Termodynamika 26/10/2015. Definicje. Układ i otoczenie. Typy układów. układ



Podobne dokumenty
Termodynamika 25/10/2017. Definicje. Układ i otoczenie

Termodynamika 09/01/2017. Definicje. Układ i otoczenie

TERMODYNAMIKA I TERMOCHEMIA

Termochemia elementy termodynamiki

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

Warunki izochoryczno-izotermiczne

Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001

DRUGA ZASADA TERMODYNAMIKI

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)

Odwracalność przemiany chemicznej

Wykład 10 Równowaga chemiczna

I piętro p. 131 A, 138

DRUGA ZASADA TERMODYNAMIKI

Jak mierzyć i jak liczyć efekty cieplne reakcji?

Podstawy termodynamiki

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.

Termochemia efekty energetyczne reakcji

WYKŁAD 3 TERMOCHEMIA

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Opracowała: mgr inż. Ewelina Nowak

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego:

Inżynieria Biomedyczna Wykład V

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.

Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych

Fizyka Termodynamika Chemia reakcje chemiczne

Podstawy termodynamiki.

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

Jak mierzyć i jak liczyć efekty cieplne reakcji?

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Wykład 4. Przypomnienie z poprzedniego wykładu

prof. dr hab. Małgorzata Jóźwiak

Wykład z Chemii Ogólnej i Nieorganicznej

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA

WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG

TERMOCHEMIA SPALANIA

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2016/17)

TERMOCHEMIA SPALANIA

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

I. Podstawowe pojęcia termodynamiki Termodynamika (nauka o transformacjach energii; zajmuje się badaniem efektów energetycznych przemian fizycznych i

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak

c. Oblicz wydajność reakcji rozkładu 200 g nitrogliceryny, jeśli otrzymano w niej 6,55 g tlenu.

CIEPŁO O ZNANE CZY NIEZNANE?

Opracował: dr inż. Tadeusz Lemek

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J

CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1

a. Dobierz współczynniki w powyższym schemacie tak, aby stał się równaniem reakcji chemicznej.

Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część IV - Elementy termodynamiki i kinetyki chemicznej

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna

Inżynieria Biomedyczna. Wykład IV Elementy termochemii czyli o efektach cieplnych reakcji

a) jeżeli przedstawiona reakcja jest reakcją egzotermiczną, to jej prawidłowy przebieg jest przedstawiony na wykresie za pomocą linii...

Termodynamika. Energia wewnętrzna ciał

Kryteria samorzutności procesów fizyko-chemicznych

1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:

Kinetyka reakcji chemicznych. Dr Mariola Samsonowicz

13 TERMODYNAMIKA. Sprawdzono w roku 2015 przez A. Chomickiego

a) 1 mol b) 0,5 mola c) 1,7 mola d) potrzebna jest znajomość objętości zbiornika, aby można było przeprowadzić obliczenia

VIII Podkarpacki Konkurs Chemiczny 2015/2016

WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG

Kiedy przebiegają reakcje?

Podstawy termodynamiki

Przemiany substancji

Maszyny cieplne substancja robocza

Wykład 6. Klasyfikacja przemian fazowych

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Inżynieria procesów przetwórstwa węgla, zima 15/16

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

Kiedy przebiegają reakcje?

Opracowała: mgr inż. Ewelina Nowak

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.

WYZNACZANIE CIEPŁA TOPNIENIA LODU METODĄ BILANSU CIEPLNEGO

... imię i nazwisko,nazwa szkoły, miasto

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie OLIMPIADA O DIAMENTOWY INDEKS AGH 2017/18 CHEMIA - ETAP I

Podstawowe pojęcia 1

Przemiany gazowe. 4. Który z poniższych wykresów reprezentuje przemianę izobaryczną: 5. Który z poniższych wykresów obrazuje przemianę izochoryczną:

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych

TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II

13. TERMODYNAMIKA WYZNACZANIE ENTALPII REAKCJI ZOBOJĘTNIANIA MOCNEJ ZASADY MOCNYMI KWASAMI I ENTALPII PROCESU ROZPUSZCZANIA SOLI

Kryteria oceniania z chemii kl VII

Entropia - obliczanie. Podsumowanie

Termodynamiczny opis przejść fazowych pierwszego rodzaju

13 TERMODYNAMIKA. Sprawdzono w roku 2017 przez A. Chomickiego

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje rejonowe

Transkrypt:

