Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy zazwyczaj maleje ze wzrostem temperatury, ze względu na zmianę jej objętości wywołaną różnicą temperatur. W przypadku wody zmiany temperatury powodują wzrost gęstości do maksymalnej wartości 1000 w 4ºC a następnie jej obniżenie spowodowane rozszerzalnością cieplną wody. Rys. 1. Zależność gęstości wody od temperatury. Do pomiaru gęstości cieczy stosuje się najczęściej metody wagowe lub metody oparte na wyporze hydrostatycznym. Do metod wagowych zalicza się metodę piknometryczną. Piknometr (rys. a) to naczynie kalibrowane, gwarantujące stałość objętości wypełniającej go cieczy. Zaopatrzony jest w szlifowany korek, w którego wnętrzu znajduje się kanalik umożliwiający wypłynięcie nadmiaru cieczy przy jednoczesnym zapobieganiu odparowaniu. Pomiaru gęstości dokonuje się porównawczo względem wzorcowej cieczy, którą najczęściej jest woda. Drugą grupę metod stanowią metody oparte na wyporze hydrostatycznym (prawo Archimedesa). Pomiar polega na wyznaczeniu pozornego ubytku masy ciała spowodowanego zanurzeniem go w badanej cieczy (o nieznanej gęstości). Podstawą tej metody jest znajomość objętości ciała zanurzanego (np. kuli o znanej średnicy). W przypadku nieznajomości objętości ciała lub w sytuacji gdy ciało ma nieregularne kształty jego objętość można wyznaczyć znajdując dla niego pozorną stratę ciężaru w cieczy o znanej objętości. Jeżeli to masa (ciężar) ciała w powietrzu, masa (ciężar) w wodzie a w badanej cieczy to gęstość cieczy można wyznaczyć z zależności: Katedra Inżynierii i Aparatury Przemysłu Spożywczego, dr hab. inż. Anna Ptaszek, dr inż. Joanna Kruk Strona 1
Rys.. Piknometry szklane oraz waga hydrostatyczna. Lepkość Kolejnym ważnym parametrem opisującym właściwości cieczy jest lepkość. Lepkość jest miarą tarcia pomiędzy warstwami płynu podczas ruchu/przepływu. Jest ona miarą oporu jaki stawia ośrodek podczas ruchu. W przypadku gazów podwyższenie temperatury (rys. 3) powoduje wzrost lepkości wzrasta energia kinetyczna cząsteczek i zwiększa się liczba zderzeń pomiędzy nimi. Rys. 3 Lepkość wody (lewo), lepkość powietrza (prawo) w funkcji temperatury. W przypadku cieczy niutonowskich wzrost temperatury powoduje zwiększenie odległości pomiędzy cząsteczkami i w konsekwencji zmniejszenie liczby zderzeń pomiędzy nimi. Makroskopowo objawia się to obniżeniem lepkości (rys. 3). W przypadku płynów nieniutonowskich, w tym płynów spożywczych, zależność lepkości od temperatury jest bardziej złożona. Pomiaru lepkości dokonuje się najczęściej za pomocą lepkościomierzy (wiskozymetrów) (rys. 4). Wyznaczanie lepkości polega na pomiarze czasu przepływu płynu Rys. 4. Lepkościomierze Ubbehlode a i Hoepplera. Katedra Inżynierii i Aparatury Przemysłu Spożywczego, dr hab. inż. Anna Ptaszek, dr inż. Joanna Kruk Strona
przez kapilarę (rys. 4 lewo) lub pomiarze czasu opadania kulki w cieczy (rys. 4 prawo). Rodzaje przepływu Przepływ płynu przez przewody może następować w sposób laminarny (uwarstwiony, rys. 5A) lub burzliwy (turbulentny rys. 5B). Rys. 5. Wizualizacja przepływu laminarnego (A) i turbulentnego (B). Rodzaj przepływu ma kluczowe znaczenie ze względów technologicznych, zwłaszcza w przypadku płynów nieniutonowskich (w tym spożywczych). Podczas przepływu laminarnego płyn spożywczy nie ulegnie zniszczeniu, którego konsekwencją może być np. rozwarstwienie. Przepływ burzliwy może spowodować nieodwracalne uszkodzenie struktury płynu (rys. 6). Rys. 6. Przykłady oddziaływań pomiędzy polisacharydami w wodnych roztworach (Maurer i wsp. 01). Ustalenie rodzaju przepływu wymaga wyznaczenia bezwymiarowej liczby kryterialnej Reynoldsa (Re): Katedra Inżynierii i Aparatury Przemysłu Spożywczego, dr hab. inż. Anna Ptaszek, dr inż. Joanna Kruk Strona 3
