Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Podobne dokumenty
Metoda Tablic Semantycznych

Programowanie deklaratywne i logika obliczeniowa

1. Składnia. Logika obliczeniowa - zadania 1 SKŁADNIA Teoria

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty

Semantyka rachunku predykatów

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

III rok kognitywistyki UAM,

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Podstawy Sztucznej Inteligencji (PSZT)

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

LOGIKA Klasyczny Rachunek Zdań

Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Adam Meissner.

Logika Matematyczna (10)

Modele Herbranda. Logika obliczeniowa. Joanna Józefowska. Szukamy modelu. Przykład Problemy. Model Herbranda

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

III rok kognitywistyki UAM,

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I

Automatyczne planowanie oparte na sprawdzaniu spełnialności

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Matematyczne Podstawy Informatyki

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne

Paradygmaty dowodzenia

Wstęp do logiki. Klasyczny Rachunek Zdań III

domykanie relacji, relacja równoważności, rozkłady zbiorów

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW

O pewnych związkach teorii modeli z teorią reprezentacji

Składnia rachunku predykatów pierwszego rzędu

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

Wstęp do Techniki Cyfrowej... Algebra Boole a

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań

Definicja: alfabetem. słowem długością słowa

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Logika rachunek zdań

Poprawność semantyczna

1 Podstawowe oznaczenia

Wprowadzenie do Sztucznej Inteligencji

Lista 6 Problemy NP-zupełne

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Logika Matematyczna (2,3)

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Konsekwencja logiczna

Elementy logiki i teorii mnogości

Klasyczny rachunek predykatów

Logika Matematyczna. Zadania Egzaminacyjne, 2007

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Elementy logiki. Algebra Boole a. Analiza i synteza układów logicznych

Drzewa Semantyczne w KRZ

Struktury formalne, czyli elementy Teorii Modeli

Teoria obliczeń i złożoność obliczeniowa

Wykład 2. Drzewa zbalansowane AVL i 2-3-4

Rachunek logiczny. 1. Język rachunku logicznego.

Dowody założeniowe w KRZ

Alfred N. Whitehead

Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań

Imię i nazwisko:... OBROŃCY PRAWDY

Obliczenia iteracyjne

Logika Matematyczna (1)

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

Logika Matematyczna (1)

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Reprezentacja wiedzy ontologie, logiki deskrypcyjne

ĆWICZENIE 4 KRZ: A B A B A B A A METODA TABLIC ANALITYCZNYCH

Początki informatyki teoretycznej. Paweł Cieśla

Dedukcyjne bazy danych i rekursja

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Internet Semantyczny. Logika opisowa

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

prowadzący dr ADRIAN HORZYK /~horzyk tel.: Konsultacje paw. D-13/325

Kultura logiczna Wnioskowania dedukcyjne

Technologie baz danych

Obliczenia inspirowane Naturą

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).

Metody Programowania

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Logika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S.

LOGIKA I TEORIA ZBIORÓW

Rachunek zdań i predykatów

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Logiki modalne. notatki z seminarium. Piotr Polesiuk

Uzgadnianie formuł rachunku predykatów

Czyli o budowie drzew semantycznych.

Porządek symetryczny: right(x)

Wstęp do logiki. Klasyczny Rachunek Zdań II

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel

Algebra Boole a i jej zastosowania

Języki programowania zasady ich tworzenia

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.

LOGIKA Dedukcja Naturalna

Transkrypt:

Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna Procedura decyzyjna 2 Reguły α i β Podstawowe pojęcia Reguły α Reguły β 3 - algorytm Algorytm MTS Tabela semantyczna a spełnialność Problem spełnialności Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji Zdefiniowaliśmy pewien język formalny: rachunek zdań. A właściwie po co? Sherlock Holmes stosował metodę dedukcji bez specjalnych formalizmów. A komputer? Jednym z zastosowań języków programowania w logice jest automatyczne wnioskowanie (sztuczna inteligencja). Wnioskowanie odbywa się na ogół na podstawie pewnych przesłanek, założeń. Np.: Pan Brown leżał koło biurka i trzymał pistolet w prawej ręce. To sugeruje, że został zamordowany, ponieważ był mańkutem i z pewnością sam strzelałby lewą ręką. Ktoś go zastrzelił, a potem włożył mu pistolet do ręki. Definicja Niech U będzie zbiorem formuł, A zaś formułą. Jeśli w każdym modelu U wartością A jest 1, to A nazywamy konsekwencją logiczną U, co zapisujemy U = A. Jesli zbiór U jest pusty, to pojęcie konsekwencji logicznej jest tożsame z pojęciem prawdziwości ( = A). Przykład Niech U = {p q, p} i A = {p q} Interpretacja v(p) = 1, v(q) = 1 jest jedynym modelem U. v(a) = 1, a zatem A jest logiczną konsekwencją U.

Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Własności logicznej konsekwencji Teoria Twierdzenie Niech U = {A 1, A 2,..., A n }. Wtedy U = A wtw, gdy = (A 1... A n A). Twierdzenie Jeśli U = A, to dla dowolnej formuły B zachodzi U {B} = A. Twierdzenie Jeśli U = A, B zaś jest formułą prawdziwą, to U \ {B} = A. Definicja Zbiór formuł T nazywamy teorią wtw, gdy jest on zamknięty ze względu na konsekwencje logiczne. Zbiór T jest zamknięty ze względu na konsekwencje logiczne wtw, gdy dla wszystkich formuł A zachodzi zależność: jeśli T = A, to A T. Elementy zbioru T nazywamy twierdzeniami. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Teoria aksjomatyzowalna Przykład Definicja Niech U będzie zbiorem formuł. T (U) = {A U = A} nazywamy teorią zbioru formuł U. Formuły ze zbioru U nazywamy aksjomatami, a o teorii T (U) mówimy, że jest aksjomatyzowalna. Teoria Niech U = {p q, p}. T = {p q, p, q, p q, p q, p q...}

Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Jeszcze raz Sherlock Holmes Procedura decyzyjna Dedukcja Czy fakt, że pan Brown został zamordowany jest logiczną konsekwencją faktów, że był mańkutem i trzymał pistolet w prawej ręce? Jak ustalić, że formuła jest elementem pewnego zbioru formuł (np. teorii)? Dedukcja i nie tylko. Definicja Niech U będzie zbiorem formuł. Procedurą decyzyjną dla zbioru U nazywamy algorytm, który dla dowolnej formuły A F kończy działanie oraz udziela odpowiedzi TAK, jeśli A U, a odpowiedzi NIE, jeśli A U. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Przykład Podstawowe pojęcia Czy formuła A = p p należy do zbioru formuł spełnialnych? Można zastosować metodę tablic logicznych. p p p 1 0 0 0 Formuła A nie należy do zbioru formuł spełnialnych. Dopełnienie, komplementarność Literał: atom oraz negacja atomu (pozytywny, negatywny). (p, p): para literałów komplementarnych. (A, A): para formuł komplementarnych. A jest dopełnieniem formuły A, a A jest dopełnieniem formuły A. Zbiór jest spełnialny, gdy nie zawiera pary literałów komplementarnych.

Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Na zdrowy rozum Jak z tego zrobić algorytm? Korzystając z faktu, że v(a) = 0 wtw v( A) = 1 zapiszmy nasze rozumowanie tak, żeby usunąć wartość zero. Czy formuła A = (((p q) p) p) jest spełnialna? Szukamy modelu formuły A. Kiedy v( (((p q) p) p)) = 1? v((p q) p) = 1 i v(p) = 0 v(p q) = 0 i v(p) = 0 lub v(p) = 1 i v(p) = 0 v(p) = 1 i v(q) = 0 i v(p) = 0 A 1 A 2 A 1 A 2 (A 1 A 2 ) 0 1 0 0 Formuła A jest niespełnialna. v( (((p q) p) p)) = 1 v((p q) p) = 1 i v(p) = 0 v(p q) = 0 i v(p) = 0 lub v(p) = 1 i v(p) = 0 v(p) = 1 i v(q) = 0 i v(p) = 0 v( (((p q) p) p)) = 1 v((p q) p) = 1 i v( p) = 1 v( (p q)) = 1 i v( p) = 1 lub v(p) = 1 i v( p) = 1 v(p) = 1 i v( q) = 1 i v( p) = 1 (((p q) p) p) (p q) p i p (p q) i p lub p i p p i q i p Teraz możemy opuścić funkcję interpretacji, a zachować tylko postać formuły, która ma być spełniona. Zatem rozwijamy drzewo tak długo, aż w liściach mamy tylko atomy. Para literałów komplemetarnych w liściu wskazuje, że w tej ścieżce nie ma Joanna modelu Józefowska formuły A. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Obserwacja Warunek postaci v(a 1 ) = x i v(a 2 ) = y, x, y {0, 1} A 1 1-0 0-1 A 1 A 2 A 1 A 2 A 1 A 2 1 0 0 A 1 A 2 A 1 A 2 A 1 A 2 A 1 A 2 Zauważmy, że dla każdej formuły postaci A 1 opa 2 możemy podać warunek spełnialności w jednej z następujących postaci: v(a 1 ) = 1 i v(a 2 ) = 1 v(a 1 ) = 1 i v( A 2 ) = 1 v( A 1 ) = 1 i v(a 2 ) = 1 v( A 1 ) = 1 i v( A 2 ) = 1 v(a 1 ) = 1 lub v(a 2 ) = 1 v(a 1 ) = 1 lub v( A 2 ) = 1 v( A 1 ) = 1 lub v(a 2 ) = 1 v( A 1 ) = 1 lub v( A 2 ) = 1 A 1 1-0 0-1 A 1 A 2 A 1 A 2 A 1 A 2 1 0 0 A 1 A 2 A 1 A 2 A 1 A 2 A 1 A 2 1-1 A 1 0-0 (A 1 A 2 ) (A 1 A 2 ) (A 1 A 2 ) 1 0 1 (A 1 A 2 ) (A 1 A 2 ) (A 1 A 2 ) (A 1 A 2 )

Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Reguły α Warunek postaci v(a 1 ) = x lub v(a 2 ) = y, x, y {0, 1} α α 1 α 2 A 1 A 1 A 1 A 2 A 1 A 2 (A 1 A 2 ) A 1 A 2 (A 1 A 2 ) A 1 A 2 (A 1 A 2 ) A 1 A 2 A 1 A 2 A 1 A 2 A 1 A 2 A 1 A 2 A 2 A 1 (A 1 A 2 ) A 1 A 2 A 2 A 1 A 1 1-0 0-1 A 1 A 2 A 1 A 2 A 1 A 2 1 0 0 A 1 A 2 A 1 A 2 A 1 A 2 A 1 A 2 1-1 A 1 0-0 (A 1 A 2 ) (A 1 A 2 ) (A 1 A 2 ) 1 0 1 (A 1 A 2 ) (A 1 A 2 ) (A 1 A 2 ) (A 1 A 2 ) Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Reguły β Co to jest metoda tabel semantycznych? β β 1 β 2 (B 1 B 2 ) B 1 B 2 B 1 B 2 B 1 B 2 B 1 B 2 B 1 B 2 B 1 B 2 B 1 B 2 (B 1 B 2 ) B 1 B 2 (B 1 B 2 ) (B 1 B 2 ) (B 2 B 1 ) B 1 B 2 (B 1 B 2 ) (B 2 B 1 ) Algorytm do badania spełnialności (prawdziwości) formuł rachunku zdań. Polega na systematycznym poszukiwaniu modelu. Wykorzystuje reguły α i β. Reguła α definiuje jedną ścieżkę: wszystkie powstające formuły muszą być spełnione równocześnie. Reguła β definiuje dwie ścieżki, z których każdą trzeba sprawdzić oddzielnie. W ten sposób powstaje drzewo przeszukiwania.

Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Algorytm konstrukcji tabeli semantycznej Algorytm c.d. Tabela semantyczna T dla formuły A jest drzewem, którego każdy wierzchołek n zawiera zbiór formuł U(n). Początkowo T składa się z pojedynczego wierzchołka (korzenia) zawierającego zbiór jednoelementowy {A}. A = [(p q) ( p q)] n { [(p q) ( p q)]} Tworzenie tabeli semantycznej przebiega iteracyjnie przez wybór nieoznakowanego liścia n, zawierającego U(n) i wykonanie jednego z następujących kroków algorytmu. Jeżeli U(n) nie jest zbiorem literałów, to wybierz dowolną formułę A z tego zbioru, niebędącą literałem. Jeśli A jest typu α, to utwórz nowy wierzchołek n, będący potomkiem wierzchołka n i umieść w nim U(n ) = ((U(n) {A}) {α 1, α 2 }). (Jeśli formuła A jest postaci (A 1 ), to nie ma formuły α 2.) Formuła typu α [(p q) ( p q)] n n {(p q), ( p q)} Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Algorytm c.d. Algorytm c.d. {(p q), ( p q)} Jeśli A jest typu β, utwórz dwa nowe wierzchołki n oraz n jako następniki wierzchołka n. W wierzchołku n umieść U(n ) = (U(n) {A}) {β 1 }, a w wierzchołku n umieść U(n ) = (U(n) {A}) {β 2 }. Formuła typu β {(p q), ( p q)} n n n { p, ( p q)} {q, ( p q)} Jeżeli U(n) (zbiór formuł w wierzcholku n) jest zbiorem literałów, to sprawdź, czy zawiera on parę literałów komplementarnych. Jeżeli tak, to oznakuj go jako domknięty, jeżeli nie, to oznakuj go jako otwarty. n n n { p, p, q} {q, p, q}

Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Domknięta i otwarta tabela semantyczna MTS jako procedura decyzyjna Tabele semantyczna, której tworzenie zakończono (w liściach są tylko literały) nazywamy zakończoną. Tabelę zakończoną nazywamy domkniętą, jeśli wszystkie liście są oznakowane jako domknięte. Jeżeli istnieje liść otwarty, to tabelę nazywamy otwartą. Algorytm tworzenia tabeli semantycznej zatrzymuje się. Formuła A jest niespełnialna wtw, gdy zakończona tabela T dla formuły A jest domknięta. Formuła A jest spełnialna wtw, gdy T jest otwarta. Formuła A jest prawdziwa wtw tabela semantyczna dla formuły A jest domknięta. jest procedurą decyzyjną rozstrzygającą prawdziwość formuł rachunku zdań. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm - Przykład Problem spełnialności { [(p q) ( p q)]} α(4) {p q, ( p q)} { p, ( p q)} β(3) α(3) α(3) {q, ( p q)} Sformułowanie Problem spełnialności to pytanie: Czy dla danej formuły rachunku zdań istnieje model? Odpowiedź NIE jest równoważna odpowiedzi TAK na pytanie: Czy negacja tej formuły jest formułą prawdziwą? { p, p, q} α(1) α(1) {q, p, q} { p, p, q} {q, p, q}

Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Złożoność obliczeniowa problemu spełnialności Przykładowe zadania Dla formuły zawierającej n zmiennych tablica logiczna ma 2 n wierszy. Można wykazać (Cook, 1971), że problem spełnialności w rachunku zdań jest NP-zupełny. nie spowoduje zmniejszenia złożoności w najgorszym wypadku, ale średnio zachowuje się lepiej niż tablice logiczne. 1 Wykazać równoważność logiczną formuł rachunku zdań metodą tabel semantycznych: Zbudować odpowiednią formułę za pomocą operatora równoważności. Zanegować otrzymaną formułę. Zastosować metodę tabel semantycznych w celu wykazania, że zanegowana formuła jest niespełnialna. 2 Znaleźć model formuły (może się zdarzyć, że modelu nie będzie wtedy trzeba to wykazać!).