Termodynamika Definicje Termodynamika dział fizyki zajmujący się badaniem energetycznych efektów wszelkich przemian fizycznych i chemicznych, które wpływają na zmiany energii wewnętrznej analizowanych układów. Z greckiego thermo = ciepło Dział ten zajmuje się również efektami energetycznymi reakcji chemicznych, przemian z udziałem jonów, przemianami fazowymi, a nawet przemianami jądrowymi i energią elektryczną. Układ i otoczenie Typy układów układ układ granice granice otoczenie otoczenie 1. Otwarty, wymienia ciepło(energię), pracę i masę z otoczeniem 2. Zamknięty wymienia tylko pracę i energię z otoczeniem 3. Izolowany nie wymienia nic z otoczeniem 1

Podsumowanie Pytania sprawdzające: 1.Układ zamknięty zawiera 2 g lodu. Następne 2 g lodu są dodane do układu. Jaka jest końcowa masa układu? 2.Izolowany układ ma początkową temperaturę 30 o C. Układ ten umieszczono nad palniku (temp. ok.1000 o C) i utrzymano w tej pozycji przez 1 godzinę. Jaka jest końcowa temperatura układu? Faza, rodzaje, parametry stanu Faza jest to część układu spełniająca następujące wymagania: Właściwości każdego elementu objętości w obrębie fazy są jednakowe Istnieje granica dzieląca fazy układu, na której występuje skokowa zmiana właściwości. Rodzaje faz: gazowa, ciekła, stała; jednoskładnikowa, wieloskładnikowa. 2

Z termodynamicznego punktu widzenia stan układu jest zdefiniowany przez zbiór warunków które dokładnie i jednoznacznie określają wszystkie właściwości układu. Należą do nich: temperatura (T) ciśnienie (p) skład (jakościowy i ilościowy t. j. liczbę moli każdego ze składników układu (n) i stężenie składników w układzie (c)) stan fizyczny (gaz, ciecz, ciało stałe) każdego ze składników układu liczba faz (f) objętość (V) Te wielkości nazywane są parametrami stanu. Zbiór parametrów stanu określają pewne funkcje zwane funkcjami stanu. Różne stany fizyczne wody i ich właściwości Lód (ciało stałe) Woda (ciecz) Para wodna (gaz) Energia, ciepło Energia (U) jest wielkością fizyczną przedstawiającą zdolność układu (obiektu) do wykonania pracy lub wymiany ciepła. Sumę wszystkich rodzajów energii cząsteczek w układzie nazywa się energią wewnętrzną. Jednostka J. Ciepło (Q) jest formą energii przekazywaną z jednego układu do drugiego. Układ pierwszy charakteryzuje wyższa temperatura natomiast drugi niższa. Ciepło zawsze przepływa z układu o wyższej temperaturze do układu o niższej temperaturze nigdy odwrotnie. Jednostka J. Prawo zachowania masy i energii Wiele eksperymentów wykazało, że wszelka energia czy masa zaangażowana w jakąkolwiek reakcję chemiczną czy przemianę fizyczną pojawia się w jakiejś formie po reakcji lub przemianie. Np. chemicznie Mg + Cl 2 MgCl 2 Masa substratów: Mg = 24 g/mol; 2Cl = 2x 35.5 g/mol; całość = 95 g/mol Masa produktów MgCl 2 = 95 g/mol Fizyczne; E = mc 2 Prawo zachowania masy po przekształceniu Einsteina Podczas przemian zachodzących w układach zamkniętych (takich, które nie wymieniają z otoczeniem ani masy, ani energii) suma mas i masowych równoważników wszystkich form energii jest stała. Można to też przedstawić następująco: Energia nie może być stworzona lub zniszczona podczas reakcji chemicznej lub przemiany fizycznej. Jedna forma energii jest przekształcana w drugą. 3

Praca (W) - równa jest energii jaką układ termodynamiczny wymienia z otoczeniem przy zmianie swoich parametrów makroskopowych (objętość, położenie, natężenie pola, itp. ). Pracą jest np. działanie układu wywołujące w otoczeniu przesunięcie tłoka, przepływ prądu elektrycznego. W termodynamice chemicznej praca najczęściej jest związana ze zmianą objętości układu w wyniku działania zewnętrznego ciśnienia lub działająca w kierunku przeciwnym do kierunku działania ciśnienia. Jednostką pracy jest J. W = F. D F- siła [N] D- przesunięcie [m] Praca objętościowa W = p. ΔV 4

