Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich."

Transkrypt

1 Wykład 1 Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich.

2 Dr inż. Sabina Łyszkowicz Wita Studentów I Roku Inżynierii Środowiska na Pierwszym Wykładzie z Geodezji wykład 1 2

3 Geodezja ma prawie milion lat Człowiek pojawił się na Ziemi prawie milion lat temu. Pierwszą jego potrzebą było przetrwanie. W tym celu musiał wiedzieć: gdzie się znajduje, znaleźć drogę powrotną do domu, poinformować innych jak się poruszać, znać odległość do żywności, do celu, określić granice między wasze, nasze. wykład 1 3

4 Kształt Ziemi Czy Ziemia może być płaska?? Tak, na niewielkich obszarach, w promieniu 15.5 km, albo na powierzchni 750 km kw. Jeśli przyjmiemy błąd pomiaru długości ±0.01 m. wykład 1 4

5 Na jakim obszarze można uważać, że Ziemia jest płaska? Zniekształcenie D wywołane rzutowaniem na płaszczyznę wynosi: 3 D D 2 6R Zniekształcenie wysokości C R A D D o h B D B h 2 D 2R wykład 1 5

6 Wpływ zakrzywienia powierzchni Ziemi na pomiary liniowe D w km D w mm Wpływ zakrzywienia powierzchni Ziemi na pomiary wysokościowe D w m h w mm wykład 1 6

7 Elipsoida b a Z Y X wykład 1 7

8 Geoida wykład 1 8

9 Fizyczna powierzchnia Ziemi, elipsoida i geoida fizyczna powierzchnia Ziemi o k l l a d e ny sr o ni p ziom morza mareograf geoida elipsoida wykład 1 9

10 Rozbieżności pomiędzy powierzchniami Powierzchnia Fizyczna powierzchnia geoida Rząd wielkości w metrach Średni poziom morza geoida 1 Geoida elipsoida 100 Elipsoida - kula wykład 1 10

11 Mareograf we Władysławowie wykład 1 11

12 Definicja geodezji według Helmerta Geodezja jest to nauka zajmująca się pomiarami i tworzeniem map powierzchni Ziemi. Chociaż od tego czasu metody geodezji zmieniły się znacząco, definicja ta jest wciąż aktualna i wymaga tylko uzupełnienia o problematykę współczesnych zmian powierzchni Ziemi w czasie. wykład 1 12

13 Elipsoidalny (geodezyjny) układ współrzędnych Współrzędne elipsoidalne są to linie krzywe leżące na powierzchni elipsoidy. Zwane są równoleżnikami jeśli szerokość jest stała i południkami, jeśli długość jest stała. poludnik zerowy λ ϕ h P Jeśli elipsoida jest związana z bryłą Ziemi, to współrzędne elipsoidalne zwane są współrzędnymi geodezyjnymi. Tradycyjnie, przeciwieństwem współrzędnych geodezyjnych są współrzędne astronomiczne; szerokość i długość. wykład 1 13

14 Układ współrzędnych Geodezja zajmuje się wyznaczaniem pozycji punktów leżących na powierzchni Ziemi lub w jej pobliżu. W tym celu konieczny jest, dobrze zdefiniowany układ współrzędnych. wykład 1 14

15 Układ współrzędnych Układy współrzędnych ustanawiają uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni, a liczbami rzeczywistymi (współrzędnymi). Układy współrzędnych stosowane w geodezji mogą być orto-kartezjańskie, dwu lub trójwymiarowe, a nawet jedno-wymiarowe w przypadku wysokości. wykład 1 15

16 Kartezjański układ współrzędnych Kartezjański trójwymiarowy układ współrzędnych jest stosowany do zadań globalnych i jest def. przez trzy ortogonalne osie, które tworzą układ prawoskrętny. Osie te przecinają się w początku układu. Jak pokazano na rysunku, punkt P jest zdefiniowany przez odległości od punktu początkowego O licząc wzdłuż X, Y i osi Z. X (0,0,0) Z s u v Y P P. (X,Y,Z ) P P P Z P X P Y wykład 1 16

17 Układ odniesienia Układy współrzędnych oraz parametry opisujące ich orientację względem bryły ziemskiej zwane są geodezyjnymi układami odniesienia. W przypadku geodezji klasycznej na parametry opisujące orientację układu odniesienia względem bryły ziemskiej składa się punkt początkowy, szerokość, długość, azymut linii, parametry elipsoidy, odstęp geoidy od elipsoidy. wykład 1 17