w której to gęstość przepływającej cieczy, jej lepkość, prędkośc liniowa a średnica przewodu przez który następuje przepływ. W przypadku gdy przepływ następuje przez przewód o innym przekroju niż kołowy wyznacza się tzw. średnicę zastępczą (ekwiwalentną) ze wzoru: w którym oznacza pole przekroju przez który następuje przepływ a obwód zwilżany. Rys. 7. Idea wyznaczaniaa obwodu zwilżanego (O) i pola przekroju (S) dla przewodów niekołowych. Bilans przepływu płynu Ruch płynu w przewodzie (rys. 8) opisuje prawo zachowania masy: Rys.8. Przepływ płynu w przewodzie (Wikipedia). Katedra Inżynierii i Aparatury Przemysłu Spożywczego, dr hab. inż. Anna Ptaszek, dr inż. Joanna Kruk Strona 4
Drugim równaniem bilansującym energię przepływającego płynu jest równanie Bernoullie go. To podstawowe równanie mechaniki płynów, równoważne zasadzie zachowania energii dla przepływu (ustalonego, nielepkiego, nieściśliwego) płynu. Suma energii układu izolowanego jest stała zgodnie z zasadą zachowania energii. Równanie to przedstawia sumę energii kinetycznej ( ), potencjalnej ( ) i energii wewnętrznej płynu ( ): gdzie: to ciśnienie statyczne (ciśnienie panujące w płynie wtedy, gdy nie ma żadnego przepływu ( 0)); to ciśnienie hydrodynamiczne; "# $ to ciśnienie dynamiczne. Równanie to ilustruje zamianę jednego typu energii na inny np. energii potencjalnej na kinetyczną (rys. 9 góra): lub zamianę wysokiego ciśnienia statycznego na sumę niższego ciśnienia statycznego i ciśnienia dynamicznego (rys. 9 dół): Rys. 9. Przykłady kierunku zmian energii. Katedra Inżynierii i Aparatury Przemysłu Spożywczego, dr hab. inż. Anna Ptaszek, dr inż. Joanna Kruk Strona 5
Ćwiczenie : Wyznaczanie gęstości i lepkości płynów nieniutonowskich. Część doświadczalna A) Pomiar gęstości wodnych roztworów biopolimerów pochodzenia mikrobiologicznego metodą piknometryczną 1. Przygotować zestaw 5 piknometrów (skompletować piknometr z korkiem o odpowiednich numerach) i zważyć je na wadze analitycznej. Wyniki zapisać jako.. Napełnić piknometry wodą i zważyć je. Wyniki zapisać jako %. 3. Piknometry opróżnić z wody, wysuszyć acetonem. 4. Piknometry napełnić badanym roztworem i zważyć. Wyniki zapisać jako 5. Wyznaczyć gęstość roztworu w odniesieniu do gęstości wody w temperaturze doświadczenia ze wzoru: &. % 6. Obliczyć wartość średnią i odchylenie standardowe. próbka g %, g %, g, ( ) 1 3 4 5 B) Pomiar gęstości wodnych roztworów biopolimerów pochodzenia mikrobiologicznego za pomocą wagi hydrostatycznej 1. i może być obliczona ze wzoru:. *+ Gęstość roztworu wyznaczyć ze wzoru: 0 ) 1 -. ),, w którym oznacza objętość zanurzanej kulki. Pomiary wykonać w pięciu powtórzeniach i wyznaczyć średnią wartość gęstości. Katedra Inżynierii i Aparatury Przemysłu Spożywczego, dr hab. inż. Anna Ptaszek, dr inż. Joanna Kruk Strona 6
C) Pomiar lepkości wodnych roztworów biopolimerów pochodzenia mikrobiologicznego za pomocą wiskozymetru Ubbehlode a Schemat stanowiska przedstawiono na poniższym zdjęciu: Uwaga: Zestaw do pomiarów lepkości roztworów przygotowuje osoba prowadząca zajęcia. 1. Pomiary w temperaturze otoczenia względem lepkości wody. Zmierzyć czas przepływu wody t w a następnie czas przepływu roztworu t. Lepkość wyznaczyć ze wzoru: Pomiary czasów wykonać w trzech powtórzeniach. & &. Pomiary lepkości roztworu w 30 ºC i 40 ºC. Zmierzyć czas przepływu roztworu t. Lepkość wyznaczyć ze wzoru: to stała kapilary wyrażona w #. Pomiary czasów wykonać w trzech powtórzeniach. D) Pomiar temperatury otoczenia 3 & Temperaturę otoczenia odczytać z termometru cieczowego i oporowego. Wartość podać w jedna ostach SI. Katedra Inżynierii i Aparatury Przemysłu Spożywczego, dr hab. inż. Anna Ptaszek, dr inż. Joanna Kruk Strona 7
3. Sprawozdanie Specjalność W sprawozdaniu proszę umieścić Tabelkę według wzoru Data wykonania ćwiczenia Temat ćwiczenia Data oddania sprawozdania Numer grupy Imię i nazwisko Ocena Krótki wstęp teoretyczny Wyniki pomiarów gęstości roztworów Wyniki pomiarów lepkości roztworów Katedra Inżynierii i Aparatury Przemysłu Spożywczego, dr hab. inż. Anna Ptaszek, dr inż. Joanna Kruk Strona 8