Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie"

Transkrypt

1 Obliczanie pozycji obiektu na podstawie znanych elementów orbity Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie

2 a - wielka półoś orbity e - mimośród orbity i - nachylenie orbity do wyróżnionej płaszczyzny (dla orbit wokółsłonecznych jest to płaszczyzna ekliptyki) Ω - długość węzła wstępujęcego (dla orbit wokółsłonecznych odległość węzła wstępującego od punktu Barana) ω - odległość perycentrum od węzła wstępującego t 0 - moment przejścia przez perycentrum W przypadku orbity parabolicznej mamy q - odległość w perycentrum, i, Ω, ω, t 0 (e=1). W przypadku orbity hiperbolicznej mamy: a, e, i, Ω, ω, t 0 (a < 0, e > 1)

3 Musimy znać współrzędne heliocentryczne równikowe Ziemi i współrzędne heliocentryczne równikowe obiektu, aby policzyć geocentryczne równikowe współrzędne obiektu. Współrzędne równikowe heliocentryczne Ziemi (ξ Z, η Z, ζ Z ). W przybliżonych rachunkach można je obliczyć znając elementy orbitalne Ziemi. W praktyce obliczone w ten sposób współrzędne będą obliczone zbyt dużym błędem ze względu na obecność Księżyca. Po orbicie eliptycznej (zaburzanej przez perturbacje planetarne) porusza się barycentrum układu Ziemia - Księżyc. Powinniśmy skorzystać z roczników astronomicznych, lub odpowiednich stron internetowych (np. Obliczenie współrzędnych równikowych heliocentrycznych obiektu. (ξ p, η p, ζ p ). Obliczenie równikowych geocentrycznych współrzędnych obiektu x p = ξ p ξ Z, y p = η p η Z, z p = ζ p ζ Z

4 Obliczamy współrzędne równikowe geocentryczne obiektu Odległość geocentryczna p = x p 2 + y p 2 + z p 2 deklinacja rektascensja δ p = asin ( ) zp ρ ( ) x p α p = acos xp 2 + y 2 p ( ) y p α p = asin xp 2 + y 2 p

5 Wyznaczenie heliocentrycznych równonocnych współrzędnych obiektu odbywa się w dwóch niezależnych krokach. określenia jego położenia na orbicie policzenia potrzebnych elementów macierzy przejścia od układu związanego z orbitą ciała (oś x skierowana od Słońca do peryhelium, oś y skierowana od Słońca w kierunku ϑ = 90 o ) do układu równikowego heliocentrycznego (oś ξ skierowana od Słońca do punktu Barana, oś η skierowana od Słońca do punktu Raka).

6 Gdy mamy współrzędne heliocentryczne w płaszczyźnie orbity ciała (z osią x skierowaną od Słońca do peryhelium) x, y (dla interesującego nas obiektu z= 0), to za pomocą kolejnych obrotów możemy przejść do układu heliocentrycznego równikowego. obrót o kąt ω w płaszczyźnie orbity ciała (z = const), oś x skierowana od Słońca do węzła wstępującego obrót o kąt i wokół osi x, osie x = X i Y znajdują się w płaszczyźnie ekliptyki. obrót o kąt Ω wokół osi Z = Z. W układzie heliocentrycznym ekliptycznym oś X skierowana jest od Słońca do punktu Barana, oś Y od od Słońca do punktu Raka a oś Z na północny biegun ekliptyczny. Przejście do układu heliocentrycznego równikowego poprzez obrót o kąt ɛ wokół osi X = ξ. Osie ξ i η znajdują się w płaszczyźnie równikowej, a oś ζ skierowana jest na północny biegun niebieski.

7 Kolejne macierze przejścia pomiędzy układami mają postać: x cos(ω) sin(ω) 0 x y = sin(ω) cos(ω) 0 y z z X Y Z X Y Z ξ η ζ = = = cos(i) sin(i) 0 sin(i) cos(i) cos(ω) sin(ω) 0 sin(ω) cos(ω) cos(ɛ) sin(ɛ) 0 sin(ɛ) cos(ɛ) x y z X Y Z X Y Z

8 Przejście od układu heliocentrycznego w płaszczyźnie orbity obiektu xyz do heliocentrycznego w płaszczyźnie równikowej ξηζ ξ η ξ = P x Q x R x P y Q y R y P z Q z R z x y z

9 P x = cos ω cos Ω sin ω sin Ω cos i Q x = sin ω cos Ω cos ω sin Ω cos i R x = sin Ω sin i P y = (cos ω sin Ω + sin ω cos Ω cos i) cos ɛ sin ω sin i sin ɛ Q y = ( sin ω sin Ω + cos ω cos Ω cos i) cos ɛ cos ω sin i sin ɛ R y = cos Ω sin i cos ɛ cos i sin ɛ P z = (cos ω sin Ω + sin ω cos Ω cos i) sin ɛ + sin ω sin i cos ɛ Q z = ( sin ω sin Ω + cos ω cos Ω cos i) sin ɛ + cos ω sin i cos ɛ R z = cos Ω sin i sin ɛ + cos i cos ɛ

10 Współrzędne x, y ciała w określonym momencie znajdujemy z równań opisujących związki pomiędzy anomalią średnią a anomalią mimośrodową (dla elipsy i hiperboli) bądź czasem i anomalią prawdziwą (dla paraboli). jeżeli jako moment t 0 określimy przejście przez perycentrum to otrzymamy równanie Bakera tg( ϑ 2 ) tg 3 ( ϑ 2 ) = µγ 2q 3/2 (t t 0) Zależność anomalii średniej od anomalii mimośrodowej dla elipsy (równanie Keplera) ( ) γ 1/2 a 3/2 (t t 0 ) = M = E e sin E µ Zależność anomalii średniej od mimośrodowej dla hiperboli ( ) γ 1/2 a 3/2 (t t 0 ) = M = e sinh (f ) f µ

11 Równania te można rozwiązywać metodą kolejnych iteracji np. metodą Newton a- Raphson a x 1 = x 0 f (x 0) f (x 0 ) Dla równania Keplera przy niewielkich wartości e ta metoda powinna być bardzo szybko zbieżna. Z wyznaczonych wartości anomalii mimosrodowej możemy obliczyć anomalię prawdziwą, ale nie jest to konieczne, bo np. w przypadku elipsy x = a (cos(e) e) y = a 1 e 2 sin(e)

12 Rysunek: Przykład elementów orbitalnych podawanych dla planetoid w telegramach MPC

13 Rysunek: Przykład efemeryd podawanych dla planetoid w telegramach MPC

14 Rysunek: Geocentryczne równikowe współrzędne Słońca

15 Rysunek: Przybliżone elementy orbitalne planet.

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

Ruchy planet. Wykład 29 listopada 2005 roku

Ruchy planet. Wykład 29 listopada 2005 roku Ruchy planet planety wewnętrzne: Merkury, Wenus planety zewnętrzne: Mars, Jowisz, Saturn, Uran, Neptun, Pluton Ruch planet wewnętrznych zachodzi w cyklu: koniunkcja dolna, elongacja wschodnia, koniunkcja

Bardziej szczegółowo

Zagadnienie dwóch ciał

Zagadnienie dwóch ciał Zagadnienie dwóch ciał Rysunek : Rysunek ilustrujący zagadnienie dwóch ciał. Wektor R określa położenie środka masy, wektor x położenie masy m, a wektor x 2 położenie masy m 2. Położenie masy m 2 względem

Bardziej szczegółowo

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1 1 Z jaką prędkością porusza się satelita na orbicie geostacjonarnej? 2 Wiedząc, że doba gwiazdowa na planecie X (stała grawitacyjna µ = 500 000 km 3 /s 2 ) trwa 24 godziny, oblicz promień orbity satelity

Bardziej szczegółowo

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy

Bardziej szczegółowo

Ruch i położenie satelity. dr hab. inż. Paweł Zalewski, prof. AM Centrum Inżynierii Ruchu Morskiego

Ruch i położenie satelity. dr hab. inż. Paweł Zalewski, prof. AM Centrum Inżynierii Ruchu Morskiego Ruch i położenie satelity dr hab. inż. Paweł Zalewsi, prof. AM Centrum Inżynierii Ruchu Morsiego Podstawy mechanii ciał niebiesich: Znajomość pozycji satelity w przyjętym systemie odniesienia w danym momencie