18 Współrzędne prostokątne i biegunowe Dwuwymiarowy kartezjański układ współrzędnych jest zdefiniowany przez dwie prostopadłe do siebie osie. Matematycy zwą je osiami X i Y, podczas gdy geodeci wiążą je z geograficznymi kierunkami i jedną z nich kierują na północ (N) a drugą na wschód (E). Biegunowy system współrzędnych określa położenie punktu przez element liniowy i kątowy. W przypadku dwu wymiarów jest to kąt α i odległość s. X P (0,0) X P '' s α Y P wykład 1 18 P P ' Y

Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"

Układ współrzędnych dwu trój Wykład 2 Układ współrzędnych, system i układ odniesienia Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane

Bardziej szczegółowo

Wykład 2 Układ współrzędnych, system i układ odniesienia

Wykład 2 Układ współrzędnych, system i układ odniesienia Wykład 2 Układ współrzędnych, system i układ odniesienia Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza 12, pokój 04 Spis treści Układ współrzędnych

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów współrzędnych

Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów współrzędnych Załącznik nr 1 Parametry techniczne geodezyjnych układów odniesienia, układów wysokościowych i układów Tabela 1. Parametry techniczne geodezyjnego układu odniesienia PL-ETRF2000 Parametry techniczne geodezyjnego

Bardziej szczegółowo

UKŁADY GEODEZYJNE I KARTOGRAFICZNE

UKŁADY GEODEZYJNE I KARTOGRAFICZNE UKŁADY GEODEZYJNE I KARTOGRAFICZNE Jarosław Bosy Instytut Geodezji i Geoinformatyki Uniwersytet Przyrodniczy we Wrocławiu Model ZIEMI UKŁAD GEODEZYJNY I KARTOGRAFICZNY x y (f o,l o ) (x o,y o ) ZIEMIA

Bardziej szczegółowo

Układy odniesienia i systemy współrzędnych stosowane w serwisach ASG-EUPOS

Układy odniesienia i systemy współrzędnych stosowane w serwisach ASG-EUPOS GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Układy odniesienia i systemy współrzędnych stosowane w serwisach ASG-EUPOS Wiesław Graszka naczelnik

Bardziej szczegółowo

Podstawowe wiadomości z geodezji. Wykład 1

Podstawowe wiadomości z geodezji. Wykład 1 Podstawowe wiadomości z geodezji Wykład 1 GEODEZJA jest jedną z najstarszych dziedzin nauki i techniki. Etymologia tego słowa wywodzi się z języka greckiego i oznacza podział Ziemi: geo ziemia, daiso będę

Bardziej szczegółowo

Zajęcia 1. Sprawy organizacyjne Podstawowe wiadomości z geodezji Wstęp do rachunku współrzędnych

Zajęcia 1. Sprawy organizacyjne Podstawowe wiadomości z geodezji Wstęp do rachunku współrzędnych KATEDRA GEODEZJI im. Kaspra WEIGLA Wydział Budownictwa i Inżynierii Środowiska Zajęcia 1 Sprawy organizacyjne Podstawowe wiadomości z geodezji Wstęp do rachunku współrzędnych Autor: Dawid Zientek Skrypty

Bardziej szczegółowo

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu GEOMATYKA program podstawowy 2017 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu W celu ujednolicenia wyników pomiarów geodezyjnych, a co za tym idzie umożliwienia tworzenia

Bardziej szczegółowo

Wykład 3. Poziome sieci geodezyjne - od triangulacji do poligonizacji. Wykład 3

Wykład 3. Poziome sieci geodezyjne - od triangulacji do poligonizacji. Wykład 3 Poziome sieci geodezyjne - od triangulacji do poligonizacji. 1 Współrzędne prostokątne i biegunowe na płaszczyźnie Geodeci wiążą osie x,y z geograficznymi kierunkami; oś x kierują na północ (N), a oś y

Bardziej szczegółowo

Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy.

Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy. Współrzędne geograficzne Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy. Najbardziej wiernym modelem Ziemi ukazującym ją w bardzo dużym

Bardziej szczegółowo

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO...

