Rysunek 1. Udowodnij, że AB CD = BC DA. Rysunek 2. Po inwersji o środku w punkcie E. Rysunek 3. Po inwersji o środku w punkcie A

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rysunek 1. Udowodnij, że AB CD = BC DA. Rysunek 2. Po inwersji o środku w punkcie E. Rysunek 3. Po inwersji o środku w punkcie A"

Transkrypt

1 g H e D c H' E g' h e' O d A C' d' C A' F' f' I' G' B' G I F f INWERSJA Inwersją o środku O i promieniu r nazywamy takie przekształcenie płaszczyzny (bez punktu O), które każdemu punktowi X O przyporządkowuje punkt X, taki, że X leży na półprostej OX, oraz OX OX = r 2. Wygodnie też myśleć o inwersji, że przekształca płaszczyznę (już teraz z punktem O) z dołączonym punktem w siebie, wtedy O. Kilka faktów o inwersji: (1) (X ) = X; (2) X = X wtedy i tylko wtedy, gdy X leży na okręgu o środku w punkcie O i promieniu r; (3) trójkąt OAB jest podobny do trójkąta OB A ; (4) A B AB r2 = OA OB, OA = r2 OA, AB = A B r 2 r2 OA, OA = OB OA ; (5) Dowolna inwersja o środku w punkcie O przeprowadza (a) prostą przechodzącą przez punkt O w siebie, (b) prostą nieprzechodzącą przez O na okrąg przechodzący przez O, (c) okrąg nieprzechodzący przez punkt O na okrąg nieprzechodzący przez punkt O, (d) okrąg przechodzący przez punkt O na prostą nieprzechodzącą przez punkt O (6) okrąg prostopadły do okręgu o środku w punkcie O i promieniu r przechodzi na siebie. (Dwa okręgi są prostopadłe, gdy przecinają się w dwóch punktach i styczne poprowadzone w tych punktach są prostopadłe, przechodzą więc przez środki tych okręgów. Wystarczy oczywiście sprawdzić prostopadłość jednej pary tych stycznych.) (7) inwolucja zachowuje kąty między krzywymi. Uwaga(!), nie oznacza to, że <) ABC =<) A B C. Należy rozumieć to w następujący sposób: kąt między prostymi AB i BC jest taki sam, jak kąt między krzywymi, na które przeszły te proste (mogą to być dwie proste, lub dwa okręgi, lub prosta i okrąg). I pozostałe możliwości, n.p. kąt między łukiem (pewnego okręgu) AB i odcinkiem BC jest taki sam, jak kąt między krzywymi, na które przeszedł łuk AB i odcinek BC (znowu mogą to być łuki, odcinki, lub mieszanie). (8) inwolucja zachowuje liczbę punktów wspólnych (przy czym trzeba pamietać, albo bierzemy pod uwagę zarówno punkt O jak i (który należy do każdej prostej i każdej nieograniczonej figury), albo nie liczymy ale wtedy też nie liczymy punktu O). Znając te fakty (niektóre z nich są bardzo łatwe do udowodnienia (na przykład (1) (4)), niektóre bardziej zaawansowane), można (niektóre) trudne zadania z geometrii zamienić na banalne. Na górze strony rysunek, który ma zilustrować co na co przechodzi. (Zamiast gwiazdek są tam primy), obiekty tego samego koloru przechodzą na siebie. (B = B - patrz punkt (2), kolor czerwony - patrz (5)(a), kolor różowypatrz (5)(b), kolor niebieski i zielony- patrz punkt (5)(c), kolor pomarańczowy- patrz punkt (5)(d) 1

2 2 Rysunek 1. Udowodnij, że AB CD = BC DA Rysunek 2. Po inwersji o środku w punkcie E Rysunek 3. Po inwersji o środku w punkcie A Rozwiążemy teraz zadanie z rysunku 1., które po zastosowaniu inwersji zrobi się banalne. Możemy wybrać inwersję o środku w punkcie A lub B lub C lub D lub E lub F, promień nieistotny. Gdy wybierzemy inwersję o środku E lub F, to korzystając z (4), dostajemy (po skróceniu), że teza jest równoważna A B C D = B C D A. Rysunek 2. pokazuje obrazy okręgów po inwersji, łatwo stwierdzić, co na co przechodzi, zielony i niebieski okrąg przechodzą na proste nieprzechodzące przez E, ale ponieważ nie miały punktów wspólnych (gdy myślimy o płaszczyźnie bez punktu O), to ich obrazy to proste równoległe. Okrąg czerwony i czarny przejdą na okręgi, ponadto zachowa się liczba punktów wspólnych, czyli obrazy czerwonego i czarnego okręgu są styczne do prostej niebieskiej i zielonej i do siebie. Gdy rozważymy inwersję o środku w punkcie na przykład A, i zastosujemy wzory z punktu (4), po skróceniu dostajemy, że teza jest równoważna C D = B C. Rysunek 3. pokazuje obrazy po inwersji, zauważmy, ze okręgi czerwony i czarny przechodzą na proste, muszą być one równoległe, gdyż okręgi te miały tylko jeden punkt wspólny O(który się nie liczy), okręgi zielony i niebieski przechodzą na okręgi, ponadto liczba punktów wspólnych musi się zgadzać, więc przechodzą one na okręgi styczne do prostej czerwonej i czarnej, i do siebie. Proszę spróbować przeliczyć na podstawie (4) czemu będzie równoważna teza przy zastosowaniu inwersji o pozostałych wymienionych środkach i zobaczyć, że jest ona równie banalna, jak w tych dwóch przykładach.