Bardziej szczegółowo

Krzywe stożkowe Lekcja V: Elipsa

Krzywe stożkowe Lekcja V: Elipsa Krzywe stożkowe Lekcja V: Elipsa Wydział Matematyki Politechniki Wrocławskiej Czym jest elipsa? Elipsa jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem α < β < π 2 (gdzie α jest

Bardziej szczegółowo

Wędrówki między układami współrzędnych

Wędrówki między układami współrzędnych Wykład udostępniam na licencji Creative Commons: Wędrówki między układami współrzędnych Piotr A. Dybczyński Układ równikowy godzinny i układ horyzontalny zenit północny biegun świata Z punkt wschodu szerokość

Bardziej szczegółowo

Systemy nawigacji satelitarnej. Przemysław Bartczak

Systemy nawigacji satelitarnej. Przemysław Bartczak Systemy nawigacji satelitarnej Przemysław Bartczak 1957 Sztuczny satelita: 1958 Sputnik Explorer 1 Sztuczny satelita Ziemi Sztuczny satelita Ziemi, zwany w skrócie satelitą, jest skonstruowanym przez człowieka

Bardziej szczegółowo

Ruch pod wpływem sił zachowawczych

Ruch pod wpływem sił zachowawczych Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej

Bardziej szczegółowo

3 Współrzędne satelity w płaszczyźnie orbity

3 Współrzędne satelity w płaszczyźnie orbity 1 Wprowadzenie W geodezji satelitarnej funkcjonują dwa układy współrzędnych związane z ruchem obrotowym Ziemi Earth Centered Earth Fixed (ECEF), oraz układ ekwinokcjalny. Ze względu na prostą formę matematyczną

Bardziej szczegółowo

Przykładowe zagadnienia.

Przykładowe zagadnienia. Wykład udostępniam na licencji Creative Commons: Przykładowe zagadnienia. Piotr A. Dybczyński Z BN E N h W Nd A S BN Z δ N t S α BS zenit północny biegun świata BN miejscowy południk astronomiczny Z punkt

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

Układy współrzędnych równikowych

Układy współrzędnych równikowych Wykład udostępniam na licencji Creative Commons: Układy współrzędnych równikowych Piotr A. Dybczyński Taki układ wydaje się prosty. Sytuacja komplikuje się gdy musimy narysować i używać dwóch lub trzech

Bardziej szczegółowo

Przykładowe zagadnienia.

Przykładowe zagadnienia. Wykład udostępniam na licencji Creative Commons: Przykładowe zagadnienia. Piotr A. Dybczyński Z BN E N h W Nd A S BN Z t δ N S α BS zenit północny biegun świata BN miejscowy południk astronomiczny Z punkt

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 10 Tomasz Kwiatkowski 8 grudzień 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 1/36 Plan wykładu Wyznaczanie mas ciał niebieskich Gwiazdy podwójne Optycznie

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Temat 5: Zjawiska w układzie Ziemia - Księżyc T.J. Jopek jopek@amu.edu.pl IOA UAM 2012-01-26 T.J.Jopek, Fizyka i chemia Ziemi 1 Ruch orbitalny Księżyca Obserwowane tarcze Księżyca

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

Satelity Ziemi. Ruch w polu grawitacyjnym. dr inż. Stefan Jankowski

Satelity Ziemi. Ruch w polu grawitacyjnym. dr inż. Stefan Jankowski Satelity Ziemi Ruch w polu grawitacyjnym dr inż. Stefan Jankowski s.jankowski@am.szczecin.pl Satellites Satelity można podzielić na: naturalne (planety dla słońca/ gwiazd, księżyce dla planet) oraz sztuczne

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;

Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie; Geografia listopad Liceum klasa I, poziom rozszerzony XI Ziemia we wszechświecie Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;

Bardziej szczegółowo

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Pozorne orbity planet Z notatek prof. Antoniego Opolskiego Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Początek Młody miłośnik astronomii patrzy w niebo Młody miłośnik astronomii

Bardziej szczegółowo

Układy współrzędnych równikowych

Układy współrzędnych równikowych Wykład udostępniam na licencji Creative Commons: Układy współrzędnych równikowych Piotr A. Dybczyński 15 października 2013 Układ współrzędnych sferycznych Taki układ wydaje się prosty. Sytuacja komplikuje

Bardziej szczegółowo

Krzywe stożkowe Lekcja VII: Hiperbola

Krzywe stożkowe Lekcja VII: Hiperbola Krzywe stożkowe Lekcja VII: Hiperbola Wydział Matematyki Politechniki Wrocławskiej Czym jest hiperbola? Hiperbola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem 0 β < α (gdzie

Bardziej szczegółowo

Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058

Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058 Imię i nazwisko Data Klasa Wersja A Sprawdzian.. Jedna jednostka astronomiczna to odległość jaką przebywa światło (biegnące z szybkością 300 000 km/h) w ciągu jednego roku. jaką przebywa światło (biegnące

Bardziej szczegółowo

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna) TEMAT: Analiza zdjęć ciał niebieskich POJĘCIA: budowa i rozmiary składników Układu Słonecznego POMOCE: fotografie róŝnych ciał niebieskich, przybory kreślarskie, kalkulator ZADANIE: Wykorzystując załączone

Bardziej szczegółowo

Ruch obiegowy Ziemi. Ruch obiegowy Ziemi. Cechy ruchu obiegowego. Cechy ruchu obiegowego

Ruch obiegowy Ziemi. Ruch obiegowy Ziemi. Cechy ruchu obiegowego. Cechy ruchu obiegowego Ruch obiegowy Ziemi Ruch obiegowy Ziemi Ziemia obiega Słońce po drodze zwanej orbitą ma ona kształt lekko wydłużonej elipsy Czas pełnego obiegu wynosi 365 dni 5 godzin 48 minut i 46 sekund okres ten nazywamy

Bardziej szczegółowo

Ruch obrotowy i orbitalny Ziemi

Ruch obrotowy i orbitalny Ziemi Ruch obrotowy i orbitalny Ziemi Ruch dobowy sfery niebieskiej jest pozorny wynika z obracania się Ziemi wokół własnej osi z okresem równym 1 dobie gwiazdowej. Tor pozornego ruchu dobowego sfery niebieskiej

Bardziej szczegółowo

Tomasz Ściężor. Almanach Astronomiczny na rok 2012

Tomasz Ściężor. Almanach Astronomiczny na rok 2012 Tomasz Ściężor Almanach Astronomiczny na rok 2012 Klub Astronomiczny Regulus Kraków 2011 1 Skład komputerowy almanachu wykonał autor publikacji Tomasz Ściężor Wszelkie prawa zastrzeżone. Żadna część tej

Bardziej szczegółowo

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego. Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym

Bardziej szczegółowo

Tomasz Ściężor. Almanach Astronomiczny na rok 2014

Tomasz Ściężor. Almanach Astronomiczny na rok 2014 Tomasz Ściężor Almanach Astronomiczny na rok 2014 Klub Astronomiczny Regulus Kraków 2013 1 Recenzent prof. dr hab. Jerzy M. Kreiner Skład komputerowy almanachu wykonał autor publikacji Tomasz Ściężor Wszelkie

Bardziej szczegółowo

wersja

wersja www.as.up.krakow.pl wersja 2013-01-12 STAŁE: π = 3.14159268... e = 2.718281828... Jednostka astronomiczna 1 AU = 149.6 mln km = 8 m 19 s świetlnych Rok świetlny [l.y.] = c t = 9460730472580800 m = 9.46

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

PW-Sat dwa lata na orbicie.