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO... Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO....................... XI 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ..................... 1 Z historii geodezji........................................ 1 1.1. Kształt

Bardziej szczegółowo

Wybrane zagadnienia z urządzania lasu moduł: GEOMATYKA

Wybrane zagadnienia z urządzania lasu moduł: GEOMATYKA Wybrane zagadnienia z urządzania lasu moduł: GEOMATYKA 2014-2015 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu materiały przygotowane m.in. w oparciu o rozdział Odwzorowania

Bardziej szczegółowo

Współrzędne geograficzne

Współrzędne geograficzne Współrzędne geograficzne Siatka kartograficzna jest to układ południków i równoleżników wykreślony na płaszczyźnie (mapie); jest to odwzorowanie siatki geograficznej na płaszczyźnie. Siatka geograficzna

Bardziej szczegółowo

Wykład 2. Matematyczne podstawy map. Mapa zasadnicza tradycyjna i cyfrowa. Wykład 2 1

Wykład 2. Matematyczne podstawy map. Mapa zasadnicza tradycyjna i cyfrowa. Wykład 2 1 Wykład 2 Matematyczne podstawy map. Mapa zasadnicza tradycyjna i cyfrowa Wykład 2 1 Mapa - graficzna forma przekazu informacji o Ziemi. Wykład 2 2 Mapa Głównym zadaniem geodezji jest stworzenie obrazu

Bardziej szczegółowo

Przegląd państwowych układów współrzędnych płaskich stosowanych do tworzenia map w Polsce po 1945 roku. Autor: Arkadiusz Piechota

Przegląd państwowych układów współrzędnych płaskich stosowanych do tworzenia map w Polsce po 1945 roku. Autor: Arkadiusz Piechota Przegląd państwowych układów współrzędnych płaskich stosowanych do tworzenia map w Polsce po 1945 roku Autor: Arkadiusz Piechota Przegląd państwowych układów współrzędnych płaskich stosowanych do tworzenia

Bardziej szczegółowo

Dwa podstawowe układy współrzędnych: prostokątny i sferyczny

Dwa podstawowe układy współrzędnych: prostokątny i sferyczny Lokalizacja ++ Dwa podstawowe układy współrzędnych: prostokątny i sferyczny r promień wodzący geocentrycznych współrzędnych prostokątnych //pl.wikipedia.org/ system geograficzny i matematyczny (w geograficznym

Bardziej szczegółowo

GEODEZJA OGÓLNA Wiadomości podstawowe

GEODEZJA OGÓLNA Wiadomości podstawowe GEODEZJA OGÓLNA Wiadomości podstawowe mgr inż. Grzegorz Wydra Policealne Studium Budownictwa, Projektowania Architektonicznego i Geodezji w Toruniu Treść wykładu 1 Zarys historii geodezji Polska i świat

Bardziej szczegółowo

ĆWICZENIE 4. Temat. Transformacja współrzędnych pomiędzy różnymi układami

ĆWICZENIE 4. Temat. Transformacja współrzędnych pomiędzy różnymi układami ĆWICZENIE 4 Temat Transformacja współrzędnych pomiędzy różnymi układami Skład operatu: 1. Sprawozdanie techniczne. 2. Tabelaryczny wykaz współrzędnych wyjściowych B, L na elipsoidzie WGS-84. 3. Tabelaryczny

Bardziej szczegółowo

Systemy odniesienia pozycji w odbiornikach nawigacyjnych. dr inż. Paweł Zalewski

Systemy odniesienia pozycji w odbiornikach nawigacyjnych. dr inż. Paweł Zalewski Systemy odniesienia pozycji w odbiornikach nawigacyjnych dr inż. Paweł Zalewski Wprowadzenie Terestryczne systemy odniesienia (terrestrial reference systems) lub systemy współrzędnych (coordinate systems)

Bardziej szczegółowo

Rok akademicki: 2030/2031 Kod: DGK n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2030/2031 Kod: DGK n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Geodezja wyższa Rok akademicki: 2030/2031 Kod: DGK-1-405-n Punkty ECTS: 6 Wydział: Geodezji Górniczej i Inżynierii Środowiska Kierunek: Geodezja i Kartografia Specjalność: - Poziom studiów:

Bardziej szczegółowo

nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku.

nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku. 14 Nawigacja dla żeglarzy nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku. Rozwiązania drugiego problemu nawigacji, tj. wyznaczenia bezpiecznej

Bardziej szczegółowo

Wykład 5. Pomiary sytuacyjne. Wykład 5 1

Wykład 5. Pomiary sytuacyjne. Wykład 5 1 Wykład 5 Pomiary sytuacyjne Wykład 5 1 Proste pomiary polowe Tyczenie linii prostych Tyczenie kątów prostych Pomiar szczegółów topograficznych: - metoda ortogonalna, - metoda biegunowa, - związek liniowy.

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Układy współrzędnych GUW, LUW Polecenie LUW

Układy współrzędnych GUW, LUW Polecenie LUW Układy współrzędnych GUW, LUW Polecenie LUW 1 Układy współrzędnych w AutoCAD Rysowanie i opis (2D) współrzędnych kartezjańskich: x, y współrzędnych biegunowych: r

Bardziej szczegółowo

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku

Bardziej szczegółowo

Gdzie się znajdujemy na Ziemi i w Kosmosie

Gdzie się znajdujemy na Ziemi i w Kosmosie Gdzie się znajdujemy na Ziemi i w Kosmosie Realizując ten temat wspólnie z uczniami zajęliśmy się określeniem położenia Ziemi w Kosmosie. Cele: Rozwijanie umiejętności określania kierunków geograficznych

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Spis treści. Przedmowa Pojęcie powierzchni odniesienia jako powierzchni oryginału w odwzorowaniu kartograficznym

Spis treści. Przedmowa Pojęcie powierzchni odniesienia jako powierzchni oryginału w odwzorowaniu kartograficznym Spis treści Przedmowa................................................................... 11 1. Pojęcie powierzchni odniesienia jako powierzchni oryginału w odwzorowaniu kartograficznym......................................................................

Bardziej szczegółowo

Układy współrzędnych. Gospodarka Przestrzenna. Józef Woźniak. Na podstawie wykładu Prof. R. Kadaja i Prof. E. Osady Na studium GIS

Układy współrzędnych. Gospodarka Przestrzenna. Józef Woźniak. Na podstawie wykładu Prof. R. Kadaja i Prof. E. Osady Na studium GIS Układy współrzędnych Gospodarka Przestrzenna Józef Woźniak gis@pwr.wroc.pl Zakład Geodezji i Geoinformatyki Na podstawie wykładu Prof. R. Kadaja i Prof. E. Osady Na studium GIS Wrocław, 2012 Podział map

Bardziej szczegółowo

Geografia jako nauka. Współrzędne geograficzne.

Geografia jako nauka. Współrzędne geograficzne. Geografia (semestr 3 / gimnazjum) Lekcja numer 1 Temat: Geografia jako nauka. Współrzędne geograficzne. Geografia jest nauką opisującą świat, w którym żyjemy. Wyraz geographia (z języka greckiego) oznacza

Bardziej szczegółowo

1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18

1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18 : Przedmowa...... 11 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ Z historii geodezji... 13 1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18 1.2.

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

UKŁADY ODNIESIENIA I UKŁADY WSPÓŁRZĘDNYCH STOSOWANE W POLSCE CZ.1

UKŁADY ODNIESIENIA I UKŁADY WSPÓŁRZĘDNYCH STOSOWANE W POLSCE CZ.1 5 Piotr Banasik UKŁADY ODNIESIENIA I UKŁADY WSPÓŁRZĘDNYCH STOSOWANE W POLSCE CZ. 1 1. Wstęp Opisanie położenia punktów z powierzchni Ziemi realizowane jest w ramach umownie przyjętego układu współrzędnych.

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

II Konferencja Użytkowników ASG-EUPOS

II Konferencja Użytkowników ASG-EUPOS Katedra Geodezji im. K. Weigla II Konferencja Użytkowników ASG-EUPOS Katowice, 20-21 listopad 2012 Problematyka wykorzystania serwisów postprocessingu ASG-EUPOS do zakładania precyzyjnych sieci hybrydowych

Bardziej szczegółowo

w zależności od powierzchni, jaka została użyta do odwzorowania siatki kartograficznej, wyróżniać będziemy 3 typy odwzorowań:

w zależności od powierzchni, jaka została użyta do odwzorowania siatki kartograficznej, wyróżniać będziemy 3 typy odwzorowań: Elementy mapy mapa jest płaskim obrazem powierzchni Ziemi lub jej części przedstawionym na płaszczyźnie w odpowiednim zmniejszeniu; siatka kartograficzna będzie się zawsze różniła od siatki geograficznej;

Bardziej szczegółowo

Ćwiczenie 9. Rzutowanie i wymiarowanie Strona 1 z 5

Ćwiczenie 9. Rzutowanie i wymiarowanie Strona 1 z 5 Ćwiczenie 9. Rzutowanie i wymiarowanie Strona 1 z 5 Problem I. Model UD Dana jest bryła, której rzut izometryczny przedstawiono na rysunku 1. (W celu zwiększenia poglądowości na rysunku 2. przedstawiono

Bardziej szczegółowo

KARTA MODUŁU / KARTA PRZEDMIOTU A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU

KARTA MODUŁU / KARTA PRZEDMIOTU A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Geodezja globalna i podstawy astronomii Nazwa modułu w języku angielskim

Bardziej szczegółowo

Geodezja fizyczna i grawimetria geodezyjna. Teoria i praktyka

Geodezja fizyczna i grawimetria geodezyjna. Teoria i praktyka Zapraszamy do sklepu www.sklep.geoezja.pl I-NET.PL Sp.J. o. GeoSklep Olsztyn, ul. Cementowa 3/301 tel. +48 609 571 271, 89 670 11 00, 58 7 421 571 faks 89 670 11 11, 58 7421 871 e-mail sklep@geodezja.pl

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

Projekt nowelizacji RRM w sprawie systemu odniesień przestrzennych z dnia r.

Projekt nowelizacji RRM w sprawie systemu odniesień przestrzennych z dnia r. Projekt nowelizacji RRM w sprawie systemu odniesień przestrzennych z dnia 10.01.2008r. ROZPORZĄDZENIE RADY MINISTRÓW z dnia 2008 r. w sprawie państwowego systemu odniesień przestrzennych Na podstawie art.

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu.

10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu. Waldemar Izdebski - Wykłady z przedmiotu SIT 91 10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu. 10.3.1. Wyznaczanie

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii

Bardziej szczegółowo

MIESIĄC NR TEMAT LEKCJI UWAGI 1 Lekcja organizacyjna, BHP na lekcji. 4 Powtórzenie i utrwalenie wiadomości z klasy I sem. I

MIESIĄC NR TEMAT LEKCJI UWAGI 1 Lekcja organizacyjna, BHP na lekcji. 4 Powtórzenie i utrwalenie wiadomości z klasy I sem. I Rozkład materiału nauczania w roku szkolnym 2016/2017, kl. II TG Geodezja Ogólna, ( II kl.-6h) mgr inż. Joanna Guzik, TECHNIK GEODETA 311104 Książka Andrzej Jagielski Geodezja I, Geodezja II MIESIĄC NR

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

SZCZEGÓŁOWE SPECYFIKACJE TECHNICZNE D ODTWORZENIE TRASY I PUNKTÓW WYSOKOŚCIOWYCH

SZCZEGÓŁOWE SPECYFIKACJE TECHNICZNE D ODTWORZENIE TRASY I PUNKTÓW WYSOKOŚCIOWYCH SZCZEGÓŁOWE SPECYFIKACJE TECHNICZNE D-01.01.01 ODTWORZENIE TRASY I PUNKTÓW WYSOKOŚCIOWYCH SPIS TREŚCI 1. WSTĘP 2. MATERIAŁY 3. SPRZĘT 4. TRANSPORT 5. WYKONANIE ROBÓT 6. KONTROLA JAKOŚCI ROBÓT 7. OBMIAR

Bardziej szczegółowo

Rzutowanie. dr Radosław Matusik. radmat

Rzutowanie. dr Radosław Matusik.  radmat www.math.uni.lodz.pl/ radmat Warunki zaliczenia przedmiotu Na ćwiczeniach przez cały semestr będą realizowane dwa projekty w Unity (3D i 2D). Do uzyskania 3 z ćwiczeń wystarczy poprawnie zrealizować oba

Bardziej szczegółowo

Definicja i realizacja europejskiego systemu wysokościowego EVRS w Polsce

Definicja i realizacja europejskiego systemu wysokościowego EVRS w Polsce GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Definicja i realizacja europejskiego systemu wysokościowego EVRS w Polsce Wiesław Graszka naczelnik

Bardziej szczegółowo

Kod modułu Geodezja wyższa i astronomia geodezyjna. kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy)

Kod modułu Geodezja wyższa i astronomia geodezyjna. kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Geodezja wyższa i astronomia geodezyjna Nazwa modułu w języku angielskim

Bardziej szczegółowo

Układy współrzędnych GiK/GP

Układy współrzędnych GiK/GP Układy współrzędnych GiK/GP Józef Woźniak gis@pwr.wroc.pl Zakład Geodezji i Geoinformatyki Na podstawie wykładu Prof. R. Kadaja i Prof. E. Osady Podział map Mapy geograficzne I. Mapy ogólnogeograficzne:

Bardziej szczegółowo

Organizacja zajęć. Wprowadzenie do programu AutoCAD

Organizacja zajęć. Wprowadzenie do programu AutoCAD Komputerowe wspomaganie projektowania Wykład 1 Organizacja zajęć. Wprowadzenie do programu AutoCAD dr inż. Igor Garnik www.zie.pg.gda.pl/grafin Prowadzący zajęcia Wykłady i laboratoria dr inż. Igor Garnik

Bardziej szczegółowo

Układy współrzędnych równikowych

Układy współrzędnych równikowych Wykład udostępniam na licencji Creative Commons: Układy współrzędnych równikowych Piotr A. Dybczyński Taki układ wydaje się prosty. Sytuacja komplikuje się gdy musimy narysować i używać dwóch lub trzech

Bardziej szczegółowo

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10 TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10 Fotogrametria to technika pomiarowa oparta na obrazach fotograficznych. Wykorzystywana jest ona do opracowywani map oraz do różnego rodzaju zadań pomiarowych.

Bardziej szczegółowo

WYKORZYSTANIE ODBIORNIKÓW LEICA GPS 1200 W GEODEZYJNYCH POMIARACH TERENOWYCH

WYKORZYSTANIE ODBIORNIKÓW LEICA GPS 1200 W GEODEZYJNYCH POMIARACH TERENOWYCH WYKORZYSTANIE ODBIORNIKÓW LEICA GPS 1200 W GEODEZYJNYCH POMIARACH 93 Łukasz Śliwiński WYKORZYSTANIE ODBIORNIKÓW LEICA GPS 1200 W GEODEZYJNYCH POMIARACH TERENOWYCH Wstęp Dynamicznie rozwijająca się technologia

Bardziej szczegółowo

Grafika komputerowa Wykład 4 Geometria przestrzenna

Grafika komputerowa Wykład 4 Geometria przestrzenna Grafika komputerowa Wykład 4 Geometria przestrzenna Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 Geometria 3D - podstawowe

Bardziej szczegółowo

Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej

Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej Krzysztof Karsznia Leica Geosystems Polska XX Jesienna Szkoła Geodezji im Jacka Rejmana, Polanica

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 4 maja 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 4 maja

Bardziej szczegółowo

D-01.01.01 ODTWORZENIE (WYZNACZENIE) TRASY I PUNKTÓW WYSOKOŚCIOWYCH

D-01.01.01 ODTWORZENIE (WYZNACZENIE) TRASY I PUNKTÓW WYSOKOŚCIOWYCH D-01.01.01 Zagospodarowanie terenu przy Wiejskim Domu Kultury w Syryni, Gmina Lubomia D-01.01.01 ODTWORZENIE (WYZNACZENIE) TRASY I PUNKTÓW WYSOKOŚCIOWYCH 1. WSTĘP 1.1.Przedmiot ST Przedmiotem niniejszej

Bardziej szczegółowo

SZCZEGÓŁOWE SPECYFIKACJE TECHNICZNE

SZCZEGÓŁOWE SPECYFIKACJE TECHNICZNE SZCZEGÓŁOWE SPECYFIKACJE TECHNICZNE D-001 ODTWORZENIE TRASY I PUNKTÓW WYSOKOŚCIOWYCH 1. WSTĘP 1.1.Przedmiot SST Przedmiotem niniejszej specyfikacji technicznej są wymagania dotyczące wykonania i odbioru

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge Rok szkolny 2014/2015r.

Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge Rok szkolny 2014/2015r. Zakres wiadomości i umiejętności z przedmiotu GEODEZJA OGÓLNA dla klasy 1ge - Definicja geodezji, jej podział i zadania. - Miary stopniowe. - Miary długości. - Miary powierzchni pola. - Miary gradowe.

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

Orientacja zewnętrzna pojedynczego zdjęcia

Orientacja zewnętrzna pojedynczego zdjęcia Orientacja zewnętrzna pojedynczego zdjęcia Proces opracowania fotogrametrycznego zdjęcia obejmuje: 1. Rekonstrukcję kształtu wiązki promieni rzutujących (orientacja wewnętrzna ck, x, y punktu głównego)

Bardziej szczegółowo

Wykład 3 Miary i jednostki

Wykład 3 Miary i jednostki Wykład 3 Miary i jednostki Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza 12, pokój 04 Od klasycznej definicji metra do systemu SI W 1791 roku Francuskie

Bardziej szczegółowo

RZUTOWANIE PROSTOKĄTNE

RZUTOWANIE PROSTOKĄTNE RZUTOWANIE PROSTOKĄTNE WPROWADZENIE Wykonywanie rysunku technicznego - zastosowanie Rysunek techniczny przedmiotu jest najczęściej podstawą jego wykonania, dlatego odwzorowywany przedmiot nie powinien

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

D SPECYFIKACJE TECHNICZNE WYKONANIA I ODBIORU ROBÓT WYZNACZENIE TRASY I PUNKTÓW WYSOKOŚCIOWYCH

D SPECYFIKACJE TECHNICZNE WYKONANIA I ODBIORU ROBÓT WYZNACZENIE TRASY I PUNKTÓW WYSOKOŚCIOWYCH D-01.01.01 SPECYFIKACJE TECHNICZNE WYKONANIA I ODBIORU ROBÓT WYZNACZENIE TRASY I PUNKTÓW WYSOKOŚCIOWYCH 1. WSTĘP 1.1.Przedmiot SST Przedmiotem niniejszej szczegółowej specyfikacji technicznej są wymagania

Bardziej szczegółowo

Ćwiczenia nr 4. TEMATYKA: Rzutowanie

Ćwiczenia nr 4. TEMATYKA: Rzutowanie TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej

Bardziej szczegółowo

2 Przygotował: mgr inż. Maciej Lasota

2 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 2 1/6 Grafika Komputerowa 3D Instrukcja laboratoryjna Temat: Manipulowanie przestrzenią 2 Przygotował: mgr inż. Maciej Lasota 1) Manipulowanie przestrzenią Istnieją dwa typy układów współrzędnych:

Bardziej szczegółowo

D Roboty Pomiarowe Przy Liniowych Robotach Ziemnych

D Roboty Pomiarowe Przy Liniowych Robotach Ziemnych D-01.01.01 Roboty Pomiarowe Przy Liniowych Robotach Ziemnych 1. WSTĘP 1.1.Przedmiot SST Przedmiotem niniejszej szczegółowej specyfikacji technicznej (SST) są wymagania dotyczące wykonania i odbioru robót

Bardziej szczegółowo

Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu:

Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu: Wykład 2. Kinematyka. Aby prześledzić tok tego wykładu MUSISZ rozumieć pojęcie wektora, jego składowych w układzie kartezjańskim oraz w trakcie wykładu zrozumieć intuicyjnie pojęcie pochodnej funkcji jednej

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

Źródła pozyskiwania danych grawimetrycznych do redukcji obserwacji geodezyjnych Tomasz Olszak Małgorzata Jackiewicz Stanisław Margański

Źródła pozyskiwania danych grawimetrycznych do redukcji obserwacji geodezyjnych Tomasz Olszak Małgorzata Jackiewicz Stanisław Margański Źródła pozyskiwania danych grawimetrycznych do redukcji obserwacji geodezyjnych Tomasz Olszak Małgorzata Jackiewicz Stanisław Margański Wydział Geodezji i Kartografii Politechniki Warszawskiej Motywacja

Bardziej szczegółowo

odwzorowanie równokątne elipsoidy Krasowskiego

odwzorowanie równokątne elipsoidy Krasowskiego odwzorowanie równokątne elipsoidy Krasowskiego wprowadzony w 1952 roku jako matematyczną powierzchnię odniesienia zastosowano elipsoidę lokalną Krasowskiego z punktem przyłożenia do geoidy w Pułkowie odwzorowanie

Bardziej szczegółowo

GeoPrzeglądanie od geoidy do Google Earth

GeoPrzeglądanie od geoidy do Google Earth GeoPrzeglądanie od geoidy do Google Earth Plan wykładu Podstawowe pojęcia geodezji Wyznaczanie pozycji w terenie Google Earth jako przykład GeoPrzeglądarki Zastosowanie języka KML do tworzenia wirtualnych

Bardziej szczegółowo

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska

Bardziej szczegółowo

Metodologia opracowania ruchów pionowych skorupy ziemskiej z użyciem danych niwelacyjnych, mareograficznych i GNSS

Metodologia opracowania ruchów pionowych skorupy ziemskiej z użyciem danych niwelacyjnych, mareograficznych i GNSS Uniwersytet Warmińsko Mazurski w Olsztynie Wydział Geodezji Inżynierii Przestrzennej i Budownictwa Metodologia opracowania ruchów pionowych skorupy ziemskiej z użyciem danych niwelacyjnych, mareograficznych

Bardziej szczegółowo

HARMONOGRAM PRAKTYKI Z GEODEZJI I 12 dni

HARMONOGRAM PRAKTYKI Z GEODEZJI I 12 dni HARMONOGRAM PRAKTYKI Z GEODEZJI I 12 dni Pomiary sytuacyjne 1. 2. 3. 4. 5. 6. 7. 1. 2. 3. 4. 5. Sprawy organizacyjne Wywiad terenowy i założenie punktów osnowy pomiarowej, wykonanie opisów topograficznych

Bardziej szczegółowo

POZYSKIWANIE INFORMACJI Z AUTOCADa: ODLEG _DIST, POLE _AREA, ID (współrzędne), LISTA _LIST, STAN _STATUS, _TIME

POZYSKIWANIE INFORMACJI Z AUTOCADa: ODLEG _DIST, POLE _AREA, ID (współrzędne), LISTA _LIST, STAN _STATUS, _TIME POZYSKIWANIE INFORMACJI Z AUTOCADa: ODLEG _DIST, POLE _AREA, ID (współrzędne), LISTA _LIST, STAN _STATUS, _TIME Odległość ODLEG _DIST Użytkownik może szybko wyświetlić poniższe informacje dla dwóch punktów

Bardziej szczegółowo

RZUTOWANIE PROSTOKĄTNE

RZUTOWANIE PROSTOKĄTNE RZUTOWANIE PROSTOKĄTNE wg PN-EN ISO 5456-2 rzutowanie prostokątne (przedstawienie prostokątne) stanowi odwzorowanie geometrycznej postaci konstrukcji w postaci rysunków dwuwymiarowych. Jest to taki rodzaj

Bardziej szczegółowo

Punkty geodezyjne Wykład 9 "Poziome sieci geodezyjne - od triangulacji do poligonizacji" 4

Punkty geodezyjne Wykład 9 Poziome sieci geodezyjne - od triangulacji do poligonizacji 4 Punkty geodezyjne Jeśli znaczne obszary Ziemi są mierzone, to pierwszą czynnością jest umieszczenie w terenie (stabilizacja) punktów geodezyjnych Punkty te są stabilizowane w terenie lub wybierane na budowlach

Bardziej szczegółowo

Księgarnia PWN: Wiesław Kosiński - Geodezja. Spis treści

Księgarnia PWN: Wiesław Kosiński - Geodezja. Spis treści Księgarnia PWN: Wiesław Kosiński - Geodezja Wstęp........................................................ 1 1. WIADOMOŚCI PODSTAWOWE.................................... 3 1.1. Rys historyczny rozwoju geodezji

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Potencjał normalny. Potencjał zakłócajacy. Podstawowe równanie geodezji fizycznej. Dr inż. Liliana Bujkiewicz 4 czerwca 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna

Bardziej szczegółowo

Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,...

Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,... Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,... Rzut sferyczny (projekcja sferyczna) Kryształ zastępuje się zespołem płaszczyzn i prostych równoległych do odpowiadających im płaszczyzn

Bardziej szczegółowo

Grafika Inżynierska C1. Dr inż. Adam Deptuła Część 2

Grafika Inżynierska C1. Dr inż. Adam Deptuła Część 2 Grafika Inżynierska C1 Dr inż. Adam Deptuła Część 2 Podstawowe zasady wymiarowania Zasada wymiarów koniecznych Zasada nie powtarzania wymiarów Zasada niezamykania łańcuchów wymiarowych Zasada pomijania

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

Zadania do testu Wszechświat i Ziemia

Zadania do testu Wszechświat i Ziemia INSTRUKCJA DLA UCZNIA Przeczytaj uważnie czas trwania tekstu 40 min. ). W tekście, który otrzymałeś są zadania. - z luką - rozszerzonej wypowiedzi - zadania na dobieranie ). Nawet na najłatwiejsze pytania

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Anomalie grawimetryczne Redukcje i poprawki Liliana Bujkiewicz WPPT PWr Liliana Bujkiewicz (WPPT PWr) Geodezja fizyczna i geodynamika 1 / 10 Literatura 1 Geodezja współczesna

Bardziej szczegółowo

LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L

LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia 1. Przyjmij, że prędkość rotacji różnicowej Słońca, wyrażoną w stopniach na dobę, można opisać wzorem: gdzie φ jest szerokością heliograficzną.

Bardziej szczegółowo

Układy współrzędnych równikowych

Układy współrzędnych równikowych Wykład udostępniam na licencji Creative Commons: Układy współrzędnych równikowych Piotr A. Dybczyński 15 października 2013 Układ współrzędnych sferycznych Taki układ wydaje się prosty. Sytuacja komplikuje

Bardziej szczegółowo

Zdjęcia satelitarne MSG Detektory - SEVIRI

Zdjęcia satelitarne MSG Detektory - SEVIRI IV Konferencja naukowo-techniczna WYKORZYSTA IE WSPÓŁCZES YCH ZOBRAZOWA SATELITAR YCH, LOT ICZYCH I AZIEM YCH DLA POTRZEB OBRO OSCI KRAJU I GOSPODARKI ARODOWEJ Geometryczne aspekty przekształceń zdjęć

Bardziej szczegółowo

Zajęcia techniczne kl. I - Gimnazjum w Tęgoborzy

Zajęcia techniczne kl. I - Gimnazjum w Tęgoborzy Temat 14 : Podstawowe wiadomości o rysunku technicznym. Prezentacja Pismo techniczne.pps 1. - język porozumiewawczy między inżynierem a konstruktorem. Jest znormalizowany, tzn. istnieją normy (przepisy)

Bardziej szczegółowo

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo