Geodezja fizyczna i geodynamika

Wielkość: px
Rozpocząć pokaz od strony:

Download "Geodezja fizyczna i geodynamika"

Transkrypt

1 Geodezja fizyczna i geodynamika Powtórka Dr inż. Liliana Bujkiewicz 17 czerwca 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

2 Literatura 1 Geodezja współczesna - Kazimierz Czarnecki, PWN Geodezja fizyczna - Adam Łyszkowicz, Wyd. Uniwersytetu Warmińsko-Mazurskiego w Olsztynie Geodezja fizyczna i grawimetria geodezyjna. Teoria i praktyka - Marcin Barlik, Andrzej Pachuta, Oficyna Wydawnicza Politechniki Warszawskiej Physical Geodesy - Martin Vermeer, mvermeer/mpk-en.pdf 5 Geodesy - Wolfgang Torge, Walter de Gruyter-Berlin-New York 2001 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

3 Geoida powierzchnia ekwipotencjalna najlepiej wpasowana do średniego poziomu mórz i oceanów w danej epoce Powierzchnia ekwipotencjalna powierzchnia stałego potencjału, powierzchnia poziomowa; w każdym punkcie kierunek pionu jest prostopadły do takiej powierzchni N wysokość geoidy lub inaczej odstęp geoidy od elipsoidy odniesienia Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

4 Stałe definiujace geocentryczny system GRS 80 (elipsoida GRS 80 lub elipsoida WGS 84) duża półoś elipsoidy ziemskiej a = m rozmiary i kształt elipsoidy sa takie, aby jej powierzchnia była najlepszym przybliżeniem geoidy geocentryczna stała grawitacyjna GM = Masa elisoidy jest równa masie Ziemi (wraz z atmosfera) m 3 s 2 dynamiczny współczynnik kształtu (spłaszczenia): J 2 = lub spłaszczenie geometryczne: f = 1/298, prędkość katowa Ziemi ω = rad s 1 Elipsoida wiruje wokół małej osi tak, jak wiruje Ziemia doba gwiazdowa T = 2π ω = 23 h 56 4, 091 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

5 Powierzchnia elipsoidy jest z założenia powierzchnia ekwipotencjalna o potencjale U 0 równym potencjałowi geoidy W 0 = U 0 = , 850 m2 s 2 Tak zdefiniowana elipsoida jest nazywana elipsoida ekwipotencjalna lub poziomowa i jednoznacznie definiuje potencjał zwany potencjałem normalnym (normalnym polem siły ciężkości) Część grwitacyjna potencjału normalnego jest rozwiazaniem równania Laplace a (na zewnatrz elipsoidy) U graw(x, y, z) = 0 przy nałożeniu warunku granicznego U = U 0 na powierzchni tej elipsoidy. Rozwiazanie dla U graw i U znajduje się w zmiennych elipsoidalnych. W praktyce używa się przybliżonego rozwinięcia w harmoniki sferyczne [ U = GM 4 ( ) a 2n 1 J 2nP 2n(sin φ)] + 1 r r 2 ω2 r 2 cos 2 φ n=1 J 2 = 1082, J 4 = 2, J 6 = 0, J 8 = 0, Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

6 Kierunek wektora przyspieszenia jest kierunkiem prostopadłym do powierzchni ekwip. (kierunek normalny, kierunek pionu) ( U γ = U = x, U y, U ), γ = du z dh Potencjał dla masy punktowej M: U(r) = GM r Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

7 Przybliżenie rzeczywistego potecjału Ziemi przedstawia się w postaci rozwinięcie w harmoniki sferyczne (funkcje kuliste) i przez określenie model rozumie się odpowiedni zestaw współczynników C nm oraz S nm (np. EGM96) V = GM r [ 360 n 1 + n=2 m=0 ( ) a n ( Cnm cos(mλ) + S nm sin(mλ) ) Pnm(cos θ)] r Źródło: Martin Vermeer Physical Geodesy Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

8 Potencjał grawitacyjny od niewielkiej masy m w odległosci l : V = Gm l V = i V i = i G m i l i V = G Z dm l m = σ(x, y, z) v = σ(x, y, z) x y z dm = σ(x, y, z)dxdydz Jeśli P(x P, y P, z P ), a element masy dm jest w punkcie (x, y, z), to l = (x x P ) 2 + (y y P ) 2 + (z z P ) 2 G Z V(x P, y P, z P ) = σ(x, y, z)dxdydz (x xp ) 2 + (y y P ) 2 + (z z P ) 2 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