PW-Sat dwa lata na orbicie. 13 lutego 2014 roku mijają dokładnie dwa lata od wystrzelenia pierwszego polskiego satelity studenckiego PW-Sata. Aktualnie na Politechnice Warszawskiej prowadzone są prace nad kolejnym satelitą PW-Satem

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Fizyka I. Kolokwium

Fizyka I. Kolokwium Fizyka I. Kolokwium 13.01.2014 Wersja A UWAGA: rozwiązania zadań powinny być czytelne, uporządkowane i opatrzone takimi komentarzami, by tok rozumowania był jasny dla sprawdzającego. Wynik należy przedstawić

Bardziej szczegółowo

Ksztaªt orbity planety: I prawo Keplera

Ksztaªt orbity planety: I prawo Keplera V 0 V 0 Ksztaªt orbity planety: I prawo Keplera oka»emy,»e orbit planety poruszaj cej si pod dziaªaniem siªy ci»ko±ci ze strony Sªo«ca jest krzywa sto»kowa, w szczególno±ci elipsa. Wektor pr dko±ci planety

Bardziej szczegółowo

Wykład Prawa Keplera Wyznaczenie stałej grawitacji Równania opisujące ruch planet

Wykład Prawa Keplera Wyznaczenie stałej grawitacji Równania opisujące ruch planet Wykład 9 3.5.4.1 Prawa Keplera 3.5.4. Wyznaczenie stałej grawitacji 3.5.4.3 Równania opisujące ruch planet 008-11-01 Reinhard Kulessa 1 3.5.4.1 Prawa Keplera W roku 140 n.e. Claudius Ptolemeus zaproponował

Bardziej szczegółowo

Orientacja zewnętrzna pojedynczego zdjęcia

Orientacja zewnętrzna pojedynczego zdjęcia Orientacja zewnętrzna pojedynczego zdjęcia Proces opracowania fotogrametrycznego zdjęcia obejmuje: 1. Rekonstrukcję kształtu wiązki promieni rzutujących (orientacja wewnętrzna ck, x, y punktu głównego)

Bardziej szczegółowo

Obraz Ziemi widzianej z Księżyca

Obraz Ziemi widzianej z Księżyca Grawitacja Obraz Ziemi widzianej z Księżyca Prawo powszechnego ciążenia Dwa punkty materialne o masach m 1 i m przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

Analiza danych. 7 th International Olympiad on Astronomy & Astrophysics 27 July 5 August 2013, Volos Greece. Zadanie 1.

Analiza danych. 7 th International Olympiad on Astronomy & Astrophysics 27 July 5 August 2013, Volos Greece. Zadanie 1. Analiza danych Zadanie 1. Zdjęcie 1 przedstawiające część gwiazdozbioru Wielkiej Niedźwiedzicy, zostało zarejestrowane kamerą CCD o rozmiarze chipu 17mm 22mm. Wyznacz ogniskową f systemu optycznego oraz

Bardziej szczegółowo

LIX Olimpiada Astronomiczna 2015/2016 Zawody III stopnia zadania teoretyczne

LIX Olimpiada Astronomiczna 2015/2016 Zawody III stopnia zadania teoretyczne LIX Olimpiada Astronomiczna 2015/2016 Zawody III stopnia zadania teoretyczne 1. Dwie gwiazdy ciągu głównego o masach M i m tworzyły układ podwójny o orbitach kołowych. W wyniku ewolucji, bardziej masywny

Bardziej szczegółowo

Zadanie na egzamin 2011

Zadanie na egzamin 2011 Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,

Bardziej szczegółowo

LXII Olimpiada Astronomiczna 2018/2019 Zadania z zawodów III stopnia. ρ + Λ c2. H 2 = 8 π G 3. = 8 π G ρ 0. 2,, Ω m = 0,308.

LXII Olimpiada Astronomiczna 2018/2019 Zadania z zawodów III stopnia. ρ + Λ c2. H 2 = 8 π G 3. = 8 π G ρ 0. 2,, Ω m = 0,308. LXII Olimpiada Astronomiczna 2018/2019 Zadania z zawodów III stopnia 1. Współczesne obserwacje są zgodne z modelem Wszechświata, w którym obowiązuje geometria euklidesowa. W tym modelu tempo ekspansji,

Bardziej szczegółowo

LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia

LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia 1. Wskutek efektów relatywistycznych mierzony całkowity strumień promieniowania od gwiazdy, która porusza się w kierunku obserwatora z prędkością

Bardziej szczegółowo

VI.3 Problem Keplera

VI.3 Problem Keplera VI.3 Problem Keplera 1. Prawa Keplera 2. Zastosowanie III prawa Keplera 3. Układ Słoneczny numeryczne całkowanie r. ruchu wszystkich planet, stabilność rozwiązań. Jan Królikowski Fizyka IBC 1 Prawa Keplera

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

b. Ziemia w Układzie Słonecznym sprawdzian wiadomości

b. Ziemia w Układzie Słonecznym sprawdzian wiadomości a. b. Ziemia w Układzie Słonecznym sprawdzian wiadomości 1. Cele lekcji Cel ogólny: podsumowanie wiadomości o Układzie Słonecznym i miejscu w nim Ziemi. Uczeń: i. a) Wiadomości zna planety Układu Słonecznego,

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Geodezja fizyczna. Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz. 8 listopada 2018

Geodezja fizyczna. Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz. 8 listopada 2018 Geodezja fizyczna Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz 8 listopada 2018 Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada 2018 1 / 24 Literatura 1 Geodezja współczesna

Bardziej szczegółowo

Elementy astronomii w geografii

Elementy astronomii w geografii Elementy astronomii w geografii Prowadzący: Marcin Kiraga kiraga@astrouw.edu.pl Podstawowe podręczniki: Jan Mietelski, Astronomia w geografii Eugeniusz Rybka, Astronomia ogólna Podręczniki uzupełniające:

Bardziej szczegółowo

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest

Bardziej szczegółowo

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas

Bardziej szczegółowo

Analiza danych Strona 1 z 6

Analiza danych Strona 1 z 6 Analiza danych Strona 1 z 6 (D1) Pulsar podwójny Dzięki systematycznym badaniom na przestrzeni ostatnich dziesiątek lat astronom znalazł dużą liczbę pulsarów milisekundowych (okres obrotu < 10ms) W większość

Bardziej szczegółowo

Modelowanie pozasłonecznych układów planetarnych na podstawie astrometrii mikrosekundowej

Modelowanie pozasłonecznych układów planetarnych na podstawie astrometrii mikrosekundowej Uniwersytet Mikołaja Kopernika Wydział Fizyki, Astronomii i Informatyki Stosowanej Centrum Astronomiczne Piotr Tadeusz Różański nr albumu: 217724 Praca magisterska na kierunku astronomia Modelowanie pozasłonecznych

Bardziej szczegółowo

Gdzie się znajdujemy na Ziemi i w Kosmosie

Gdzie się znajdujemy na Ziemi i w Kosmosie Gdzie się znajdujemy na Ziemi i w Kosmosie Realizując ten temat wspólnie z uczniami zajęliśmy się określeniem położenia Ziemi w Kosmosie. Cele: Rozwijanie umiejętności określania kierunków geograficznych

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI

Bardziej szczegółowo

Teoria ruchu Księżyca

Teoria ruchu Księżyca Wykład 9 - Ruch Księżyca. Odkształcenia związane z rotacją, oddziaływanie przypływowe, efekty relatywistyczne, efekty związane z promieniowaniem Słońca. 14.04.2014 Miesiące księżycowe Miesiąc synodyczny

Bardziej szczegółowo

Odległość kątowa. Liceum Klasy I III Doświadczenie konkursowe 1

Odległość kątowa. Liceum Klasy I III Doświadczenie konkursowe 1 Liceum Klasy I III Doświadczenie konkursowe 1 Rok 2015 1. Wstęp teoretyczny Patrząc na niebo po zachodzie Słońca mamy wrażenie, że znajdujemy się pod rozgwieżdżoną kopułą. Kopuła ta stanowi połowę tzw.

Bardziej szczegółowo

Odległość kątowa. Szkoła średnia Klasy I IV Doświadczenie konkursowe 5

Odległość kątowa. Szkoła średnia Klasy I IV Doświadczenie konkursowe 5 Szkoła średnia Klasy I IV Doświadczenie konkursowe 5 Rok 2019 1. Wstęp teoretyczny Patrząc na niebo po zachodzie Słońca, mamy wrażenie, że znajdujemy się pod rozgwieżdżoną kopułą. Kopuła ta stanowi połowę

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Fizyka 1(mechanika) AF14. Wykład 5

Fizyka 1(mechanika) AF14. Wykład 5 Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Jerzy Łusakowski 30.10.2017 Plan wykładu Ziemia jako układ nieinercjalny Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Dwaj obserwatorzy- związek między mierzonymi współrzędnymi