3 3 Rysunek 4. Ilustracja do zadania 2. Zadanie 1. Dany jest czworokąt ABCD. Udowodnić, że zachodzi nierówność AB CD + BC DA AC BD, przy czym równość zachodzi wtedy i tylko wtedy, gdy na ABCD można opisać okrąg. To zadanie nie wymaga nawet rysunku. Rozważamy inwersję o środku w punkcie A (każdy punkt jest tu jednakowo ważny, więc wybierając inny rozwiązanie nie zmieni się istotnie). Zgodnie z punktem (4) przeliczamy czemu będzie równoważna teza: co po skróceniu daje r 2 A B C D r 2 AC AD + B C r 2 AB AC r 2 AD C D + B C B D. r2 AC B D r 2 AB AD Jest to oczywiste (nierówność trójkąta), widzimy też, że równość zachodzi wtedy i tylko wtedy, gdy punkty B, C, D leżą na jednej prostej, a to ma miejsce wtedy i tylko wtedy, gdy okrąg przechodzący przez B, C, D, przechodził przez środek inwersji, czyli przez punkt A (czyli, gdy A, B, C, D leżały na jednym okręgu). Zadanie 2. Niech ω będzie półokręgiem o średnicy P Q. Okrąg k jest styczny wewnętrznie do ω i do średnicy P Q w punkcie C. Niech AB będzie odcinkiem stycznym do k prostopadłym do P Q oraz takim, że A leży na ω a B na odcinku CQ. Udowodnić, że AC jest dwusieczną kąta <) P AB. Przypomnę, że przestrzegałam, przed złym rozumieniem twierdzenia inwersja zachowuje kąty między krzywymi, nie jest prawdą, że (dla inwersji o środku O, i punktów A O, B O, C O) <) ABC =<) A B C, ale przypomnę punkt (3), z podobieństwa trójkątów wynika, że <) OAB =<) OB A. Wracam do oznaczeń zadania 2. W zadaniu 2. mamy pokazać równość kątów <) P AC =<) CAB, jeśli chcemy to zadanie rozwiązać przez inwersję, wygodnie będzie przyjąć jako środek punkt C jest na ramieniu tych kątów, będziemy wiedzieli, że <) P AC =<) A P C i <) CAB =<) CB A. Rysunek po inwersji rozpocznijmy od prostej P Q przejdzie na siebie, zmieni się tylko kolejność punktów Q i B (teraz Q jest bliżej C niż B ), obraz okręgu k, czyli k - będzie to prosta, wiemy też, że równoległa do prostej P C (czyli do prostej P C). Obraz ω będzie to fragment okręgu nieprzechodzącego przez C, wiemy też, ze będzie styczny do k i wiemy, że kąt między ω a prostą P Q był prosty, więc kąt między ω a prostą P Q też będzie prosty wniosek: ω jest półokręgiem. No i ostatecznie zajmijmy się obrazem odcinka AB. Będzie to fragment okręgu przechodzącego przez C, styczny do k i prostopadły do prostej P Q, czyli to też półokrąg(!). Na rysunku 4. sytuacja przed i po inwersji. Teza znowu się strywializowała. Można też jako środek inwersji wybrać punkt A, wtedy rozważyć kąty. Albo B, wymaga trochę rachunków (prostych), aby przeliczyć tezę równoważną do P C P A rachunków (równie prostych) i też sprawdzamy P C P A = CB BA. = CB BA. Wybranie jako środka punktu P też wymaga trochę

4 4 Rysunek 5. Po inwersji i szkic dowodu Zadanie 3. Dany jest trójkąt ABC. Punkty E i F leżą na prostej AB oraz spełniają równości AB + BC + CA CE = CF =. 2 Udowodnić, że okrąg opisany na trójkącie EF C jest styczny do okręgu dopisanego do boku AB trójkąta ABC. To jedno z trudniejszych zadań. Najpierw jak wykonać rysunek do zadania. Zauważmy, że z nierówności trójąta mamy AB + BC > AC, skąd AB+BC+CA 2 > AC, czyli CE = CF > AC i podobnie CE + CF > CB, skąd wniosek, że punkty E i F należy narysować na zewnątrz odcinka AB. W tym zadaniu wyjątkowo wybierzemy starannie i środek i promień inwersji. Niech środkiem będzie punkt C a r = CE = CF. Okrąg dopisany, o którym mowa w zadaniu na zwijmy k. Oznaczmy punkty styczności okręgu k z prostymi CA, AB, BC odpowiednio U, V, W. Ponieważ AU = AV i BV = BW, wnosimy, że CU + CW = obwodowi trójkąda ABC, a ponieważ CU = CW, to CU = CW = CE = CF = r. Punkty U i W leżą zatem na okręgu inwersyjnym. Nazwijmy okrąg inwersyjny ω. Zauważmy, że styczne CU i CW do okręgu k przechodzą przez środek okręgu ω, więc okręgi ω i k są prostopadłe, z punktu (6) wiemy, że obrazem okręgu k będzie on sam. Okrąg opisany na trójkącie CEF przechodzi na prostą przechodzącą przez punkty E = E i F = F czyli na prostą AB. Okrąg k przechodzi na siebie. Okrąg k i prosta AB mają jeden punkt wspólny, więc ich obrazy inwersyjne: okrąg k i okrąg opisany na trójkącie CEF, mają też jeden punkt wspólny. A to właśnie należało pokazać. Zadanie 4. Okręgi O 1 i O 2 przecinają się w punktach A i B. Okrag O 3 przechodzi przez punkt A i przecina okręgi O 1 i O 2 odpowiednio w punktach C i D, punkty B, C, D leżą na okręgu O 4. Wykaż, że kąt między okręgami O 1 i O 2 jest taki sam, jak kąt pomiędzy okręgami O 3 i O 4. Rozważmy inwersję o środku w punkcie A. Wtedy okręgi O 3, O 1 i O 2 przechodzą na proste (z liczby punktów wspólnych wnosimy, że utworzą one trójkąt C D B ), okrąg O 4 przechodzi na okrąg opisany na trójkącie B C D. Należy wykazać, że kąt między prostymi C B a D B jest taki sam, jak między prostą C D a okręgiem B C D. Zadanie zrobiło się łatwe. Zobacz rysunek 5.

5 5 Rysunek 6. Przed inwersją Rysunek 7. Po inwersji Zadanie 5. Punkt R należy do okręgu O. F to jego rzut na średnicę P Q. Okrąg o średnicy F R przecina okręgi o średnicach P F i F Q odpowiednio w punktach S i T. Wykaż, że trójki punktów P, S, R oraz Q, T, R są współliniowe. Wygodnie rozważyć jako środek inwersji punkt F (aż trzy okręgi się rozprostują ). Okręgi P F S, F QT przechodzą na proste równoległe (gdyż mają jeden punkt wspólny F ), prostopadłe do prostej P Q (która przechodzi sama na siebie), prosta F R też przechodzi sama na siebie. Okrąg F T RS przechodzi na prostą równoległą do prostej P Q (bo miał z nią tylko punkt wspólny F ). Po inwersji dostajemy dwie proste równoległe przecięte trzema prostymi do nich prostopadłymi. Na prostokącie F R S P można opisać okrąg, jego obrazem inwersyjnym jest prosta przechodząca przez punkty P, S, R są one więc współliniowe. Na prostokącie F Q T R też można opisać okrąg, jego obrazem inwersyjnym jest prosta przechodząca przez punkty Q, T, R są one więc współliniowe. Na rysunku 6. sytuacja przed a na rysunku 7. po inwersji.

6 6 Rysunek 8. Przed i po inwersji o środku w punkcie A Zadanie 6. Dane są cztery nieprzecinające się okręgi S 1, S 2, S 3, S 4 takie że S 1 styczne do S 2 w A, S 2 styczne do S 3 w B, S 3 styczne do S 4 w C a S 4 styczne do S 1 w D. Udowodnić, że A, B, C, D leżą na jednym okręgu. Wybieramy środek inwersji, na przykład A. Okręgi S 1 i S 2 przechodzą na proste równoległe (bo miały jeden punkt wspólny A), okręgi S 3 i S 4 na okręgi styczne do siebie, i do odpowiednich prostych. Patrz rysunek 8.. Łatwo widać, że punkty D, C, B leżą na jednej prostej nie przechodzącej przez A (A jest międy prostymi i nie wewnątrz okręgów), więc C, D, B leżą na okręgu przechodzącym przez A, co było do wykazania. Zadanie 7. Niech k 1, k 2, k 3 i k 4 będą czterema różnymi okręgami takimi, że k 1 i k 3 są styczne zewnętrznie w punkcie P oraz k 2 i k 4 są styczne zewnętrznie w tym samym punkcie P. Okrąg k 1 przecina okrąg k 2 w punktach P i A, k 2 przecina k 3 w punktach P i B, k 3 przecina k 4 w punktach P i C a k 4 przecina k 1 w punktach P i D. Udowodnij, że AB BC AD DC = P B2 P D 2. Jak łatwo się domyślić, rozważamy inwersję o środku w punkcie P. Mamy dwie pary okręgów stycznych o punkcie styczności P, przejdą one na dwie pary prostych równoległych. Po inwersji dostaniemy równoległobok A B C D, a zastosowanie punktu (4) da nam tezę w postaci równoważnej A B B C = A D D C.

7 7 Zadanie 8. Okrąg o środku w punkcie S i wpisany w czworokąt wypukły ABCD jest styczny do boków AB, BC, CD, DA odpowiednio w punktach K, L, M, N. Proste KL i MN przecinają się w punkcie T. Wykaż, że proste BD i ST są prostopadłe. Ciekawe zadanie dlatego, że wykorzystamy obraz inwersyjny tylko wybranych obiektów. Rozważmy inwersję względem danego okręgu, nazwijmy go o. Obrazem prostem M N jest okrąg przechodzący przez S, nazwijmy go ω. Należą do niego także punkty M i N (bo są na okręgu inwersyjnym, czyli M = M i N = N, i były na prostej MN). Należy do niego też punkt T, bo T był z prostem MN. AD i DC są stycznymi do okręgu o, więc <) SND i <) DMS są proste. A to oznacza, że na czworokącie SNDM można opisać okrąg, będzie to oczywiście ten sam okrąg, który jest opisany na SNM, czyli okrąg ω. Wnosimy, że SD jest średnicą okręgu ω. A to oznacza, że <) ST D jest prosty. Podobnie (rozważając tym razem prostą KL) pokazujemy, że <) ST B jest prosty. Co implikuje, że T należy do prostej BD, oraz BD jest prostopadła do ST, czyli także do ST (bo prosta ST i ST to ta sama prosta). Uwaga. To zadanie pochodzi z XLVII OM (II etap), porównaj rozwiązanie bez inwersji: Zadanie 9. Sieczne BC i B C okręgu o środku O przecinają się w punkcie A leżącym na zewnątrz okręgu i są symetryczne względem prostej OA. Punkt D jest punktem przecięcia odcinków BC i B C (i, ze względu na symetrię, odcinka OA). Udowodnij, że D jest obrazem A (i A jest obrazem D) w inwersji względem rozważanego okręgu. Analizując miary kątów wpisanego i środkowego opartego na łuku CC wnioskujemy, że <) CBC = 1 2 <) COC, skąd <) ABD =<) AOC. Trójkąty BAD i OAC są zatem podobne, skąd BA AC = AD OA. Oznaczmy E punkt styczności stycznej do okręgu przechodzącej przez punkt A. Wiemy, że AE 2 = AB AC, oraz z twierdzenia Pitagorasa AE 2 + r 2 = AO 2. Zatem AD OA = BA AC = AE 2 = AO 2 r 2, skąd r 2 = AO(AO AD) = AO OD.

Inwersja w przestrzeni i rzut stereograficzny zadania

Inwersja w przestrzeni i rzut stereograficzny zadania Inwersja w przestrzeni i rzut stereograficzny zadania Rozważmy sferę S o środku O i promieniu R. Inwersją względem sfery S nazywamy przekształcenie, które przekształca punkt A na punkt A leżący na półprostej

Bardziej szczegółowo

Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów

Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje

Bardziej szczegółowo

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE

PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE Dane będę rysował na czarno. Różne etapy konstrukcji kolorami: (w kolejności) niebieskim, zielonym, czerwonym i ewentualnie pomarańczowym i jasnozielonym. 1. Prosta

Bardziej szczegółowo

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45 METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 TWIERDZENIE PONCELETA-STEINERA W roku 1833, Szwajcarski matematyk Jakob Steiner udowodnił, że wszystkie klasyczne konstrukcje (za pomocą cyrkla i linijki)

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria 1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona

Bardziej szczegółowo

GEOMETRIA ELEMENTARNA

GEOMETRIA ELEMENTARNA Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych

Bardziej szczegółowo

Kolorowanie płaszczyzny, prostych i okręgów

Kolorowanie płaszczyzny, prostych i okręgów Kolorowanie płaszczyzny, prostych i okręgów Jadwiga Czyżewska Pisane pod kierunkiem W.Guzickiego W 2013 roku na II etapie VIII edycji Olimpiady Matematycznej Gimnazjalistów pojawiło się zadanie o następującej

Bardziej szczegółowo

Podstawowe pojęcia geometryczne

Podstawowe pojęcia geometryczne PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych

Bardziej szczegółowo

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013 Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 013 3.4.1 Inwersja względem okręgu. Inwersja względem okręgu jest przekształceniem płaszczyzny

Bardziej szczegółowo

STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW SZCZYRK 2017

STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW SZCZYRK 2017 STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Obóz Naukowy OMJ Poziom OMJ 207 rok SZCZYRK 207 Olimpiada Matematyczna Juniorów jest wspó³finansowana ze œrodków

Bardziej szczegółowo

LX Olimpiada Matematyczna

LX Olimpiada Matematyczna LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1

Bardziej szczegółowo

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10 Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym

Bardziej szczegółowo

Cztery punkty na okręgu

Cztery punkty na okręgu Tomasz Szymczyk V LO w ielsku-iałej ztery punkty na okręgu Przydatne fakty: (1) kąty wpisane w okrąg oparte na łukach przystających są równe, (2) czworokąt jest wpisany w okrąg wtedy i tylko wtedy, gdy

Bardziej szczegółowo

XIII Olimpiada Matematyczna Juniorów

XIII Olimpiada Matematyczna Juniorów XIII Olimpiada atematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2017 r. 16 października 2017 r.) 1. iczby a, b, c spełniają zależności Wykaż, że a 2 +b 2 = c 2. Szkice

Bardziej szczegółowo

Ćwiczenia z geometrii I

Ćwiczenia z geometrii I Ćwiczenia z geometrii I Dominik Burek 1 stycznia 2013 Zadanie 1. W trójkącie ABC punkt I jest środkiem okręgu wpisanego. Punkt P leży wewnątrz trójkąta oraz: Pokazać, że AP AI. P BA + P CA = P BC + P CB.

Bardziej szczegółowo

Zadania otwarte krótkiej odpowiedzi na dowodzenie

Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest

Bardziej szczegółowo

MiNI Akademia Matematyki na Politechnice Warszawskiej

MiNI Akademia Matematyki na Politechnice Warszawskiej MiNI Akademia Matematyki na Politechnice Warszawskiej Krzysztof Che lmiński Okr egi i styczne MiNI PW, 14.10.2017 Podstawowe twierdzenia wykorzystywane w zadaniach z ćwiczeń Twierdzenie 1 (najmocniesze

Bardziej szczegółowo

Matematyka podstawowa VII Planimetria Teoria

Matematyka podstawowa VII Planimetria Teoria Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMG STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu

Bardziej szczegółowo

ZADANIA NA DOWODZENIE GEOMETRIA, cz. II Wojciech Guzicki

ZADANIA NA DOWODZENIE GEOMETRIA, cz. II Wojciech Guzicki ZNI N OWOZNI GOMTRI, cz. II Wojciech Guzicki W arkuszach maturalnych w ostatnich dwóch latach znalazły się zadania geometryczne na dowodzenie. Za poprawne rozwiązanie takiego zadania w arkuszu podstawowymzdającymógłotrzymać2pkt,warkuszurozszerzonym4pktlub3pkt.przy

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMJ

Treści zadań Obozu Naukowego OMJ STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Treści zadań Obozu Naukowego OMJ Poziom OM 2017 rok SZCZYRK 2017 Olimpiada Matematyczna Juniorów jest wspó³finansowana

Bardziej szczegółowo

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz

Bardziej szczegółowo

Regionalne Koło Matematyczne

Regionalne Koło Matematyczne Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 16 (27.02.2010) Twierdzenia evy i Menelaosa 1.

Bardziej szczegółowo

IX Olimpiada Matematyczna Gimnazjalistów

IX Olimpiada Matematyczna Gimnazjalistów IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;

Bardziej szczegółowo

Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy

Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy Artykuł pobrano ze strony eioba.pl Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy Trójkąt jest wielokątem o trzech bokach Suma miar kątów wewnętrznych trójkąta jest równa 180. +

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15 Kolokwium nr 3: 27.01.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Kolokwium nr 4: 3.02.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Ćwiczenia 13,15,20,22.01.2015 (wtorki, czwartki) 266.

Bardziej szczegółowo

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).

Bardziej szczegółowo

LXI Olimpiada Matematyczna

LXI Olimpiada Matematyczna 1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}

Bardziej szczegółowo

Geometrie Wszechświata. 3. Punkty w nieskończoności 4. Czy Wszechświat jest nieskończony? materiały do ćwiczeń

Geometrie Wszechświata. 3. Punkty w nieskończoności 4. Czy Wszechświat jest nieskończony? materiały do ćwiczeń Geometrie Wszechświata. 3. Punkty w nieskończoności 4. Czy Wszechświat jest nieskończony? materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 16 marzec 2017 Prezentacja multimedialna

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

Zbiór zadań z geometrii przestrzennej. Michał Kieza

Zbiór zadań z geometrii przestrzennej. Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

V Międzyszkolny Konkurs Matematyczny

V Międzyszkolny Konkurs Matematyczny V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie

Bardziej szczegółowo

X Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot

Bardziej szczegółowo

Jednokładność i podobieństwo

Jednokładność i podobieństwo Jednokładność i podobieństwo Adrian Łydka Bernadeta Tomasz Teoria Definicja 1. Iloczynem niezerowego wektora u przez liczbę rzeczywistą s 0 nazywamy wektor v spełniający następujące dwa warunki: 1) v =

Bardziej szczegółowo

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie

Bardziej szczegółowo

rys. 4 BK KC AM MB CL LA = 1.

rys. 4 BK KC AM MB CL LA = 1. Joanna Zakrzewska Wspólny punkt Na najnowszym, trzecim już, plakacie Stowarzyszenia na rzecz Edukacji Matematycznej (zob. www.sem.edu.pl) widnieje dwanaście konfiguracji geometrycznych. Ich wspólną cechą

Bardziej szczegółowo

Metoda siatek zadania

Metoda siatek zadania Metoda siatek zadania 1. (Leningrad 1984) Wykazać, że jeżeli suma kątów płaskich przy wierzchołku S ostrosłupa SA 1 A 2... A n (n 3) jest większa niż 180, to każda z krawędzi bocznych jest mniejsza od

Bardziej szczegółowo

KONSTRUKCJE ZA POMOCĄ CYRKLA. Ćwiczenia Czas: 90

KONSTRUKCJE ZA POMOCĄ CYRKLA. Ćwiczenia Czas: 90 KONSTRUKCJE ZA POMOCĄ CYRKLA Ćwiczenia Czas: 90 TWIERDZENIE MOHRA-MASCHERONIEGO jeżeli dana konstrukcja geometryczna jest wykonalna za pomocą cyrkla i linijki, to jest wykonalna za pomocą samego cyrkla,

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

Czworościany ortocentryczne zadania

Czworościany ortocentryczne zadania Czworościany ortocentryczne zadania 1. Wykazać, że nastepujące warunki są równoważne: a) istnieje przecięcie wysokości czworościanu, b) przeciwległe krawędzie są prostopadłe, c) sumy kwadratów długości

Bardziej szczegółowo

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego

Bardziej szczegółowo

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego

Bardziej szczegółowo

ZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków?

ZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków? PLANIMETRIA 2 ZADANIE 1 W rombie jedna z przekatnych jest dłuższa od drugiej o 3 cm. Dla jakich długości przekatnych pole rombu jest większe od 5cm 2? 1 ZADANIE 2 Czy istnieje taki wielokat, który ma 2

Bardziej szczegółowo

Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7

Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 Geometria Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 W tym przypadku możemy wykonać szkic pięciokąta i policzyć przekątne: Zadanie. Promień okręgu opisanego na kwadracie

Bardziej szczegółowo

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria Definicja 1. Mówimy, że odcinki i CD są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli CD = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:

KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY 7. Planimetria. Uczeń: 1) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych)

Bardziej szczegółowo

Inwersja na płaszczyźnie, własności, konstrukcje, zastosowania

Inwersja na płaszczyźnie, własności, konstrukcje, zastosowania Inwersja na płaszczyźnie, własności, konstrukcje, zastosowania Autor: Rafał Kłoda Opiekun pracy: Bożena Witecka XI Liceum Ogólnokształcące im. Marii Dąbrowskiej os. Teatralne 33 31-948 Kraków tel./fax:

Bardziej szczegółowo

Odległośc w układzie współrzędnych. Środek odcinka.

Odległośc w układzie współrzędnych. Środek odcinka. GEOMETRIA ANALITYCZNA ZADANIA. Odległośc w układzie współrzędnych. Środek odcinka. Zad. 1 Wyznacz odległość między punktami A i B (długość odcinka AB) jeżeli: d = Zad. 2 a) A=(5,-3) B=(-2,3) b) A=(-2,2)

Bardziej szczegółowo

Stereo. (a miejscami nawet surround) 30 stycznia 2014

Stereo. (a miejscami nawet surround) 30 stycznia 2014 Stereo (a miejscami nawet surround) 30 stycznia 2014 To kółko wiele zawdzięcza niezrównanym artykułom Michała Kiezy z Kącika Przestrzennego Delty. Oprócz tego zadania pochodzą z OMów oraz prezentacji Adama

Bardziej szczegółowo

Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć

Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć Kartka papieru i własności trójkątów. Ćwiczenie 1 Uczniowie ustalają ile znają rodzajów trójkątów. Podział ze względu na miary kątów Podział ostrokątny prostokątny rozwartokątny ze względu na długości

Bardziej szczegółowo

Twierdzenia o czworokącie wpisanym w okrąg i o czworokącie opisanym na okręgu.

Twierdzenia o czworokącie wpisanym w okrąg i o czworokącie opisanym na okręgu. Twierdzenia o czworokącie wpisanym w okrąg i o czworokącie opisanym na okręgu. Adrian Łydka Bernadeta Tomasz Teoria Definicja 1. Klasyfikacja czworokątów (wypukłych): Trapez jest czworokątem, w którym

Bardziej szczegółowo

Tomasz Zamek-Gliszczyński. Zadania powtórkowe przed maturą. Zakres podstawowy. Matematyka. atematyka

Tomasz Zamek-Gliszczyński. Zadania powtórkowe przed maturą. Zakres podstawowy. Matematyka. atematyka atematyka Tomasz Zamek-Gliszczyński Matematyka Zadania powtórkowe przed maturą Zakres podstawowy Spis treści Wstęp 4 1 Liczby 5 2 Algebra 24 3 Funkcje 31 4 Ciągi 61 5 Geometria na płaszczyźnie 69 6 Trygonometria

Bardziej szczegółowo

= a + 1. b + 1. b całkowita?

= a + 1. b + 1. b całkowita? 9 ALGEBRA Liczby wymierne Bukiet 1 1. Oblicz wartość wyrażenia 1+ 1 1+ 1 1+ 1 1. 2. Znajdź liczby naturalne a, b, c i d, dla których 151 115 = a + 1 b + 1. c + 1 d 3. W podobny sposób spróbuj przekształcić

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie

Bardziej szczegółowo

Równania prostych i krzywych; współrzędne punktu

Równania prostych i krzywych; współrzędne punktu Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej

Bardziej szczegółowo

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q

Bardziej szczegółowo

LVIII Olimpiada Matematyczna

LVIII Olimpiada Matematyczna LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 23 lutego 2007 r. (pierwszy dzień zawodów) Zadanie. Wielomian P (x) ma współczynniki całkowite. Udowodnić, że jeżeli

Bardziej szczegółowo

Spis treści. Zadania... 7 Algebra... 9 Geometria Teoria liczb, nierówności, kombinatoryka Wskazówki Rozwiazania...

Spis treści. Zadania... 7 Algebra... 9 Geometria Teoria liczb, nierówności, kombinatoryka Wskazówki Rozwiazania... Spis treści Zadania... 7 Algebra... 9 Geometria... 18 Teoria liczb, nierówności, kombinatoryka... 29 Wskazówki... 39 Rozwiazania... 55 Literatura... 135 Dokument pochodzi ze strony www.gwo.pl 9 ALGEBRA

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMG STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2015 rok SZCZYRK 2015 Treści zadań Pierwsze zawody indywidualne

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Mini tablice matematyczne. Figury geometryczne

Mini tablice matematyczne. Figury geometryczne Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku

Bardziej szczegółowo

Praca klasowa nr 2 - figury geometryczne (klasa 6)

Praca klasowa nr 2 - figury geometryczne (klasa 6) Praca klasowa nr 2 - figury geometryczne (klasa 6) MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Dany jest równoległobok ABCD. Narysuj za pomocą linijki i ekierki odcinek BF prostopadły do odcinka

Bardziej szczegółowo

MATURA Przygotowanie do matury z matematyki

MATURA Przygotowanie do matury z matematyki MATURA 2012 Przygotowanie do matury z matematyki Część VII: Planimetria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,

Bardziej szczegółowo

Odbicie lustrzane, oś symetrii

Odbicie lustrzane, oś symetrii Odbicie lustrzane, oś symetrii 1. Określ, czy poniższe figury są swoimi lustrzanymi odbiciami. Jeśli nie, odpowiedź uzasadnij. 2. Dokończ rysunki, tak aby dorysowana część była odbiciem lustrzanym. 3.

Bardziej szczegółowo

Własności punktów w czworokątach

Własności punktów w czworokątach Własności punktów w czworokątach Autor: Michał Woźny Gimnazjum nr 2 im. A. Mickiewicza w Krakowie Opiekun pracy: dr Jacek Dymel Spis treści 1. Wstęp str. 3 2. Badanie punktów będących środkami boków w

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 2 szkice rozwiązań zadań 1. Dana jest taka liczba rzeczywista, której rozwinięcie dziesiętne jest nieskończone

Bardziej szczegółowo

Troszkę Geometrii. Kinga Kolczyńska - Przybycień

Troszkę Geometrii. Kinga Kolczyńska - Przybycień Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Kilka słów o mierzeniu Otóż jak sama nazwa Geometria (z gr geo-ziemia, metria-miara) ma ona coś wspólnego

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria 1 Pomimo, że ten dział, to typowa geometria wydawałoby się trudny dział to paradoksalnie troszkę tu odpoczniemy, jeśli chodzi o teorię. Dlaczego? Otóż jak zapewne doskonale wiesz, na maturze otrzymasz

Bardziej szczegółowo

LXV Olimpiada Matematyczna

LXV Olimpiada Matematyczna LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 8 kwietnia 2014 r. (pierwszy dzień zawodów) Zadanie 1. Dane są względnie pierwsze liczby całkowite k,n 1. Na tablicy

Bardziej szczegółowo

TRÓJKĄTY CIĘCIW. Natalia Ślusarz V Liceum Ogólnokształcące im. Augusta Witkowskiego w Krakowie

TRÓJKĄTY CIĘCIW. Natalia Ślusarz V Liceum Ogólnokształcące im. Augusta Witkowskiego w Krakowie TRÓJKĄTY CIĘCIW Natalia Ślusarz V Liceum Ogólnokształcące im. Augusta Witkowskiego w Krakowie Spis treści 1. Zapoznanie z zagadnieniem 1.1. Co to jest trójkąt cięciw? 2. Twierdzenia dotyczące trójkątów

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Matematyczne G i m n a z j a l i s t ó w Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 10 szkice rozwiazań zadań 1. Rozwiąż układ równań: (x+y)(x+y +z) = 72 (y +z)(x+y +z) = 120 (z +x)(x+y

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Skrypt 33. Powtórzenie do matury:

Skrypt 33. Powtórzenie do matury: Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 33 Powtórzenie do matury:

Bardziej szczegółowo

LVII Olimpiada Matematyczna

LVII Olimpiada Matematyczna Zadanie 1. LVII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 5 kwietnia 2006 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d, e układ równań

Bardziej szczegółowo

Metoda objętości zadania

Metoda objętości zadania Metoda objętości zadania Płaszczyzny i dzielą graniastosłup trójkątny na cztery bryły Znaleźć stosunki objętości tych brył 2 any jest równoległościan o objętości V Wyznaczyć objętość części wspólnej czworościanów

Bardziej szczegółowo

Regionalne Koło Matematyczne

Regionalne Koło Matematyczne Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 3 (2-26.0.2009) Omówienie zadań I serii zawodów

Bardziej szczegółowo

FUNKCJA LINIOWA, OKRĘGI

FUNKCJA LINIOWA, OKRĘGI FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o

Bardziej szczegółowo

KURS MATURA PODSTAWOWA Część 2

KURS MATURA PODSTAWOWA Część 2 KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA. Poziom podstawowy

GEOMETRIA ANALITYCZNA. Poziom podstawowy GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

= [6; 2]. Wyznacz wierzchołki tego równoległoboku.

= [6; 2]. Wyznacz wierzchołki tego równoległoboku. ZADANIE 1 (5 PKT) Wyznacz współrzędne wierzchołków trójkata jeżeli środki jego boków maja współrzędne: P = (1, 3), Q = ( 5, 4), R = ( 6, 7). ZADANIE 2 (5 PKT) Dla jakich wartości parametru α odległość

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o

SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Średnica koła jest o 4 cm dłuższa od promienia. Pole tego koła jest równe 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych

Bardziej szczegółowo

W. Guzicki Zadanie 28 z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie 28 z Informatora Maturalnego poziom rozszerzony 1 W. uzicki Zadanie 8 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 8. any jest sześcian (zobacz rysunek) o krawędzi równej 1. unkt S jest środkiem krawędzi. Odcinek W jest wysokością ostrosłupa

Bardziej szczegółowo

Twierdzenie o podziale odcinków w czworokącie. Joanna Sendorek

Twierdzenie o podziale odcinków w czworokącie. Joanna Sendorek Twierdzenie o podziale odcinków w czworokącie Joanna Sendorek Spis treści Wstęp 2 2 Stosunki odcinków w czworokątach 2 3 Twierdzenie o podziale odcinków w czworokącie 4 4 ibliografia 5 Wstęp W swojej pracy

Bardziej szczegółowo

(a) (b) (c) o1" o2" o3" o1'=o2'=o3'

(a) (b) (c) o1 o2 o3 o1'=o2'=o3' Zad.0. Odwzorowanie powierzchni stożka, walca, sfery oraz punktów leżących na tych powierzchniach. Przy odwzorowaniu powierzchni stożka, walca, sfery przyjmiemy reprezentację konturową, co oznacza, że

Bardziej szczegółowo

Odkrywanie twierdzeń geometrycznych przy pomocy komputera

Odkrywanie twierdzeń geometrycznych przy pomocy komputera Odkrywanie twierdzeń geometrycznych przy pomocy komputera Andrzej Sendlewski WMiI UMK Koło Matematyczne 15 maja 2010 DGS programy komputerowe CINDERELLA ver. 1.4, ver. 2.0 (komercyjna) Circle & Ruler (R.

Bardziej szczegółowo