Energia wewnętrzna układu (U) jest to całkowita energia układu. Jest to suma wszystkich udziałów energii kinetycznej, potencjalnej wszystkich atomów, jonów i cząsteczek tworzących układ. Energia wewnętrzna jest funkcją stanu. Energię wewnętrzną układu można zmienić poprzez wykonanie na nim pracy lub przez jego ogrzanie. Po wykonaniu tych czynności na układzie energia układu zostaje zmagazynowana w postaci dodatkowej energii kinetycznej i potencjalnej cząsteczek (np. w gazie zwiększa się ich szybkość poruszania). W podobny sposób w przypadku utraty energii przez układ np. poprzez jego oziębienie cząstki układu zmniejszają swoją energię kinetyczną i potencjalną (np. w gazie poruszają się wolniej). Z powodu zbytniego skomplikowania całkowita energia wewnętrzna układu jest trudna do zmierzenia. Natomiast można mierzyć jej zmiany (ΔU) poprzez określenie energii dostarczonej do układu lub utraconej przez niego na sposób ciepła lub pracy. Zmagazynowana energia chemiczna może być uwolniona przez związek chemiczny podczas zmian chemicznych takich jak spalanie lub metabolizm. Reakcje w których energia jest uwalniana na sposób ciepła nazywane są egzotermicznymi. Węglowodory takie jak metan główny składnik gazu ziemnego i oktan składnik benzyny ulegają spaleniu przy dostępie nadmiaru tlenu do CO 2 i H 2 O. CH 4 + 2O 2 CO 2 + 2H 2 O + Q Ta reakcje uwalnia energię w postaci ciepła, Q. Ilość ciepła przedstawiona na tym wykresie jest związana z reakcją chemiczną i ilością moli substratów i produktów określoną poprzez współczynniki reakcji. 5

Reakcje endotermiczne Proces w którym dochodzi do absorbowania energii z otoczenia nazywa się endotermicznym. Dla tego typu reakcji końcowy poziom energii jest wyższy od poziomu początkowego. Reakcja pomiędzy stałym Ba(OH) 2 8H 2O i nadmiarem stałego NH 4NO 3 Proces rozpuszczania jest procesem tak endotermicznym i obniża znacznie temperaturę. Gdy więc umieścimy kolbę z mieszaniną reagentów na mokrym kawałku drewna, woda zamarza i przytwierdza kolbkę do drewna. Fig. Przykład endotermicznej reakcji. Egzotermiczny proces Zamarzanie wody Fermentacja z wykorzystaniem kwasu mlekowego (kiszenie ogórków, kapusty, kwaszenie mleka, śmietany) Fermentacja octowa Grillowanie (spalanie węgla w tlenie) Mieszanie siarczku sodu z wybielaczem Rdzewienie stali Mieszanie wody z mocnym kwasem Spalanie benzyny w silniku samochodowym Przepłukiwanie rur udrażniaczem (Kret) Trwała ondulacja z wykorzystaniem reakcji redukcji (proces z tioglikolanem amonu, a później nadtlenek wodoru i lanolina) Endotermiczny proces Topnienie wody Konwersja lodu w parę wodną Parowanie wody Rozpuszczanie cukru w szklance z gorącą wodą Pieczenie (chleba, ciast) Gotowanie (jajka, smażenie kotletów) Mieszanie wody z azotanem amonu Otrzymywanie metanolu z wody i CO 2 Prostowanie włosów Kwasowa trwała ondulacja wymagająca podgrzania włosów lub też te wykorzystujące siarczek amonu czy wodorosiarczek amonu Test: 1. U organizmów samożywnych przemiany biochemiczne są: a) zawsze endoenergetyczne b) egzo- i endoenergetyczne c) zawsze obojętne energetycznie. d) zawsze egzoenergetyczne 2. Spalanie cukru w organizmie jest: a) Reakcją egzoenergetyczne b) Reakcją obojętną energetycznie c) Reakcją endoenergetyczną d) Brak prawidłowej odpowiedzi. Technologia self heating aplikacji kosmetyków 6

I zasada termodynamiki Pierwsza zasada termodynamiki określa zależność zmiany energii wewnętrznej od dostarczonego ciepła i pracy. U = Q + W U - zmiana energii wewnętrznej ciała/układu Q ciepło dostarczone do ciała/układu W -praca wykonana nad ciałem/układem Treść tego wzoru (a więc i I zasady termodynamiki) można przedstawić w postaci sformułowania: Zmiana energii wewnętrznej ciała lub układu ciał jest równa sumie dostarczonego ciepła lub pracy wykonanej nad ciałem lub układem ciał. Zmiana energii wewnętrznej układu może się odbyć jedynie na sposób ciepła lub pracy. U = Q + W Przykłady: 1. Proste zastosowanie wzoru Podczas prasowania żelazko podgrzało tkaninę energią 200 J, a w wyniku tarcia została do niego dodatkowo dostarczona energia 10 J (zakładamy, że nie było ubytków ciepła). W rezultacie energia wewnętrzna tkaniny wzrosła o: U = Q + W = 200 J + 10 J = 210 J 2. Podgrzewanie ciała, bez wykonywania pracy Podczas podgrzewania ciała bez wykonywania pracy (np. podczas podgrzewania wody na herbatę) mamy: Q > 0 (bo ciepło jest dostarczane do ciała / układu) W = 0 (bo praca nie jest wykonywana ani przez siły zewnętrzne, ani przez układ) U = Q + 0 = Q > 0 - energia wewnętrzna układu wzrasta (czyli najczęściej także wzrasta temperatura). 7

3. Oziębianie ciała, bez wykonywania pracy Podczas oziębiania ciała bez wykonywania pracy (np. podczas chłodzenia masła w lodówce) mamy: Q < 0 (bo ciepło jest odbierane od ciała / układu) W = 0 (bo praca nie jest wykonywana ani przez siły zewnętrzne, ani przez układ) U = Q + 0 = Q < 0 - energia wewnętrzna układu maleje (czyli najczęściej także maleje temperatura). 4. Podgrzewanie ciała z wykonywaniem pracy przez siły zewnętrzne Podczas podgrzewania ciała wraz z wykonywaniem pracy (np. podczas uderzania młotem kowalskim w kawał żelaza ogrzewany w palenisku w kuźni) mamy: Q > 0 (bo ciepło jest dostarczane do ciała / układu) W > 0 (praca jest wykonywana siły zewnętrzne - kowala) U = Q + W > 0 - energia wewnętrzna układu rośnie (w opisanym przykładzie rośnie temperatura żelaza). Entalpia układu Ciepło przemiany chemicznej przebiegającej pod stałym ciśnieniem równe jest zmianie entalpii układu (H). Wartości bezwzględnych entalpii i energii wewnętrznej układu nie można wyznaczyć bezpośrednio. Z tego względu przyjęto konwencję względnego układu odniesienia tzw. stanów standardowych. A obliczone wartości są określane jako zmiany. Standardowe ciepło tworzenia związku chemicznego pod stałym ciśnieniem (ΔH 0 tw) nazywane jest entalpią standardową. Entalpia jest funkcją termodynamiczną i jednocześnie funkcją (parametrem) stanu. Wartości funkcji termodynamicznych 1 mola substancji prostej (pierwiastków), trwałej w temperaturze 298 K i pod ciśnieniem 101325 Pa (warunki standardowe), są równe zero. Termodynamiczny standardowy stan danej substancji jest to jej najbardziej stabilna, czysta forma występująca w standardowych warunkach. Ciśnienie jedna atmosfera (1013 hpa, 760 mm Hg) i w specyficznej temperaturze (25 C or 298 K). Przykłady stanów skupienia pierwiastków w 25 C: wodór gaz, bezbarwny, diatomowy, H 2(g) ; rtęć ciecz, srebrzysta, metal, Hg (l) ; Sód ciało stałe, srebrzysto białe, metal, Na (s) ; Węgiel ciało stałe, szaro-czarne, niemetal, C (grafit). TERMODYNAMICZNY STAN STANDARDOWY, TSS TSS 8

1. Jeżeli czysta substancja w TSS jest w postaci cieczy lub ciała stałego to jej stan TSS jest cieczą lub ciałem stałym. 2. Ciśnienie czystego gazu w TSS jest równe 1 atm, natomiast dla mieszaniny gazów ich suma ciśnień cząstkowych musi być równa 1 atm. 3. Dla roztworów wodnych, TSS odnosi się do stężenia 1 mol/l. TSS - zasady Wybierz odpowiedź/ odpowiedzi dotyczące TSS: Odpowiedź Quiz Substancja rozpuszczona/ mieszanina Warunki a) NaOH (aq) C = 0.1 M/L b) mieszanina O 2 i N 2 P o2 = 0.7atm; P N2 = 0.3atm c) mieszanina He i Ar P o2 = 0.8 atm; P N2 = 1.3atm d) HCl aq C = 1 M/L Zmiana standardowej entalpii, H 0 rxn, dla danej reakcji: Dla ułatwienia porównania i w tabelach dotyczących termochemicznych lub termodynamicznych zmian zmiany standardowe są oznaczone poprzez zero w indeksie górnym np. H 0. substraty produkty dotyczy H gdy określona ilość moli substratów wszystkich w standardowych stanach zostanie przekształcona w określoną ilość moli produktów wszystkich występujących STANDARDOWA ZMIANA w standardowych stanach. H 0 rxn, 9

Prawo Hessa Standardowa molowa entalpia tworzenia, H tw0, substancji jest zmianą entalpii dla reakcji w której 1 mol substancji w standardowym stanie jest tworzony z pierwiastków będących w ich standardowych stanach. Wartość H tw0 dla każdego pierwiastka w ich standardowym stanie jest równa 0. Niezależnie od tego, czy reakcja chemiczna przebiega od stanu początkowego do stanu końcowego bezpośrednio czy przez reakcje pośrednie, całkowity efekt cieplny reakcji jest w obu przypadkach taki sam. Standardowa molowa entalpia tworzenia http://www.chemorganiczna.com/nieorganiczna/11-zadania-i-problemy/15-termochemia.html Prawo to wykorzystuje się do wyznaczenia nieznanych efektów cieplnych reakcji chemicznych na podstawie innych reakcji, dla których znane są efekty cieplne. W obliczeniach można również wykorzystać stabelaryzowane wartości standardowych molowych entalpii tworzenia (ΔH tw ) lub standardowych molowych entalpii spalania (ΔH sp )(dla substancji organicznych) : ΔH 0 reakcji = Σ (n i ΔH 0 tw ) produkty Σ (n i ΔH0 tw ) substraty ΔH 0 reakcji = Σ (n i ΔH 0 sp ) substraty Σ (n i ΔH0 sp ) produkty Obliczyć standardową entalpię reakcji spalania etanu. Rozwiązanie. W zadaniu mowa jest o reakcji: Zgodnie z prawem Hessa efekt cieplny reakcji spalania metanu pod stałym ciśnieniem (entalpia reakcji) nie zależy od drogi przemiany, a jedynie od stanu początkowego i końcowego układu. Stąd reakcję spalania można przeprowadzić na innej drodze, a efekt cieplny reakcji będzie ten sam. Dogodnym sposobem przeprowadzenia reakcji będzie rozkład substratów reakcji na pierwiastki i synteza produktów reakcji z pierwiastków. Należy pamiętać, że entalpia rozkładu związku chemicznego jest równa, co do wartości bezwzględnej entalpii tworzenia, a przeciwna, co do znaku. 10

Zatem można zapisać trzy etapy: 1. rozkład 1 mola etanu na pierwiastki; entalpia tworzenia etanu wynosi 84,60 kj/mol 2. synteza 2 moli dwutlenku węgla z węgla i tlenu; entalpia tworzenia CO 2 wynosi kj/mol 3. synteza 3 moli wody w stanie pary; entalpia tworzenia H 2 O (g) = -241,60 kj/mol Dodając równania stronami wraz z entalpiami oraz redukując wyrażenia podobne otrzyma się w wyniku reakcję: Spalaniu 1 mola etanu towarzyszy entalpia ΔH r = -1426,46 kj. Znak minus oznacza, że układ traci energię, a więc jest to reakcja egzotermiczna. Rozważ następującą reakcję: C (grafit) + 1/2 O 2(g) CO (g) H 0 rxn =? Zmiana entalpii dla tej reakcji nie może być zmierzona dokładnie. Nawet gdy CO (g) jest dominującym produktem reakcji grafitu z ograniczoną ilością O 2(g), pewna ilość CO 2(g) jest zawsze tworzona. C (grafit) + O 2(g) CO 2(g) ΔH 0 rxn = -393.5 kj/mol rxn (1) CO (g) + ½ O 2(g) CO 2(g) ΔH 0 rxn = -283.0 kj/mol rxn (2) 11

C (grafit) + O 2(g) CO 2(g) ΔH 0 rxn = -393,5 kj/mol rxn (1) CO 2(g) ½ O 2(g) + CO 2(g) ΔH 0 rxn = +283,0 kj/mol rxn (2) ΔH 0 rxn = - 110,5 kj/mol rxn Na zmianę entalpii układu można popatrzeć na dwa sposoby: Jeżeli reakcja jest egzotermiczna produkty mają mniejszą entalpię od entalpii substratów. Wówczas tworzenie produktów jest uprzywilejowane i reakcja przebiega w stronę ich tworzenia (czyli w prawo), ΔH tej reakcji jest ujemna. Jeżeli reakcja jest endotermiczna wówczas substraty reakcji maja mniejszą entalpię od produktów i tworzenie produktów jest nieuprzywilejowane natomiast uprzywilejowane jest tworzenie substratów i w związku z tym reakcja biegnie w stronę ich tworzenia (reakcja w lewo). ΔH tej reakcji jest dodatnia. Oblicz zmianę entalpii dla następującej reakcji i określ czy reakcja jest endo- czy egzotermiczna. Standardowe entalpie of tworzenia Związek ΔH 0 MgCl 2(s) -642 kj/mol H 2O (l) -286 kj/mol MgO (S) -602 kj/mol HCl (g) -92 kj/mol Określając zmiany energii związane z chemicznym lub fizycznym procesem stosujemy eksperymentalna technikę zwaną kalorymetrią. Jest ona oparta na obserwacji zmian temperatury gdy układ absorbuje lub uwalnia energię na sposób ciepła. Zmiany temperatury zaś są związane bezpośrednio z badanym procesem chemicznym lub fizycznym. 12

Ciepło właściwe substancji ilość ciepła potrzebna do zwiększenia temperatury 1 g substancji o 1 stopień celsjusza lub 1 kelwin bez zmiany stanu skupienia tej substancji. Badanie ciepła zaabsorbowanego przez przedmiot. A) pomiar temperatury zlewki z wodą i podgrzanie przedmiotu. B) pomiar zmiany temperatury zlewki po włożeniu do niej przedmiotu. Ciepło właściwe [c] Q. Jaka ilość ciepła jest potrzebna do podgrzania 10g ciekłej wody z temperatury 10 o C do 40 o C. [c w ciekłej wody wynosi 4.18 J g -1 o C -1 ]. a) 418 J; b) 1254 J; c) 1672 J 13

Zadanie Do przygotowania kąpieli o temperaturze końcowej t k wynoszącej 38 o C użyto 20 litrów wody o temperaturze t 1 wynoszącej 14 o C oraz pewnej objętości gorącej wody o temperaturze t 2 wynoszącej 70 o C. Ile litrów gorącej wody użyto? Ciepło właściwe wody C w = 4189.9 J/kg K Dane: t k = 38 o C t 1 = 14 o C, V 1 = 20 l = m 1 = 20 kg (bowiem gęstość wody to 1g/ml) t 2 = 70 o C, V 2 =? m 2 =? Q pobrane + Q oddane = 0 Q pobrane = C w m 1 t t = (t k -t 1 ) Q oddane = C w m 2 t t = t k t 2 Q pobrane + Q oddane = 0 Q pobrane = 4189,9 J 20 kg kg o C 24o C = 2011152 J Q oddane = 4189,9 J x kg kg o C 32o C = y 14

Ciepło oddane = ciepło pobrane Więc Q pobrane = 2011152 J 2011152 J = 4189,9 J kg o C m kg 32o C 2011152 J = 134076,8 J m kg kg Inne jednostki ciepła ilość ciepła konieczna do podniesienia temperatury 1 g wody z 14.5 C do 15.5 C, wynosi 4.184 J i jednocześnie jest to 1 kaloria. Duże kalorie są używane do określenia wartości energetycznej żywności i w rzeczywistości odpowiadają kilokaloriom. (1kcal) m = 15 kg Spontaniczność reakcji Spontaniczne reakcje zachodzą w sposób naturalny i preferują powstawanie produktów w specyficznych warunkach. Opisywane są przypadki samozapłonu stogu siana czy magazynu z mąką. Spowodowane jest to wzrostem energii wewnętrznej w układzie zamkniętym. Właściwości tego układu powodują brak możliwości wymiany ciepła z otoczeniem, więc temperatura układu wzrasta do tego poziomu, że wybucha pożar. Jest to przykład reakcji spontanicznej. Inne przykłady: Reakcja pomiędzy azotanem kadmu a siarczkiem sodu jest spontaniczna. Rozprzestrzenianie się kropli barwnika w wodzie też jest spontaniczne. Każdy proces zachodzący bez zewnętrznego wpływu jest procesem spontanicznym (samorzutnym). Przykłady procesów samorzutnych: Kiedy upuścimy jajka spontanicznie się zbiją. Odwrócenie tej reakcji (reakcja w drugą stronę tzn. ze skorupek i rozbitego jajka do całego jaja) jest niemożliwa. Taka reakcja jest niespontaniczna. 15

Reakcje (procesy) odwracalne Procesy odwracalne zachodzą w obie strony po tej samej drodze. Gdy 1 mol ciekłej wody zamarza przy ciśnieniu 1 atm i 0 C tworząc 1 mol lodu ciepło q = H krzepnięcia jest uwalniane. Natomiast w tych samych warunkach odwrotny proces pochłania ciepło Spontaniczne procesy mogą być szybkie lub powolne q = H topnienia H krzepnięcia = H topnienia Spalanie gazu. Reakcja spontaniczna i wybuchowa (szybka). Korozja metali. Reakcja spontaniczna ale powolna. Niespontaniczne reakcje nie sprzyjają tworzeniu produktów w specyficznych warunkach. Przykładem takiej reakcji jest fotosynteza, do zajścia której potrzebny jest dodatkowy wydatek energii. Czynniki warunkujące spontaniczność reakcji chemicznej lub przemiany fizycznej 1. reakcja jest spontaniczna gdy podczas niej ciepło jest uwalniane (reakcja jest egzotermiczna) 2. reakcja jest spontaniczna prowadzi do wzrostu nieuporządkowania układu. A Non-natural Process: Steinberg's Famous New Yorker Cartoon Source: Boundless. Spontaneous and Nonspontaneous Processes. Boundless Chemistry. Boundless, 21 Jul. 2015. Retrieved 16 Sep. 2015 from https://www.boundless.com/chemistry/textbooks/boundless-chemistry-textbook/thermodynamics-17/the-lawsof-thermodynamics-123/spontaneous-and-nonspontaneous-processes-497-3512/ 16

Termodynamiczna funkcja stanu entropia, S, mierzy nieuporządkowanie układu. Im większa jest entropia tym większe jest nieuporządkowanie układu. Przykłady układów o wzrastającej entropii. W przemianach spontanicznych wszechświat dąży do stanu o większym nieuporządkowaniu. (Bałagan na biurku robi się łatwiej niż porządek). Entropia wszechświata jako izolowanego układu będzie zawsze wzrastała. Zmiany entropii we wszechświecie nigdy nie będą ujemne. Uwalnianie ciepła (sprzyjająca) Wzrost entropii (sprzyjająca) Reakcja spontaniczna Wzrost entropii (sprzyjająca) Absorpcja ciepła (niesprzyjająca) Reakcja spontaniczna Uwalnianie ciepła (sprzyjająca) Spadek entropii (niesprzyjająca) Reakcja spontaniczna Reakcje spontaniczne 17

Reakcje niespontaniczne Absorpcja ciepła (niesprzyjająca) Wzrost entropii (sprzyjająca) Reakcja niespontaniczna Spadek entropii (niesprzyjająca) Uwalnianie ciepła (sprzyjająca) Reakcja niespontaniczna Absorpcja ciepła (niesprzyjająca) Spadek entropii (niesprzyjająca) Reakcja niespontaniczna Druga zasada termodynamiki Wszystkie zjawiska w przyrodzie, obejmujące dostatecznie dużą liczbę cząsteczek przebiegają w jednym kierunku, którego nie można odwrócić. Zjawiska w przyrodzie są nieodwracalne: Ciepło samoistnie płynie od ciała cieplejszego do chłodniejszego. Nigdy odwrotnie. Dwa gazy lub dwie ciecze po zmieszaniu ze sobą nie rozdzielą się samodzielnie. Hamujący samochód całkowicie zamienia swoją energię mechaniczną na wewnętrzną (hamulce się ogrzewają). Nie obserwujemy procesu odwrotnego. Gaz samoistnie rozpręży się z jednego do drugiego pustego naczynia. Sam nie wróci do pierwszego. Aromat perfum rozpylonych w pokoju rozprzestrzeni się. Nie można cząstek zapachowych skierować z powrotem do opakowania. Druga zasada termodynamiki określa kierunek przemian termodynamicznych w przyrodzie. II zasada termodynamiki a procesy starzenia Zgodnie z II zasadą termodynamiki w układzie zamkniętym entropia nie może maleć. Wszelkie złożone układy np. związki chemiczne mają tendencję do degradacji (co powoduje wzrost entropii). Temu procesowi ulegają różne struktury budujące organelle komórkowe pobudzając organizm do syntezy nowych organelli, ale proces ten nie jest nieograniczony w czasie. Z czasem w komórkach gromadzą się produkty przemiany materii w takich ilościach, że ich usunięcie pociąga za sobą zbyt duży wydatek energetyczny. Prowadzi to do degeneracji i rozpadu komórek. 18

Entalpia swobodna, energia swobodna Gibbsa (ΔG) jest maksymalną ilością energii która może zostać połączona z innym procesem aby wykonać użyteczną pracę. Jest to kolejna funkcja stanu. Proces jest spontaniczny gdy Δ G ma ma wartość ujemną ponieważ układ traci energię swobodną. Ponieważ w stosowanym wzorze temperatura w kelwinach jest zawsze dodatnia, znak związany z entropią wskazuje czy dany proces/reakcja jest spontaniczny czy też nie (jeżeli takowy zachodzi w stałej temperaturze). Znak związany z energią swobodną wskazuje czy proces/ reakcja jest spontaniczny. Jeżeli ΔS univ > 0 proces jest spontaniczny ponieważ ΔG = - (+T) czyli ma wartość ujemną Jeżeli ΔS univ < 0 proces jest niespontaniczny ponieważ ΔG = + (+T) czyli ma wartość dodatnią Jeżeli ΔG < 0 (jest ujemna) to reakcja/proces jest spontaniczny Jeżeli ΔG > 0 (jest dodatnia) to reakcja/proces jest niespontaniczny (proces zachodzący w stronę przeciwną jest spontaniczny) Jeżeli ΔG = 0 to reakcja/ proces jest w równowadze Spalanie acetylenu C 2 H 2 (g) + 5/2 O 2 (g) --> 2 CO 2 (g) + H 2 O(g) Entalpia tworzenia H o rxn = -1238 kj Standardowa molowa entropia S o rxn = -97.4 J/K or -0.0974 kj/k G o rxn = -1238 kj - (298 K)(-0.0974 J/K) = -1209 kj Reakcja biegnie w kierunku produktów w skutek ujemnej wartości S o rxn. Reakcja jest napędzana entalpią NH 4 NO 3 (s) + Q ---> NH 4 NO 3 (aq) W tabeli można znaleźć dane termodynamiczne tej reakcji H o rxn = +25.7 kj S o rxn = +108.7 J/K or +0.1087 kj/k G o rxn = +25.7 kj - (298 K)(+0.1087 kj/k) = -6.7 kj Reakcja jest w kierunku produktów na skutek dodatniej wartości H o rxn. Reakcja jest napędzana entropią 19

: Powstawanie amoniaku w procesie Habera zachodzi wg reakcji N 2 + 3H 2 2 NH 3 W jakiej temperaturze reakcja będzie spontaniczna? Entalpia i entropia tego procesu wynosi odpowiednio: ΔH = -93 kj/mol; ΔS= -198 J/ mol K Obie wartości są ujemne to znaczy, że entalpia swobodna jest zależna od temperatury: ΔG = ΔH - TΔS ΔG = -93000 - (T x -198) Należy pamiętać, że entalpia jest w kj Jeżeli ΔG = 0 wówczas układ jest najmniej spontaniczny Gdy ΔG = 0 wówczas (T x -198) = -93000 i T = 93000/198 Kelvin Zatem reakcja zacznie być spontaniczna gdy T = 469 K (196 ºC) Powyżej tej temperatury reakcja jest spontaniczna. Energia swobodna a stała równowagi G 0 = RT ln K G = G 0 + RT ln K W roztworze doskonałym lub idealnie rozcieńczonym panuje stan równowagi chemicznej, to iloczyn ułamków molowych reagentów podniesionych do potęg równych ich współczynnikom stechiometrycznym jest wielkością stałą, niezależną od stężenia tych reagentów. Wartość stałej równowagi dla danej reakcji chemicznej analogicznie jak zależy tylko od temperatury i ciśnienia. Energia swobodna Gibbsa (entalpia swobodna) i równowaga chemiczna Zmiana standardowej entalpii swobodnej (ΔG 0 ) dotyczy tylko warunków standardowych (ciśnienie gazu 1 atm, temperatura 25 o C, 1 mol). W ten sposób ΔG 0 pozwala przewidzieć spontaniczność reakcji tylko w warunkach standardowych. Natomiast jeżeli reakcja zachodzi w innych warunkach, niestandardowych zmiana energii swobodnej Gibbsa (ΔG) pozwala przewidzieć czy reakcja jest spontaniczna czy też nie. ΔG = ΔG 0 + RT ln Q R- stała gazowa (8.3145 J/mol K); T temperatura w Kelwinach Q stosunek iloczynów produktów reakcji do iloczynu substratów reakcji (reaction quotient) w danym momencie. 20

Oblicz czy reakcja tworzenia jodowodoru jest spontaniczna gdy stężenia substratów i produktu są następujące: [H 2 ] = 0.01 mol/l ; [I 2 ] = 0.02 mol/l; [HI] = 0.05 mol/l. Standardowa entalpia swobodna reakcji ΔG 0 = 1.71 kj/mol, a temperatura reakcji wynosi 30 o C. Q = HI H2 I2 0.05 mo l l = 0.01 mol l 0.02 mol l ΔG = ΔG 0 + RT ln Q = 25 ΔG = 1710 (J/mol) + 8.3145 (J/mol K) 303(K) ln 25 ΔG = 1710 + 26.76 = 1736.76 J/mol. Entalpia swobodna reakcji jest dodatnia więc ta reakcja nie jest spontaniczna w podanej temperaturze. Niektóre przykłady zastosowania termodynamiki w kosmetologii Aplikacja substancji czynnej podczas technologii self- heating. Oziębianie ciała po jego kontakcie z mentolem (rozpuszczalnie się mentolu w wodzie jest procesem endotermicznym). Podnoszenie energii wewnętrznej ciała poprzez masaż (pracę wykonaną) Maski algowe (nanoszone na ciepło) Krioterapia Diatermia 21