Bardziej szczegółowo

Dwa przykłady z mechaniki

Dwa przykłady z mechaniki Rozdział 6 Dwa przykłady z mechaniki W rozdziale tym przedstawimy proste przykłady rozwiązań równań mechaniki Newtona. Mechanika Newtona zajmuje się badaniem ruchu układu punktów materialnych w przestrzeni

Bardziej szczegółowo

Analemmatyczny zegar słoneczny dla Włocławka

Analemmatyczny zegar słoneczny dla Włocławka Analemmatyczny zegar słoneczny dla Włocławka Jest to zegar o poziomej tarczy z pionowym gnomonem przestawianym w zależności od deklinacji Słońca (δ) kąta miedzy kierunkiem na to ciało a płaszczyzną równika

Bardziej szczegółowo

Komety 2P/Encke 41P/Tuttle-Giacobini-Kresak C/2015 V2 (Johnson) Oznaczenia w tabeli:

Komety 2P/Encke 41P/Tuttle-Giacobini-Kresak C/2015 V2 (Johnson) Oznaczenia w tabeli: Komety W 2017 roku przez peryhelium przejdą 64 znane komety. Zamieszczona tabela podaje ich parametry. Teoretycznie dostępne dla obserwacji przez lornetki mogą być komety: 2P/Encke, 41P/Tuttle- Giacobini-Kresak,

Bardziej szczegółowo

Systemy odniesienia pozycji w odbiornikach nawigacyjnych. dr inż. Paweł Zalewski

Systemy odniesienia pozycji w odbiornikach nawigacyjnych. dr inż. Paweł Zalewski Systemy odniesienia pozycji w odbiornikach nawigacyjnych dr inż. Paweł Zalewski Wprowadzenie Terestryczne systemy odniesienia (terrestrial reference systems) lub systemy współrzędnych (coordinate systems)

Bardziej szczegółowo

Zadania domowe. Ćwiczenie 3. Budowa modeli obiektów 3-D

Zadania domowe. Ćwiczenie 3. Budowa modeli obiektów 3-D Zadania doowe Ćwiczenie 3 udowa odeli obiektów 3-D Zadanie 3.1 Model terenu na bazie fraktala plazowego Założenia: Należy wykorzystać opracowany w poprzedni ćwiczeniu algoryt i progra do generacji fraktala

Bardziej szczegółowo

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,

Bardziej szczegółowo

Tomasz Ściężor. Almanach Astronomiczny na rok 2013

Tomasz Ściężor. Almanach Astronomiczny na rok 2013 Tomasz Ściężor Almanach Astronomiczny na rok 2013 Klub Astronomiczny Regulus Kraków 2012 1 Skład komputerowy almanachu wykonał autor publikacji Tomasz Ściężor Wszelkie prawa zastrzeżone. Żadna część tej

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe 1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA.

GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. MODUŁ 6 SCENARIUSZ TEMATYCZNY GRAWITACJA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a):

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Rotacja W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Φ = ω2 r 2 sin 2 (θ) 2 GM r Z porównania wartości potencjału

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

Obliczenie natężenia promieniowania docierającego do powierzchni absorpcyjnej

Obliczenie natężenia promieniowania docierającego do powierzchni absorpcyjnej Kolektor słoneczny dr hab. inż. Bartosz Zajączkowski, prof. uczelni Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych email: bartosz.zajaczkowski@pwr.edu.pl

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji . Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja

Bardziej szczegółowo

Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.

Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1. Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Astronomia. Studium Podyplomowe Fizyki z Astronomią. Marcin Kiraga kiraga@astrouw.edu.pl

Astronomia. Studium Podyplomowe Fizyki z Astronomią. Marcin Kiraga kiraga@astrouw.edu.pl Astronomia Studium Podyplomowe Fizyki z Astronomią Marcin Kiraga kiraga@astrouw.edu.pl Plan wykładów. Historia astronomii, opis podstawowych zjawisk na niebie, opis sfery niebieskiej, astronomiczne układy

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe 1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość

Bardziej szczegółowo

VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)

VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3) VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo