15 Rozkład dwupunktowy Porównanie z normą H 0 : p = p 0 Cecha X ma rozkład D(p) Próba: X 1,..., X n (X i = 0 lub = 1) Statystyka testowa Y = n i=1 X i Jeżeli Y k 1 lub Y k 2, to hipotezę H 0 : p = p 0 należy odrzucić. Liczby k 1 oraz k 2 dobrane są tak, że jeżeli Y jest zmienną losową o rozkładzie B(n, p 0 ), to P {Y k 1 lub Y k 2 } α W Z W SEI Statystyka 78

16 H 0 : p = p 0 Test przybliżony (poziom istotności α) Przypadek: n duże Statystyka testowa u emp = Y np 0 np0 (1 p 0 ) Wartość krytyczna u 1 α/2 Jeżeli u emp > u 1 α/2, to H 0 : p = p 0 odrzucamy W Z W SEI Statystyka 79

17 H 0 : p p 0 Test przybliżony (poziom istotności α) Przypadek: n duże Statystyka testowa u emp = Y np 0 np0 (1 p 0 ) Wartość krytyczna u 1 α Jeżeli u emp > u 1 α, to H 0 : p p 0 odrzucamy W Z W SEI Statystyka 80

18 Przykład. W swojej ofercie sprzedaży stawu rybnego jego właściciel podaje, iż w stawie żyje co najmniej tysiąc karpi. Potencjalny nabywca zainteresowany jest sprawdzeniem prawdziwości tego twierdzenia. W tym celu wyłowiono sto karpi i po zaobrączkowaniu ich wpuszczono je z powrotem do stawu. Po jakimś czasie ponownie odłowiono sto ryb i stwierdzono, że wśród nich jest piętnaście zaobrączkowanych. Czy w świetle uzyskanych wyników można reklamę uznać za prawdziwą? Populacja: ryby w stawie Cecha: zaobrączkowanie ryby Założenia: Cecha X ma rozkład D(p) W Z W SEI Statystyka 81

19 Formalizacja problemu Jeżeli w stawie żyje co najmniej N ryb, to odsetek zaobrączkowanych jest co najwyżej 100/N. Zgodnie z twierdzeniem właściciela, N 1000, czyli odsetek ryb zaobrączkowanych nie przekracza 0.1. Technika statystyczna Przybliżony test hipotezy H 0 : p 0.1 Poziom istotności: α = 0.05 Obliczenia u emp = Y = 15 n = 100 Y np 0 np0 (1 p 0 ) = = Wartość krytyczna: u = Odpowiedź: hipotezę odrzucamy Wniosek: należy uznać, że ogólna liczb ryb w stawie jest mniejsza niż podana w ofercie W Z W SEI Statystyka 82

20 Porównanie dwóch rozkładów normalnych Założenia: 1. X 1 N(µ 1, σ 2 1), X 2 N(µ 2, σ 2 2) 2. X 1, X 2 są niezależne Czy µ 1 = µ 2? Czy σ 2 1 = σ 2 2? Próby: X 11,..., X 1n1 ; X 21,..., X 2n2 X 1, varx 1, s 2 1 = varx 1 n 1 1 X 2, varx 2, s 2 2 = varx 2 n 2 1 W Z W SEI Statystyka 83

21 H 0 : µ 1 = µ 2 Założenie σ 2 1 = σ 2 2 Test Studenta (poziom istotności α) Statystyka testowa t emp = X 1 X 2 S r S r = S 2 e ( 1 n n 2 ), S 2 e = varx 1 + varx 2 n 1 + n 2 2 Wartość krytyczna t(α; n 1 + n 2 2) Jeżeli t emp > t(α; n 1 + n 2 2), to hipotezę H 0 : µ 1 = µ 2 odrzucamy W Z W SEI Statystyka 84

22 H 0 : µ 1 = µ 2 Bez założenia σ 2 1 = σ 2 2 Test V Behrensa Fishera (poziom istotności α) Statystyka testowa V = X 1 X 2 S r S r = S 2 1 n 1 + S2 2 n 2 Wartość krytyczna V (α; n 1 1, n 2 1, c) (n 1 n 2 ) c = S 2 1/n 1 S 2 1 /n 1 + S 2 2 /n 2 Jeżeli V > V (α; n 1 1, n 2 1, c), to hipotezę H 0 : µ 1 = µ 2 odrzucamy W Z W SEI Statystyka 85

23 Przykład. Porównać przeciętne osiągnięcia punktowe pań i panów na klasówce ze statystyki Panowie: n 1 = 138, x1i = , varx 1 = Panie: n 2 = 162, x2i = , varx 2 = Populacja 1: Słuchacze podstawowego kursu statystyki Populacja 2: Słuchaczki podstawowego kursu statystyki Cecha X: ilość punktów zdobytych na klasówce Założenia: cecha X ma w populacji 1 rozkład N(µ 1, σ 2 1) cecha X ma w populacji 2 rozkład N(µ 2, σ 2 2) σ 2 1 = σ 2 2 Zadanie: zweryfikować hipotezę H 0 : µ 1 = µ 2 Technika statystyczna: test t poziom istotności 0.05 W Z W SEI Statystyka 86

24 Obliczenia s 2 r = x 1 = x 2 = = ( ) 162 t emp = = Wartość krytyczna t(0.05; 298) 1.96 Odpowiedź: hipotezy nie odrzucamy Wniosek. Średnie ilości punktów uzyskiwane przez panie i panów można traktować jako porównywalne. W Z W SEI Statystyka 87

25 Przedział ufności a test hipotezy H 0 : µ 1 = µ 2 Cecha X 1 N(µ 1, σ 2 1), X 2 N(µ 2, σ 2 2), σ 2 1 = σ 2 2 H 0 : µ 1 = µ 2 H 0 nie odrzucamy na poziomie istotności α t emp < t(α; n 1 + n 2 2) t(α; n 1 + n 2 2) < X 1 X 2 S r < t(α; n 1 + n 2 2) 0 ( X1 X 2 ± t(α; n 1 + n 2 2)S r ) 0 należy do przedziału ufności na poziomie ufności 1 α W Z W SEI Statystyka 88

26 Przykład. Porównać wartości średnie dwóch cech X 1 oraz X 2 o rozkładach normalnych. H 0 : µ 1 = µ 2 Test V Behrensa Fishera (α = 0.05) Próby: n 1 = 20 x 1 = s 2 1 = n 2 = 20 x 2 = s 2 2 = V = = = 4.19 c = 15.41/ / /20 = = 0.15 Wartość krytyczna V (0.05; 19, 19, 0.15) = 2.06 Ponieważ V > V (0.05; 19, 19, 0.15), więc hipotezę H 0 : µ 1 = µ 2 odrzucamy. W Z W SEI Statystyka 89

27 H 0 : µ 1 µ 2 Założenie σ 2 1 = σ 2 2 Test Studenta (poziom istotności α) Statystyka testowa t emp = X 1 X 2 S r Wartość krytyczna t(2α; n 1 + n 2 2) Jeżeli t emp > t(2α; n 1 + n 2 2), to hipotezę H 0 : µ 1 µ 2 odrzucamy Bez założenia σ 2 1 = σ 2 2 Test V Behrensa Fishera (poziom istotności α) Statystyka testowa V = X 1 X 2 S r Wartość krytyczna V (2α; n 1 1, n 2 1, c) (n 1 n 2 ) Jeżeli V > V (2α; n 1 1, n 2 1, c), to hipotezę H 0 : µ 1 µ 2 odrzucamy. W Z W SEI Statystyka 90

28 H 0 : σ 2 1 = σ 2 2 Test F (poziom istotności α) Statystyka testowa F emp = S2 1 S 2 2 Wartości ( krytyczne F 1 α ) 2 ; n 1 1, n 2 1 ( α F 2 ; n 1 1, n 2 1) Jeżeli F emp < F lub F emp > F ( 1 α ) 2 ; n 1 1, n 2 1 ( α 2 ; n 1 1, n 2 1) to hipotezę H 0 : σ 2 1 = σ 2 2 odrzucamy W Z W SEI Statystyka 91

29 Uwaga F (1 α; u, v) = 1 F (α; v, u) Reguła: większa wariancja do licznika. Jeżeli S 2 1 > S 2 2, to wyznaczana jest statystyka F emp = S2 1 S 2 2 i hipoteza jest odrzucana, gdy F emp > F ( α 2 ; n 1 1, n 2 1) Jeżeli zaś S 2 1 < S 2 2, to wyznaczana jest statystyka F emp = S2 2 S 2 1 i hipoteza jest odrzucana, gdy F emp > F ( α 2 ; n 2 1, n 1 1) W Z W SEI Statystyka 92

30 Przykład. Dla sprawdzenia stabilności pracy maszyny pobrano dwie próbki: pierwszą w początkowym okresie eksploatacji oraz drugą po miesięcznym okresie pracy tej maszyny. Wykonano pomiary wylosowanych produktów i otrzymano wyniki: n 1 = 25, x 1 = 3.24, s 2 1 = oraz n 2 = 19, x 2 = 3.19, s 2 2 = Zbadać na tej podstawie czy maszyna nie rozregulowała się w trakcie pracy. Populacja 1 produkcja maszyny w początkowym okresie Populacja 2 produkcja maszyny po miesiącu eksploatacji Cecha X pomiar produktu Założenia cecha X ma w populacji 1 rozkład N(µ 1, σ 2 1) cecha X ma w populacji 2 rozkład N(µ 2, σ 2 2) W Z W SEI Statystyka 93

31 Formalizacja Stabilność pracy maszyny może być mierzona podobieństwem wytwarzanych produktów: im własności produktów są do siebie bardziej zbliżone, tym bardziej stabilna jest praca maszyny. Podobieństwo takie jest wyrażane wariancją cechy. Zatem stabilność pracy można wyrazić liczbowo jako wariancję interesującej cechy produktu, a problem stabilności jako zagadnienie weryfikacji hipotezy H 0 : σ 2 1 = σ 2 2 Technika statystyczna Test F (poziom istotności α = 0.10) Obliczenia F emp = s2 2 s 2 1 = Wartość krytyczna F (0.05; 19, 24) = Odpowiedź: hipotezy nie odrzucamy Wniosek: można uznać że maszyna nie rozregulowała się w trakcie pracy W Z W SEI Statystyka 94

32 H 0 : σ 2 1 σ 2 2 Test F (poziom istotności α) Statystyka testowa F emp = S2 1 S 2 2 Wartość krytyczna F (α; n 1 1, n 2 1) Jeżeli F emp > F (α; n 1 1, n 2 1) to hipotezę H 0 : σ 2 1 σ 2 2 odrzucamy Uwaga W tym przypadku zasada większa wariancja do licznika nie ma sensu. W Z W SEI Statystyka 95

33 Porównanie dwóch rozkładów dwupunktowych Założenia: 1. X 1 D(p 1 ), X 2 D(p 2 ) 2. X 1, X 2 są niezależne H 0 : p 1 = p 2 Test przybliżony (poziom istotności α) ˆp 1 = k 1 n 1, ˆp 2 = k 2 n 2, ˆp = (k 1 + k 2 ) (n 1 + n 2 ) Statystyka testowa u emp = ˆp 1 ˆp 2 ˆp(1 ˆp)( 1 n n 2 ) u emp u 1 α/2 = H 0 : p 1 = p 2 odrzucamy W Z W SEI Statystyka 96

34 Przykład. Celem badania było porównanie przygotowania z matematyki kandydatów na studia będących absolwentami liceów oraz techników. W tym celu spośród kandydatów zdających matematykę wylosowano 400 absolwentów liceów oraz 600 absolwentów techników. W wylosowanej grupie stwierdzono, że 385 absolwentów liceów oraz 501 absolwentów techników rozwiązało test wstępny. Czy można na tej podstawie sądzić, że przygotowanie w obu grupach absolwentów jest jednakowe? Populacja 1: absolwenci liceów zdający egzamin wstępny Populacja 2: absolwenci techników zdający egzamin wstępny Cecha X: umiejętność rozwiązania testu (tak/nie) Założenia: cecha X ma w populacji 1 rozkład D(p 1 ) cecha X ma w populacji 2 rozkład D(p 2 ) Formalizacja Weryfikacja hipotezy H 0 : p 1 = p 2 W Z W SEI Statystyka 97

35 Technika statystyczna Test przybliżony (poziom istotności α = 0.05) Obliczenia n 1 = 400 k 1 = 385 ˆp 1 = 385/400 = n 2 = 600 k 2 = 501 ˆp 2 = 501/600 = u emp = ˆp = ( )/( ) = ( ) ( ) = Wartość krytyczna u = 1.96 Odpowiedź: hipotezę H 0 : p 1 = p 2 odrzucamy Wniosek: przygotowanie absolwentów liceów i techników z matematyki nie jest takie same. W Z W SEI Statystyka 98

36 H 0 : p 1 p 2 Test przybliżony (poziom istotności α) ˆp 1 = k 1 n 1, ˆp 2 = k 2 n 2, ˆp = (k 1 + k 2 ) (n 1 + n 2 ) Statystyka testowa u emp = ˆp 1 ˆp 2 ˆp(1 ˆp)( 1 n n 2 ) u emp u 1 α = H 0 : p 1 p 2 odrzucamy W Z W SEI Statystyka 99

37 Porównanie wielu rozkładów normalnych Założenia: 1. X i N(µ i, σi 2 ), i = 1,..., k 2. X 1,..., X k są niezależne Czy µ 1 = = µ k? Czy σ 2 1 = = σ 2 k? Próby: X i1,..., X ini, i = 1,..., k X i, varx i, s 2 i = varx i n i 1 ; i = 1,..., k W Z W SEI Statystyka 100

38 H 0 : µ 1 = = µ k Założenie σ 2 1 = = σ 2 k Test F (poziom istotności α) Statystyka testowa F emp = S2 a S 2 e S 2 a = 1 k 1 k n i ( X i X) 2 i=1 S 2 e = 1 N k k n i (X ij X i ) 2 i=1 j=1 X i = 1 n i n i X ij, X = 1 N k n i X ij j=1 i=1 j=1 N = k n i i=1 W Z W SEI Statystyka 101

39 Jeżeli F emp > F (α; k 1, N k), to hipotezę H 0 : µ 1 = = µ k odrzucamy. Wniosek praktyczny: przynajmniej jedna ze średnich µ 1,..., µ k jest inna od pozostałych Model analizy wariancji X ij = µ i + ε ij Błąd losowy ε ij N(0, σ 2 ) Przykłady Plenność kilku odmian pewnej rośliny uprawnej Wydajność pracowników kilku zakładów pracy Zarobki kilku grup społecznych Czynnik: odmiana, zakład, grupa Poziomy czynnika: badane odmiany, badane zakłady, badane grupy W Z W SEI Statystyka 102

40 Model analizy wariancji X ij = µ + a i + ε ij a i efekt i tego poziomu czynnika: k i=1 a i = 0 H 0 : a 1 = = a k = 0, H 0 : Tabela analizy wariancji k a 2 i = 0 i=1 Źródło Stopnie Sumy Średnie F emp zmienności swobody kwadratów kwadraty Czynnik k 1 vara S 2 a = vara k 1 Błąd losowy N k vare S 2 e = vare N k Ogółem N 1 vart S2 a/s 2 e vara = k n i ( X i X) 2, vare = i=1 k n i (X ij X i ) 2, i=1 j=1 k n i vart = (X ij X) 2, i=1 j=1 vara + vare = vart W Z W SEI Statystyka 103

41 Grupy jednorodne podzbiory średnich, które można uznać za takie same Procedury porównań wielokrotnych postępowanie statystyczne zmierzające do podzielenia zbioru średnich na grupy jednorodne Procedury: Tukeya, Scheffégo, Bonfferroniego, Duncana, Newmana Kuelsa i inne. Ogólna idea procedur porównań wielokrotnych (n 1 = = n k ) N IR najmniejsza istotna różnica Jeżeli X i X j < NIR, to uznajemy, że µ i = µ j. Jeżeli X i X j < NIR X i X l < NIR X l X j < NIR, to uznajemy, że µ i = µ j = µ l. Badając w ten sposób wszystkie pary średnich próbkowych otrzymujemy podział zbioru średnich na grupy jednorodne. W Z W SEI Statystyka 104

42 Procedura Tukeya Założenie: n 1 = = n k = n NIR = t(α; k, N k)s e 1 n t(α; k, N k) wartość krytyczna studentyzowanego rozstępu Przypadek nierównolicznych prób Jedna z modyfikacji procedury Tukeya NIR ij = t(α; k, N k)s e 1 2 ( 1 n i + 1 n j ) W Z W SEI Statystyka 105

43 Przykład. Przeprowadzić analizę porównawczą wyników punktowych klasówki w grupach studenckich. Populacje Możemy wyodrębnić dziesięć populacji indeksowanych numerami grup studenckich Cecha X Ilość punktów uzyskanych na klasówce Założenia cecha X ma w i tej populacji rozkład N(µ i, σ 2 i ) (i = 1,..., 10) σ 2 1 = = σ 2 10 Formalizacja weryfikacja hpotezy H 0 : µ 1 = = µ 10 Techniki statystyczna Jednoczynnikowa analiza wariancji Porównania szczegółowe Poziom istotności 0.05 W Z W SEI Statystyka 106

44 Obliczenia i n i xi x 2 i i n i x i n i ( x i x) 2 varx i N =300 x= vara= vare= vart = /300 = W Z W SEI Statystyka 107

45 Tabela analizy wariancji Źródło Stopnie Sumy Średnie Femp zmienności swobody kwadratów kwadraty Grupa Błąd losowy Ogółem Wartość krytyczna F (0.05; 9, 290) = Odpowiedź: hipotezę H 0 : µ 1 = = µ 10 odrzucamy Wniosek: przynajmniej jedna grupa uzyskała inną średnią liczbę punktów niż pozostałe W Z W SEI Statystyka 108

46 Wyznaczenie grup jednorodnych Procedura Tukeya (α = 0.05) Wartość krytyczna: t(0.05; 10, 290) = NIR = = i x i W Z W SEI Statystyka 109

47 W Z W SEI Statystyka 110

48 Porównanie wariancji Cecha X i ma rozkład normalny N(µ i, σi 2) Średnie µ i oraz wariancje σi 2 są nieznane H 0 : σ 2 1 = = σ 2 k Test Bartletta (poziom istotności α) Statystyka testowa M = (N k) ln ( 1 N k k k (n i 1)Si 2 i=1 ) i=1 (n i 1) ln S 2 i S 2 i = 1 n i 1 n i j=1 (X ij X i ) 2 Jeżeli M > m(α), to H 0 : σ 2 1 = = σ 2 k odrzucamy. W Z W SEI Statystyka 111

49 m(α) = 1 c 1 c [(c 1 c 3 )m 1 (α; k, c 1 ) + (c 3 c)m 2 (α; k, c 1 )] c 1 = k i=1 1 n i 1 1 N k c 3 = k i=1 1 (n i 1) 1 3 (N k), 3 c = c 3 1/k 2, m 1 (α; k, c 1 ), m 2 (α; k, c 1 ) są stablicowane Jeżeli wszystkie n i > 4, to statystyka testowa M 1 + c 1 /(3(k 1)) ma w przybliżeniu rozkład chi kwadrat z k 1 stopniami swobody. Jeżeli c 1 = 0, to m 1 (α; k, c 1 ) = m 2 (α; k, c 1 ) = χ 2 (α; k 1) W Z W SEI Statystyka 112

50 Przypadek n 1 = = n k = n Test Cochrana (poziom istotności α) Statystyka testowa G = S 2 max S S2 k S 2 max = max{s 2 1,..., S 2 k} Jeżeli G > g(α; k, n), to H 0 : σ 2 1 = = σ 2 k odrzucamy Wartości krytyczne g(α; k, n) są podane w tablicach W Z W SEI Statystyka 113

51 Przypadek n 1 = = n k = n Test Hartleya (poziom istotności α) Statystyka testowa F max = S2 max S 2 min S 2 min = min{s 2 1,..., S 2 k} Jeżeli F max > f max (α; k, n), to H 0 : σ 2 1 = = σ 2 k odrzucamy Wartości krytyczne f max (α; k, n) są podane w tablicach W Z W SEI Statystyka 114

52 Przykład. W celu porównania zróżnicowania cen targowiskowych na jaja w czterech województwach w Polsce z każdego województwa wylosowano pewne ilości targowisk i zanotowano przeciętne ceny jaj na tych targowiskach. Po odpowiednich przeliczeniach uzyskano nastepujące wyniki Województwo Liczba targowisk n i Wariancja s 2 i Czy można na tej podstawie uznać, że zróżnicowanie cen w badanych województwach jest takie same? Populacje Są cztery populacje: targowiska w badanych województwach Cecha X przeciętna cena jaj na targowisku Założenie cecha w i tej populacji ma rozkład N(µ i, σ 2 i ) (i = 1, 2, 3, 4) W Z W SEI Statystyka 115

53 Formalizacja Miernikiem zróżnicowania cechy jest jej wariancja. Zatem problem analizy porównawczej zróżnicowania cen można zapisać jako zagadnienie weryfikacji hipotezy H 0 : σ 2 1 = = σ 2 4 Technika statystyczna Test Bartletta (poziom istoności α = 0.05) Obliczenia n i (n i 1)s 2 i (n i 1)lns 2 i 1/(n i 1) 1/(n i 1) Razem M = (26 4) ln ( ) = c 1 = c 3 = (26 4) = (26 4) 3 = c = = W Z W SEI Statystyka 116

54 Wartość krytyczna m(0.05) = m 1 (0.05; 4, ) = m 2 (0.05; 4, ) = ( ) ( ) = Odpowiedź: nie ma podstaw do odrzucenia weryfikowanej hipotezy Wniosek: zróżnicowanie cen targowiskowych w badanych województwach można uznać za takie same. W Z W SEI Statystyka 117

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

Porównanie wielu rozkładów normalnych

Porównanie wielu rozkładów normalnych Porównanie wielu rozkładów normalnych Założenia:. X i N(µ i, σi 2 ), i =,..., k 2. X,..., X k są niezależne Czy µ = = µ k? Czy σ 2 = = σ 2 k? Próby: X i,..., X ini, i =,..., k X i, varx i, s 2 i = varx

Bardziej szczegółowo

Statystyka matematyczna. w zastosowaniach

Statystyka matematyczna. w zastosowaniach Statystyka matematyczna w zastosowaniach Robert Pietrzykowski STATYSTYKA: nauka poświęcona metodom badania (analizowania) zjawisk masowych; polega na systematyzowaniu obserwowanych cech ilościowych i jakościowych

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Testowanie hipotez statystycznych cd.

Testowanie hipotez statystycznych cd. Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:

Bardziej szczegółowo

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki Maszyna ustawiona jest tak, by produkowała kulki łożyskowe o średnicy 1 cm. Pomiar dziesięciu wylosowanych z produkcji kulek dał x = 1.1 oraz s 2 = 0.009. Czy można uznać, że maszyna nie rozregulowała

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE Było: Przykład. W doświadczeniu polowym załoŝonym w układzie całkowicie losowym w czterech powtórzeniach porównano

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe

1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe Zjazd 7. SGGW, dn. 28.11.10 r. Matematyka i statystyka matematyczna Tematy 1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe nna Rajfura 1 Zagadnienia Przykład porównania wielu obiektów w

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?

Bardziej szczegółowo

JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA

JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA 1 Obserwowana (badana) cecha Y Czynnik wpływający na Y (badany) A A i i ty poziom czynnika A a liczba poziomów (j=1..a), n i liczba powtórzeń w i tej populacji

Bardziej szczegółowo

Elementy statystyki STA - Wykład 5

Elementy statystyki STA - Wykład 5 STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

1. szereg wyliczający (szczegółowy) - wyniki są uporządkowane wyłącznie według wartości badanej cechy, np. od najmniejszej do największej

1. szereg wyliczający (szczegółowy) - wyniki są uporządkowane wyłącznie według wartości badanej cechy, np. od najmniejszej do największej 1 Statystyka opisowa Statystyka opisowa zajmuje się porządkowaniem danych i wstępnym ich opracowaniem. Szereg statystyczny - to zbiór wyników obserwacji jednostek według pewnej cechy 1. szereg wyliczający

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Karl Popper... no matter how many instances of white swans we may have observed, this does not

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Test lewostronny dla hipotezy zerowej:

Test lewostronny dla hipotezy zerowej: Poznajemy testowanie hipotez statystycznych w środowisku R Zajęcia z dnia 11 maja 2011 roku Najpierw teoria TESTY ISTOTNOŚCI WARTOŚCI ŚREDNIEJ W POPULACJI GENERALNEJ gdy znana jest wariancja!!! Test prawostronny

Bardziej szczegółowo

Regresja Analiza wariancji Regresja logistyczna. Regresja, Anova. Stanisław Jaworski. UM Zakład Profilaktyki...

Regresja Analiza wariancji Regresja logistyczna. Regresja, Anova. Stanisław Jaworski. UM Zakład Profilaktyki... UM Zakład Profilaktyki... Model regresji prostoliniowej Model regresji wielokrotnej Przykład W pewnej klinice badano związek między aktywnością enzymów aminotransferazy a stężeniem amoniaku we krwi u chorych

Bardziej szczegółowo

ESTYMACJA. Przedział ufności dla średniej

ESTYMACJA. Przedział ufności dla średniej ESTYMACJA Przedział ufności dla średniej W grupie 900 losowo wybranych pracowników przedsiębiorstwa średnia liczba dni nieobecności w pracy wynosiła 30, a odchylenie standardowe 3 dni. a) Przyjmując współczynnik

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1).

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1). PRZYKŁADY TESTÓW NIEPARAMETRYCZNYCH. Test zgodności χ 2. Ten test służy testowaniu hipotezy, czy rozważana zmienna ma pewien ustalony rozkład, czy też jej rozkład różni się od tego ustalonego. Tym testem

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

Szkice rozwiązań z R:

Szkice rozwiązań z R: Szkice rozwiązań z R: Zadanie 1. Założono doświadczenie farmakologiczne. Obserwowano przyrost wagi ciała (przyrost [gram]) przy zadanych dawkach trzech preparatów (dawka.a, dawka.b, dawka.c). Obiektami

Bardziej szczegółowo

Statystyka opisowa. Robert Pietrzykowski.

Statystyka opisowa. Robert Pietrzykowski. Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info Na dziś Sprawy bieżące 2 Na dziś Wykład 5: Statystyka matematyczna Estymatory punktowe i przedziałowe 4

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności

Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Statystyka indukcyjna pozwala kontrolować i oszacować ryzyko popełnienia błędu statystycznego

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ, σ 2 X ),

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je

Bardziej szczegółowo

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1 LISTA 7 W rozwiązaniu zadań 1-4 wykorzystać centralne twierdzenie graniczne. 1.Prawdopodobieństwo, że aparat zepsuje się w czasie jego konserwacji wynosi 0.02. Jakie jest prawdopodobieństwo, że w trakcie

Bardziej szczegółowo

LABORATORIUM 6 ESTYMACJA cz. 2

LABORATORIUM 6 ESTYMACJA cz. 2 LABORATORIUM 6 ESTYMACJA cz. 2 TEORIA ESTYMACJI I 1. ODRZUCANIE WYNIKÓW WĄTPLIWYCH PRÓBA P (m) (m-elementowa) Obliczenie: ; s bez wyników wątpliwych Odrzucenie wyników z poza przedziału: 3s PRÓBA LOSOWA

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA narzędzie do opracowywania i interpretacji wyników pomiarów

STATYSTYKA MATEMATYCZNA narzędzie do opracowywania i interpretacji wyników pomiarów STATYSTYKA MATEMATYCZNA narzędzie do opracowywania i interpretacji wyników pomiarów Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Statystyka matematyczna - część matematyki

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

WYKŁAD 5 TEORIA ESTYMACJI II

WYKŁAD 5 TEORIA ESTYMACJI II WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak

Bardziej szczegółowo

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r

Bardziej szczegółowo

Analiza wariancji i kowariancji

Analiza wariancji i kowariancji Analiza wariancji i kowariancji Historia Analiza wariancji jest metodą zaproponowaną przez Ronalda A. Fishera. Po zakończeniu pierwszej wojny światowej był on pracownikiem laboratorium statystycznego w

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne. #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji

Metody Statystyczne. Metody Statystyczne. #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji gkrol@mail.wz.uw.edu.pl #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji 1 Ryzyko błędu - powtórzenie Statystyka niczego nie dowodzi, czyni tylko wszystko mniej lub bardziej prawdopodobnym

Bardziej szczegółowo

Testowanie hipotez cz. I

Testowanie hipotez cz. I Wykład 11 Testowanie hipotez cz. I TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipoteza statystyczna jest to przypuszczenie dotyczące nieznanej własności rozkładu prawdopodobieństwa badanej cechy populacji. W zadaniach

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka 9.06.999 r. Zadanie. Rzucamy pięcioma kośćmi do gry. Następnie rzucamy ponownie tymi kośćmi, na których nie wypadły szóstki. W trzeciej rundzie rzucamy tymi kośćmi, na których

Bardziej szczegółowo

, a ilość poziomów czynnika A., b ilość poziomów czynnika B. gdzie

, a ilość poziomów czynnika A., b ilość poziomów czynnika B. gdzie Test Scheffego, gdzie (1) n to ilość powtórzeń (pomiarów) w jednej grupie (zabiegu) Test NIR Istnieje wiele testów dla porównań wielokrotnych opartych o najmniejszą istotna różnicę między średnimi (NIR).

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Autor: Dariusz Piwczyński 1 Ćwiczenie: Doświadczenia 2-grupowe w układzie niezależnym i zależnym.

Autor: Dariusz Piwczyński 1 Ćwiczenie: Doświadczenia 2-grupowe w układzie niezależnym i zależnym. Autor: Dariusz Piwczyński 1 Ćwiczenie: Doświadczenia 2-grupowe w układzie niezależnym i zależnym. Zadania: Arkusz kalkulacyjny Excel Do weryfikacji różnic między dwiema grupami obiektów w Excelu wykorzystujemy

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Z poprzedniego wykładu

Z poprzedniego wykładu PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15 IV WYKŁAD STATYSTYKA 26/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 4 Populacja generalna, próba, losowanie próby, estymatory Statystyka (populacja generalna, populacja próbna, próbka mała, próbka duża, reprezentatywność,

Bardziej szczegółowo

Test dwustronny: H 0 : p= 1 2

Test dwustronny: H 0 : p= 1 2 Test dwustronny: H 0 : p= 1 2 H A : p 1 2 0,300 0,250 0,200 P(r) 0,150 0,100 0,050 0,000 0 1 2 3 4 5 6 7 8 9 10 r α/2 Przedział ufności α/2 Obszar krytyczny dla α = 0,05 Prawo Murphy'ego: kanapka zazwyczaj

Bardziej szczegółowo

Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym

Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym Wiesława MALSKA Politechnika Rzeszowska, Polska Anna KOZIOROWSKA Uniwersytet Rzeszowski, Polska Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym Wstęp Wnioskowanie statystyczne

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Hipotezą statystyczną jest dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Metody analizy danych ćwiczenia Estymacja przedziałowa Program ćwiczeń obejmuje następująca zadania: 1. Dom handlowy prowadzący

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009

STATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 7 23 listopada 2009 Wykład 6 (16.XI.2009) zakończył się zdefiniowaniem współczynnika korelacji: E X µ x σ x Y µ y σ y = T WSPÓŁCZYNNIK KORELACJI ρ X,Y = ρ Y,X (!) WSPÓŁCZYNNIK

Bardziej szczegółowo

PODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść II

PODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść II PODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść II Szkic wykładu 1 Wprowadzenie 2 3 4 5 Weryfikacja hipotez statystycznych Obok estymacji drugim działem wnioskowania statystycznego jest weryfikacja hipotez

Bardziej szczegółowo

Opis przedmiotu: Probabilistyka I

Opis przedmiotu: Probabilistyka I Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Badania eksperymentalne

Badania eksperymentalne Badania eksperymentalne Pomiar na skali porządkowej mgr Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Najpopularniejsze sposoby oceny wyników eksperymentu

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

1) Wprowadzenie; 2) Doświadczenia jednoczynnikowe; 3) Doświadczenia dwuczynnikowe; 4) Doświadczenia trójczynnikowe; 5) Badanie współzależności cech

1) Wprowadzenie; 2) Doświadczenia jednoczynnikowe; 3) Doświadczenia dwuczynnikowe; 4) Doświadczenia trójczynnikowe; 5) Badanie współzależności cech 1) Wprowadzenie; 2) Doświadczenia jednoczynnikowe; 3) Doświadczenia dwuczynnikowe; 4) Doświadczenia trójczynnikowe; 5) Badanie współzależności cech ilościowych; 6) Badanie zależności liniowej pomiędzy

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 1

KARTA KURSU. Kod Punktacja ECTS* 1 KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci

Bardziej szczegółowo

Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich.

Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. EXCEL Do weryfikacji różnic między dwiema grupami jednostek doświadczalnych w Excelu wykorzystujemy funkcję o nazwie T.TEST. Zastosowana

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

STATYSTYKA zadania do ćwiczeń. Weryfikacja hipotez część I.

STATYSTYKA zadania do ćwiczeń. Weryfikacja hipotez część I. STATYSTYKA zadania do ćwiczeń Weryfikacja hipotez część I Zad 1 W pewnej firmie postanowiono zbadać staż pracy pracowników W tym celu wylosowano prostą próbę losową z populacji pracowników i otrzymano,

Bardziej szczegółowo

Testy dotyczące wartości oczekiwanej (1 próbka).

Testy dotyczące wartości oczekiwanej (1 próbka). ZASADY TESTOWANIA HIPOTEZ STATYSTYCZNYCH. TESTY DOTYCZĄCE WARTOŚCI OCZEKIWANEJ Przez hipotezę tatytyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu intereującej na cechy. Hipotezy

Bardziej szczegółowo

Może faktycznie ceny na Opolszczyźnie są wyższe niż w Polsce. Ceny na Opolszczyźnie są podobne, a akurat trafiliśmy na próbę droższych piekarni.

Może faktycznie ceny na Opolszczyźnie są wyższe niż w Polsce. Ceny na Opolszczyźnie są podobne, a akurat trafiliśmy na próbę droższych piekarni. Statystyczne testowanie hipotez: procedura, która pozwala ocenić hipotezę na temat parametru populacji w oparciu o statystykę próby. Zauważyliśmy, że ceny pieczywa w Opolu są wyższe niż gdzie indziej w

Bardziej szczegółowo

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6 Zad. 1. Zbadano wydajność odmiany pomidorów na 100 poletkach doświadczalnych. W wyniku przeliczeń otrzymano przeciętną wydajność na w tonach na hektar x=30 i s 2 x =7. Przyjmując, że rozkład plonów pomidora

Bardziej szczegółowo