9 V = GM r [ 360 n 1 + n=2 m=0 Współczynniki rozkładu mas ( ) a n ( Cnm cos(mλ) + S nm sin(mλ) ) Pnm(cos θ)] r C nm = 1 (n m)! κ M (n + m)! Z ( r ) n P nm(cos θ ) cos(mλ )σ(r, φ, λ )dv dv jest elementem objętości, σ(r, φ, λ ) jest gęstościa. Analogicznie S nm =... sin(mλ )... Widać, że S n0 = 0 dla wszystkich n Współczynniki te wyznaczane sa na podstawie pomiarów satelitarnych (np. z analizy orbit satelitów), jak również na podstawie danych grawimetrycznych zebranych na powierzchni Ziemi. a Z Brak n = 1 w sumie: poczatek układu odniesienia pokrywa się ze środkiem masy Ziemi i stad C 10, C 11, S 10, S 11 0 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

10 Momenty bezwładności i momenty dewiacyjne: A = I xx B = I yy C = I zz D = I yz E = I xz F = I xy Np. A = I xx = 1 M ( y 2 + z 2) dm F = I xy = 1 (xy)dm M Z Oś z pokrywa się z osia maksymalnego głównego momentu bezwładności (C): Spłaszczenie Ziemi : C 20 = C A+B 2 Ma 2 = 5 C 20 = 1, C 21 E 0 S 21 D 0 C 22 = B A 4Ma 2 S 22 = 10 6 F = Ma2 ( 10 9) J 2 = C 2 = C 20 f = 3 2 J a 2 ω 3 2 GM Stad J 2 nazywany jest spłaszczenem dynamicznym Ziemi (jest parametrem dla GRS 80) Z Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

11 W = GM r z modelu geopotencjału: T, N, ξ, η [ n ( ) a n 1 + ( Cnm cos(mλ) + S nm sin(mλ) ) Pnm(sin φ)] + 1 r 2 ω2 r 2 cos 2 φ n=2 m=0 [ U = GM ( ) a 2n 1 J 2nP 2n(sin φ)] + 1 r r 2 ω2 r 2 cos 2 φ n=1 Potencjał zakłócajacy: T(r, φ, λ) = W U = GM r n ( ) a n ( C nm r cos(mλ) + S nm sin(mλ) ) Pnm(sin φ) n=2 m=0 gdzie np. C k,0 = C k,0 (EGM 96) ( C k,0 (GRS 80)) dla k = 2, 4, 6, 8. J k C k,0 Wysokość geoidy: wyszukanie punktów w przestrzeni, dla których potencjał W równy jest U 0 metoda iteracyjna; N = T P γ Q wzór Brunsa N 1 (λ, ϕ) = T(0, λ, ϕ) γ(0, ϕ) = GM rγ(0, ϕ) n n=2 m=0 ( ) a n ( C nm cos(mλ) + S nm sin(mλ) ) Pnm(sin φ) r w powyższym wzorze r takie, aby punkt (r, ϕ, λ) był na elipsoidzie zerowej Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

12 W = V+V od = GM r [ 1 + n MAX n n=2 m=0 ( ) a n ( Cnm cos(mλ) + S nm sin(mλ) ) Pnm(cos θ)] + 1 r 2 ω2 r 2 cos 2 φ Potencjał zakłócajacy (w danym punkcie) T = W U W szczególności w dowolnym punkcie P na geoidzie: T P = W 0 U P Różnica ta eliminuje potencjał siły odśrodkowej, więc to, co pozostaje jest funkcja harmoniczna na zewnatrz mas. T = 0 2 T x T y T z 2 = 0 warunek graniczny dla potencjału zakłócajacego - podstawowe równanie grawimetrii g = T n + 1 γ γ n T Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

13 Zagadnienie mieszane dla T w przybliżeniu sferycznym: 2 T x T y T z 2 = 0 T r 2 r T = g Anomalia grawimetryczna: g = g P γ Q Rozwiazanie zagadnienia polega na znalezieniu funkcji T(x, y, z), która jest harmoniczna na zewnatrz geoidy, a na geoidzie kombinacja jej wartości i jej pochodnej radialnej jest równa anomalii grawimetrycznej. Zakłada się, że nie ma mas nad geoida - redukcje usuwaja masy na różne sposoby deformujac potencjał, co nazywa się efektem pośrednim: przesunięcie geoidy co-geoida; wzór Brunsa: δn = δv γ Jeśli w takim podejściu uda się wyznaczyć T, to jest też W = T + U. Również wyznaczy się odstęp geoidy od elipsoidy inna postać wzoru Brunsa: N = T P γ Q Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

14 T z danych grawimetrycznych Rozwiazaniem tego zagadnienia jest całka Stokesa: T(φ, λ, r) = R S(ψ, r) g(φ, λ )dσ, 4π σ Dla geoidy w przybliżeniu sferycznym r = R (średni promień Ziemi): T(φ, λ) = R S(ψ) g(φ, λ )dσ, 4π σ gdzie funkcja Stokesa: S(ψ) = 1 sin ψ 2 6 sin ψ ( cos ψ 3 cos ψ ln sin ψ 2 + ψ ) sin2 2 ψ - odlegość katowa między punktami (φ, λ) i (φ, λ ), g(φ, λ ) - wartość anomalii grawimetrycznej w punkcie (φ, λ ), a całkowanie wykonywane jest po sferze jednostkowej. Ze wzoru Brunsa N = T γ N(φ, λ) = R 4πγ σ S(ψ) g(φ, λ )dσ Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

15 Aby wyznaczyć wysokość geoidy w danym punkcie P Ziemi, należy wysumować (wycałkować) anomalie grawimetryczne z całej powierzchni Ziemi N(φ P, λ P ) = R 4πγ σ S(ψ) g(φ, λ )dσ N(φ P, λ P ) R 4πγ S(ψ P i ) g(φ i, λ i ) σ i gdzie γ jest średnim dla Ziemi przyspieszeniem normalnym, a funkcja Stokesa S(ψ) pełni tu rolę funkcji wagowej dla anomalii grawitacyjnych. i Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

16 Redukcje: Bouguera i Poincarego-Preya Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

17 ODCHYLENIE PIONU - kat θ, jaki tworza kierunki wektorów przyspieszeń g 0 i γ e Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

18 dn = θ ds N 2 N 1 θ s 12 Rzut odchylenia pionu na dowolny kierunek: N 2 N 1 ε s 12 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

19 Składowe odchylenia pionu: ξ rzut θ na południk (składowa północ-południe) η rzut θ na pierwszy wertykał (składowa wschód-zachód) ξ = Φ ϕ, η = (Λ λ) cos ϕ Φ, Λ współrzędne astronomiczne; ϕ szerokość geodezyjna Odchylenie w azymucie α: ε = ξ cos α + η sin α Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

20 Wzory Vening-Meinesza - składowe odchylenia pionu z danych grawimetrycznych ξ = 1 N R ϕ η = 1 N R cos ϕ λ ξ = 1 4πγ 2π π g(ψ, α)q(ψ) cos α dψdα 0 η = 1 4πγ 0 2π π g(ψ, α)q(ψ) sin α dψdα 0 0 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

21 Wysokości geopotencjalne, ortometryczne i normalne Liczba geopotencjalna C = W 0 W P = jednostka geopotencjalna: P gdh 1.g.p.u. = 1kgal 1m w tym systemie punkty leżace na tej samej powierzchni ekwipotencjalnej geopotencjału (tzn. dla których potencjał Ziemi jest taki sam) maja tę sama wysokość. Wysokość ortometryczna (punktu P) odległość (punktu P) od geoidy (od poziomu morza) mierzona wzdłuż linii pionu rzeczywistego pola ciężkości Ziemi. Inaczej: jest to różnica potencjałów dla punktu P i poziomu morza podzielona przez przeciętna wartość przyspieszenia siły ciężkości wzdłuż linii pionu rzeczywistego 0 Wysokość normalna jest to różnica potencjałów dla puntu P i poziomu morza podzielona przez przeciętna wartość przyspieszenia normalnego wzdłuż linii pionu pola normalnego Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

22 Wysokość ortometryczna H P = W 0 W P ḡ = C ḡ zwiazek wysokości ortometrycznej z liczba geopotencjalna Z pomiarów w ciagu niwelacyjnym wyznaczone jest C (= g i h i, C nie zależy od drogi łacz acej punkty 0 i P). Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

23 Wysokość normalna Koncepcja Mołodeńskiego wyznaczania wysokości (i ogólnie figury Ziemi) zwiazanie wysokości z elipsoida odniesienia i polem normalnym, aby obejść problemy zwiazane z nieznanym dokładnie rozkładem mas pod powierzchnia Ziemi H n = C γ = W 0 W P γ = U 0 U Q γ zwiazek wysokości normalnej z liczba geopotencjalna: γ jest wartościa średnia przyspieszenia normalnego na linii pionu pola normalnego. Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

24 Zwiazek między wysokościa geodezyjna (elipsoidalna) h, wysokościa geoidy N i wysokościa ortometryczna H: h = N + H Zwiazek między wysokościa geodezyjna (elipsoidalna) h, anomalia wysokości ζ i wysokościa normalna H: h = ζ + H n Zależność między wysokościa geoidy N a anomalia wysokości ζ: N ζ = g B H γ quasi-geoida - powierzchnia zbliżona do geoidy taka, że jej odległość od elipsoidy odniesienia w każdym punkcie dana jest przez odpowiednia wartość ζ. Quasi-geoida nie jest powierzchnia ekwipotencjalna. Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

25 Potencjał pływowy Księżyca w układzie geocentrycznym V p (ζ) = D K 4 3 P 2(cos ζ), gdzie D K = 3 4 GM R 2 K r 3 K jest stała pływowa Doodsona (dla Księżyca) ζ kat zenitalny, pod jakim z danego punktu Ziemi w danej chwili widoczny jest Księżyc Z V P wydziela się składniki zmieniajace się bardzo wolno, w szczególności tzw. pływ stały (permanent tide) ( 1 V perm D K 2 sin2 ε 1 ) ( ) 3 sin 2 ϕ 1 3 ε inklinacja względem płaszczyzny równika ziemskiego (od około 18 do 28 stopni ) Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

26 Poprawki pływowe Kwestia części permanentnej potencjału sił pływowych wielkości geodezyjne takie, jak wysokość geoidy, moga być w zwiazku z tym efektem redukowane na trzy sposoby: usuwa się zupełnie wpływ pola grawitacyjnego ciał niebieskich, ale nie koryguje się wywołanych przez nie deformacji Ziemi uzyskana geoida to geoida zerowa ( zero-geoid ) koryguje się deformacje Ziemi na podstawie modelu Ziemi elastycznej (liczby Love a) i usuwa wpływ pola grawitacyjnego ciał niebieskich uzyskana geoida to geoida uwolniona od pływów ( tide-free geoid ); nie mozna jednak empirycznie potwierdzić, czy model Ziemi elastycznej jest poprawny wcale nie sa redukowane uzyskana powierzchnia jest powierzchnia w równowadze w sensie hydrodynamicznym (i dlatego najlepsza powierzchnia dla celów oceanograficznych) nazywana jest geoida średnia ( mean geoid") Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca / 26

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 21 listopada 2018 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 21

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 4 maja 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 4 maja

Bardziej szczegółowo

Geodezja fizyczna. Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz. 8 listopada 2018

Geodezja fizyczna. Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz. 8 listopada 2018 Geodezja fizyczna Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz 8 listopada 2018 Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada 2018 1 / 24 Literatura 1 Geodezja współczesna

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Potencjał normalny. Potencjał zakłócajacy. Podstawowe równanie geodezji fizycznej. Dr inż. Liliana Bujkiewicz 4 czerwca 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Odchylenie pionu Dr inż. Liliana Bujkiewicz 17 czerwca 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 17 czerwca 2017 1 / 24 Literatura 1 Geodezja współczesna

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Anomalie grawimetryczne Redukcje i poprawki Liliana Bujkiewicz WPPT PWr Liliana Bujkiewicz (WPPT PWr) Geodezja fizyczna i geodynamika 1 / 10 Literatura 1 Geodezja współczesna

Bardziej szczegółowo

Geodezja fizyczna. Siła grawitacji. Potencjał grawitacyjny Ziemi. Modele geopotencjału. Dr inż. Liliana Bujkiewicz. 23 października 2018

Geodezja fizyczna. Siła grawitacji. Potencjał grawitacyjny Ziemi. Modele geopotencjału. Dr inż. Liliana Bujkiewicz. 23 października 2018 Geodezja fizyczna Siła gawitacji. Potencjał gawitacyjny iemi. Modele geopotencjału. D inż. Liliana Bujkiewicz 23 paździenika 2018 D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika 2018 1 / 24

Bardziej szczegółowo

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO...

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO... Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO....................... XI 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ..................... 1 Z historii geodezji........................................ 1 1.1. Kształt

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Wstęp. Potencjał gawitacyjny iemi. Modele geopotencjału. D inż. Liliana Bujkiewicz 27 maca 2017 D inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 27 maca 2017 1

Bardziej szczegółowo

Geodezja fizyczna i grawimetria geodezyjna. Teoria i praktyka

Geodezja fizyczna i grawimetria geodezyjna. Teoria i praktyka Zapraszamy do sklepu www.sklep.geoezja.pl I-NET.PL Sp.J. o. GeoSklep Olsztyn, ul. Cementowa 3/301 tel. +48 609 571 271, 89 670 11 00, 58 7 421 571 faks 89 670 11 11, 58 7421 871 e-mail sklep@geodezja.pl

Bardziej szczegółowo

Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"

Układ współrzędnych dwu trój Wykład 2 Układ współrzędnych, system i układ odniesienia Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane

Bardziej szczegółowo

1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18

1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18 : Przedmowa...... 11 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ Z historii geodezji... 13 1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18 1.2.

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich.

Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Wykład 1 Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Dr inż. Sabina Łyszkowicz Wita Studentów I Roku Inżynierii Środowiska na Pierwszym Wykładzie z Geodezji wykład 1

Bardziej szczegółowo

Quasi-geoida idealnie dopasowana czy idealnie grawimetryczna

Quasi-geoida idealnie dopasowana czy idealnie grawimetryczna Katedra Geodezji i Astronomii Geodezyjnej Wydział Geodezji i Kartografii Politechnika Warszawska Quasi-geoida idealnie dopasowana czy idealnie grawimetryczna Tomasz Olszak, Dominik Piętka, Ewa Andrasik

Bardziej szczegółowo

ostatnia aktualizacja 4 maja 2015

ostatnia aktualizacja 4 maja 2015 ostatnia aktualizacja 4 maja 2015 strona 1 Ziemia nie jest sztywna! Jest elastyczna, lepka, sprężysta... strona 2 punktu Początkowy potencjał w punkcie A W A strona 3 punktu Początkowy potencjał w punkcie

Bardziej szczegółowo

KARTA MODUŁU / KARTA PRZEDMIOTU A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU

KARTA MODUŁU / KARTA PRZEDMIOTU A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Geodezja globalna i podstawy astronomii Nazwa modułu w języku angielskim

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Układ Ziemia - Księżyc T.J. Jopek jopek@amu.edu.pl IOA UAM 2013-01-24 T.J.Jopek, Fizyka i chemia Ziemi 1 Ruch orbitalny Księżyca Obserwowane tarcze Księżyca 2013-01-24 T.J.Jopek,

Bardziej szczegółowo

Kod modułu Geodezja wyższa i astronomia geodezyjna. kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy)

Kod modułu Geodezja wyższa i astronomia geodezyjna. kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Geodezja wyższa i astronomia geodezyjna Nazwa modułu w języku angielskim

Bardziej szczegółowo

Wykład 2 Układ współrzędnych, system i układ odniesienia

Wykład 2 Układ współrzędnych, system i układ odniesienia Wykład 2 Układ współrzędnych, system i układ odniesienia Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza 12, pokój 04 Spis treści Układ współrzędnych

Bardziej szczegółowo

Układy odniesienia i systemy współrzędnych stosowane w serwisach ASG-EUPOS

Układy odniesienia i systemy współrzędnych stosowane w serwisach ASG-EUPOS GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Układy odniesienia i systemy współrzędnych stosowane w serwisach ASG-EUPOS Wiesław Graszka naczelnik

Bardziej szczegółowo

Rok akademicki: 2030/2031 Kod: DGK n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2030/2031 Kod: DGK n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Geodezja wyższa Rok akademicki: 2030/2031 Kod: DGK-1-405-n Punkty ECTS: 6 Wydział: Geodezji Górniczej i Inżynierii Środowiska Kierunek: Geodezja i Kartografia Specjalność: - Poziom studiów:

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI: Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XXI: Porównanie ruchu obrotowego z ruchem postępowym Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Równania Eulera Bak swobodny Porównanie

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Źródła pozyskiwania danych grawimetrycznych do redukcji obserwacji geodezyjnych Tomasz Olszak Małgorzata Jackiewicz Stanisław Margański

Źródła pozyskiwania danych grawimetrycznych do redukcji obserwacji geodezyjnych Tomasz Olszak Małgorzata Jackiewicz Stanisław Margański Źródła pozyskiwania danych grawimetrycznych do redukcji obserwacji geodezyjnych Tomasz Olszak Małgorzata Jackiewicz Stanisław Margański Wydział Geodezji i Kartografii Politechniki Warszawskiej Motywacja

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Fizyka 1(mechanika) AF14. Wykład 5

Fizyka 1(mechanika) AF14. Wykład 5 Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Jerzy Łusakowski 30.10.2017 Plan wykładu Ziemia jako układ nieinercjalny Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Dwaj obserwatorzy- związek między mierzonymi współrzędnymi

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y) Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i

Bardziej szczegółowo

UKŁADY GEODEZYJNE I KARTOGRAFICZNE

UKŁADY GEODEZYJNE I KARTOGRAFICZNE UKŁADY GEODEZYJNE I KARTOGRAFICZNE Jarosław Bosy Instytut Geodezji i Geoinformatyki Uniwersytet Przyrodniczy we Wrocławiu Model ZIEMI UKŁAD GEODEZYJNY I KARTOGRAFICZNY x y (f o,l o ) (x o,y o ) ZIEMIA

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Obraz Ziemi widzianej z Księżyca

Obraz Ziemi widzianej z Księżyca Grawitacja Obraz Ziemi widzianej z Księżyca Prawo powszechnego ciążenia Dwa punkty materialne o masach m 1 i m przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie Obliczanie pozycji obiektu na podstawie znanych elementów orbity Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie a - wielka półoś orbity e - mimośród orbity i - nachylenie orbity

Bardziej szczegółowo

Geodezja, Teoria i Praktyka, Tom 1, Edward Osada kod produktu: 3700 kategoria: Kategorie > WYDAWNICTWA > KSIĄŻKI > GEODEZJA

Geodezja, Teoria i Praktyka, Tom 1, Edward Osada kod produktu: 3700 kategoria: Kategorie > WYDAWNICTWA > KSIĄŻKI > GEODEZJA Zapraszamy do sklepu www.sklep.geoezja.pl I-NET.PL Sp.J. o. GeoSklep Olsztyn, ul. Cementowa 3/301 tel. +48 609 571 271, 89 670 11 00, 58 7 421 571 faks 89 670 11 11, 58 7421 871 e-mail sklep@geodezja.pl

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Projekt nowelizacji RRM w sprawie systemu odniesień przestrzennych z dnia r.

Projekt nowelizacji RRM w sprawie systemu odniesień przestrzennych z dnia r. Projekt nowelizacji RRM w sprawie systemu odniesień przestrzennych z dnia 10.01.2008r. ROZPORZĄDZENIE RADY MINISTRÓW z dnia 2008 r. w sprawie państwowego systemu odniesień przestrzennych Na podstawie art.

Bardziej szczegółowo

Energia wody. Mikołaj Szopa

Energia wody. Mikołaj Szopa Energia wody Mikołaj Szopa Fizyka pływów energia księżycowa uzasadnienie powstawania pływów oraz ich częstości rozmiary Ziemi są znacznie mniejsze od odległości między Ziemią a Księżycem wpływ

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu GEOMATYKA program podstawowy 2017 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu W celu ujednolicenia wyników pomiarów geodezyjnych, a co za tym idzie umożliwienia tworzenia

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy

Bardziej szczegółowo

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

Wędrówki między układami współrzędnych

Wędrówki między układami współrzędnych Wykład udostępniam na licencji Creative Commons: Wędrówki między układami współrzędnych Piotr A. Dybczyński Układ równikowy godzinny i układ horyzontalny zenit północny biegun świata Z punkt wschodu szerokość

Bardziej szczegółowo

Ruch pod wpływem sił zachowawczych

Ruch pod wpływem sił zachowawczych Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Podstawy geodezji. dr inż. Stefan Jankowski

Podstawy geodezji. dr inż. Stefan Jankowski Podstawy geodezji dr inż. Stefan Jankowski s.jankowski@am.szczecin.pl Systemy i układy odniesienia System odniesienia (reference system) to zbiór zaleceń, ustaleń, stałych i modeli niezbędnych do określenia

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego. Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

4. Elementy liniowej Teorii Sprężystości

4. Elementy liniowej Teorii Sprężystości 4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.

Bardziej szczegółowo

WYBRANE ELEMENTY GEOFIZYKI

WYBRANE ELEMENTY GEOFIZYKI YBRANE ELEMENTY GEOFIZYKI Ćwiczenie 4: Grawimetria poszukiwawcza. Badanie zaburzenia grawitacyjnego oraz zmian drugich pochodnych gradientowych. prof. dr hab. inż. Janusz Bogusz Zakład Geodezji Satelitarnej

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 9

Fizyka 1 (mechanika) AF14. Wykład 9 Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury

Bardziej szczegółowo

Fizyka pływów energia księżycowa

Fizyka pływów energia księżycowa Fizyka pływów energia księżycowa uzasadnienie powstawania pływów oraz ich częstości rozmiary Ziemi są znacznie mniejsze od odległości między Ziemią a Księżycem wpływ Słońca jako mniej istotny czynnik pływowy

Bardziej szczegółowo

Przykład 4.2. Sprawdzenie naprężeń normalnych

Przykład 4.2. Sprawdzenie naprężeń normalnych Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

LOKALNY UKŁ AD ORIENTACJI Ż YROSKOPU LASEROWEGO I JEGO DOKŁ ADNOŚĆ

LOKALNY UKŁ AD ORIENTACJI Ż YROSKOPU LASEROWEGO I JEGO DOKŁ ADNOŚĆ ZESZYTY NAUOWE AADEMII MARYNARI WOJENNEJ RO XLVII NR 1 (164) 2006 Tadeusz Dą browski LOALNY UŁ AD ORIENTACJI Ż YROSOPU LASEROWEGO I JEGO DOŁ ADNOŚĆ STRESZCZENIE W artykule przedstawiono koncepcję kinematycznego

Bardziej szczegółowo

LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L

LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia 1. Przyjmij, że prędkość rotacji różnicowej Słońca, wyrażoną w stopniach na dobę, można opisać wzorem: gdzie φ jest szerokością heliograficzną.

Bardziej szczegółowo

Part I. Położenie obserwatora na powierzchni Ziemi. Astronomia sferyczna Wykład 5: WSPÓŁRZEDNE GEOCENTRYCZNE Przejście topo- geocentrum i odwrotnie

Part I. Położenie obserwatora na powierzchni Ziemi. Astronomia sferyczna Wykład 5: WSPÓŁRZEDNE GEOCENTRYCZNE Przejście topo- geocentrum i odwrotnie Astronomia sferyczna Wykład 5: WPÓŁRZEDNE GEOENTRYZNE Przejście topo- geocentrum i odwrotnie Tadeusz Jan Jopek Part I Instytut Obserwatorium Astronomiczne, UAM emestr II (Uaktualniono 5.04.03) Przybliżenia

Bardziej szczegółowo

Zadanie na egzamin 2011

Zadanie na egzamin 2011 Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Obliczanie indukcyjności cewek

Obliczanie indukcyjności cewek napisał Michał Wierzbicki Obliczanie indukcyjności cewek Indukcyjność dla cewek z prądem powierzchniowym Energia zgromadzona w polu magnetycznym dwóch cewek, przez uzwojenia których płyną prądy I 1 i I

Bardziej szczegółowo

Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów współrzędnych

Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów współrzędnych Załącznik nr 1 Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów Tabela 1. Parametry techniczne geodezyjnego układu odniesienia PL-ETRF2000 Parametry techniczne geodezyjnego

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany

Bardziej szczegółowo