Wiązania chemiczne w ciałach stałych
Wiązania chemiczne w ciałach stałych typ kowalencyjne jonowe metaliczne Van der Waalsa wodorowe siła* silne silne silne pochodzenie uwspólnienie e- (pary e-) przez dwa atomy oddziaływanie elektrostatyczne jonów e- walencyjne są kolektywną własnością całego kryształu (nie przynależą do poszczególnych atomów/jonów) tworząc gaz e- swobodnych słabe oddziaływanie elektrycznych momentów dipolowych słabe oddziaływanie dwóch atomów przez atom H między nimi (oddziaływanie ma charakter elektrostatyczny) * energie oddziaływania w przeliczeniu na atom (cząsteczkę) są typowo rzędu kilku ev dla oddziaływań oznaczonych jak silne oraz wynoszą ułamek ev dla oddziaływań oznaczonych jako słabe Za spójność ciał stałych odpowiadają oddziaływania elektrostatyczne z jądrami. Oddziaływania grawitacyjne są zaniedbywalne, a magnetyczne nie grają większej roli.
Wiązania chemiczne w ciałach stałych Definicje energia kohezji (spójności) kryształu energia potrzebna do rozłożenia kryształu na zbiór swobodnych atomów o tej samej konfiguracji elektronowej, znajdujących się w spoczynku, w nieskończonej odległości od siebie energia sieci (kryształu jonowego) energia potrzebna do rozłożenia kryształu na zbiór swobodnych jonów o tej samej konfiguracji elektronowej, znajdujących się w spoczynku, w nieskończonej odległości od siebie energia jonizacji (I) energia potrzebna do usunięcia e- z neutralnego atomu powinowactwo elektronowe (A) energia uzyskiwana, gdy dodatkowy e- zostaje związany przez neutralny atom elektroujemność: X = 0.184(I + A) Elektroujemność jest miarą tendencji do przyciągania elektronów wiązania przez atom. Atom o większej elektroujemności staje się anionem (przyjmuje e-). Różnica elektroujemności dwóch atomów jest miarą jonowości wiązania.
Wiązanie kowalencyjne (homopolarne) Cechy: - realizowane przez uwspólnioną parę elektronów (w wyjątkowych przypadkach (np. H2+) przez uwspólniony pojedynczy e-) - silne (rzędu ev na atom) - przekrywanie się f. falowych e- walencyjnych ograniczone do najbliższych sąsiadów - silnie kierunkowe (wynika to stąd, że muszą się przekrywać ograniczone co do zasięgu orbitale (np. p) e- walencyjnych najbliższych sąsiadów) - duża gęstość elektronowa w obszarze między atomami - kryształy o wiązaniach kowalencyjnych charakteryzują się małą liczbą koordynacyjną i niską gęstością upakowania (np. struktura diamentu) Przykłady: C (diament) (7.30 ev/atom), Si (4.64 ev/atom), Ge (3.87 ev/atom) (w nawiasach energia kohezji)
Wiązanie kowalencyjne Przykład: Ge duża koncentracja elektronów walencyjnych w obszarze między jonami źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 3, rys. 11, str. 91
Wiązanie kowalencyjne (homopolarne) Przykład: H2+ Różna gęstość ładunku e- w połowie odległości między atomami dla orbitalu wiążącego i antywiążącego! żródło: H. Ibach, H. Lüth, Fizyka..., rys. 1.2, str. 17
Wiązanie kowalencyjne (homopolarne) Przykład: H2 energia wymiany część energii kulombowskiej zależna od orientacji spinów (tutaj: EA-ES) Gęstość ładunku e- w połowie odległości między atomami jest związana z zasadą Pauliego. źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 3, rys. 12, str. 92
Wiązanie kowalencyjne (homopolarne) hybrydyzacja tworzenie orbitali e- walencyjnych jako liniowej kombinacji funkcji falowych e- dla swobodnego atomu. Jest to wynik oddziaływania z sąsiednimi atomami w krysztale bądź cząsteczce. 1s22s22p2 Przykład: C 1s22s2p3 (skrócony zapis: sp3) źródło: Wikipedia Orbitale sp3 mają symetrię tetraedryczną taką jak otoczenie atomu w strukturze diamentu. Struktura ta umożliwia pierwiastkom z grupy IV układu okresowego całkowite nasycenie wiązania kowalencyjnego (C, Si, Ge, -Sn). W strukturze tej mogą też krystalizować związki złożone z pierwiastków grup III i V (vide: struktura ZnS wykład Struktura krystaliczna)
Wiązanie jonowe Cechy: - oddziaływanie elektrostatyczne różnoimiennych jonów - silne (rzędu ev na atom) - b. małe przekrywanie się f. falowych e- walencyjnych (jony mają konfiguracje atomów gazów szlachetnych zamknięte powłoki o symetrii (prawie) sferycznej) - brak kierunkowości (konsekwencja symetrii sferycznej) - mała gęstość elektronowa w obszarze między jonami - kryształy o wiązaniach jonowych charakteryzują się dużą liczbą koordynacyjną i średnią gęstością upakowania Przykłady: NaCl (7.9 ev/cząsteczka), CsCl (6.7 ev/cząsteczka) (w nawiasach energia sieci na cząsteczkę) Jest typowym wiązaniem dla związków złożonych z pierwiastków grup I-VII oraz II-VI.
Wiązanie jonowe Przykład: NaCl mała gęstość elektronowa w obszarze między jonami źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 3, rys. 7, str. 84
Wiązanie jonowe Przykład: NaCl energia na cząsteczkę źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 3, rys. 8, str. 85
Wiązanie jonowe Przykład: KCl energia na cząsteczkę w funkcji odległości między jonami źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 3, rys. 10, str. 89
Wiązanie metaliczne Cechy: - e- walencyjne tworzą gaz e- swobodnych (dzięki temu metale cechują się dobrym przewodnictwem elektrycznym i cieplnym); energia e - walencyjnych w krysztale metalu jest niższa niż ich energia w swobodnym atomie - silne (rzędu ev na atom) - przekrywanie się f. falowych e- walencyjnych nawet odległych sąsiadów - brak kierunkowości (związany z rozmyciem e- po krysztale) - poziomy energetyczne e- walencyjnych w krysztale metalu należą do niecałkowicie zapełnionego pasma energetycznego - kryształy o wiązaniach metalicznych charakteryzują się dużą liczbą koordynacyjną i dużą gęstością upakowania (np. struktury hcp, fcc, bcc) Przykłady: Fe (4.1 ev/atom), Cu (3.5 ev/atom), Ag (2.9 ev/atom) (w nawiasach energia kohezji) Wiązanie charakterystyczne dla metali.
Wiązanie metaliczne Przykład: Ni zasięg f. falowych e- walencyjnych źródło: H. Ibach, H. Lüth, Fizyka..., rys. 1.9, str. 27
Wiązanie metaliczne pasma energetyczne źródło: H. Ibach, H. Lüth, Fizyka..., rys. 1.1, str. 15
Wiązanie van der Waalsa Cechy: - charakterystyczne dla atomów o zamkniętych powłokach (gazy szlachetne), a więc takich, które nie mogą tworzyć wiązań kowalencyjnych, jonowych czy metalicznych - za człon przyciągający (oddziaływanie van der Waalsa(-Londona)) odpowiada oddziaływanie dipol-dipol będące efektem kwantowym moment dipolowy powstaje w wyniku fluktuacji ładunku w atomach wywołanych drganiami zerowymi - człon odpychający wynika z zakazu Pauliego (zamknięte powłoki) - słabe (< 0.2 ev na atom) - brak przekrywania się f. falowych e- walencyjnych (zamknięte powłoki + zakaz Pauliego) - niekierunkowe (symetria sferyczna zamkniętych powłok) - mała gęstość elektronowa w obszarze między atomami - kryształy o wiązaniach van der Waalsa charakteryzują się dużą liczbą koordynacyjną i dużą gęstością upakowania (hcp/fcc) Przykłady: Ne (0.020 ev/atom), Ar (0.080 ev/atom), Kr (0.116 ev/atom), Xe (0.16 ev/atom) (w nawiasach energia kohezji)
Wiązanie van der Waalsa potencjał Lennarda-Jonesa źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 3, rys. 6, str. 81
Wiązanie wodorowe Cechy: - wiążące dwa silnie elektroujemne jony przy pomocy atomu H - może być symetryczne (A H B) lub antysymetryczne (A H B) - wiązanie wodorowe ma w dużym stopniu charakter jonowy (e- przechodzi z atomu H do któregoś z atomów sąsiadujących (H H+) - słabe (< 1 ev na atom/cząsteczkę) - ze względu na małe rozmiary protonu (H+) może związać maksymalnie 2 aniony Przykład: H2O* (0.6 ev/cząsteczka) (w nawiasach energia kohezji) * kryształy molekularne atomy wewnątrz molekuły związane wiązaniami kowalencyjnymi, a poszczególne molekuły wiązaniami van der Waalsa i/lub wodorowymi Wiązanie wodorowe wiąże ze sobą dwa łańcuchy w podwójną helisę DNA.
Wiązanie wodorowe Przykład: H2O Przykład: HF2- źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 3, rys. 13, str. 95
Charakter wiązania rzeczywistego W praktyce wiązania w kryształach rzadko kiedy mają czysty charakter, choć często można pominąć wpływ słabych oddziaływań (np. siły van der Waalsa, z reguły, mogą być zaniedbane dla wiązań o dominującym charakterze kowalencyjnym czy jonowym). Niekiedy jednak wkład różnego typu oddziaływań może być porównywalny (vide tabela po lewej stronie). źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 3, tab. 8, str. 93
Energia wiązania, a temperatura topnienia skład chemiczny Si NaCl Cu typ wiązania kowalencyjne jonowe metaliczne energia wiązania* [ev] 4.63 7.9 3.49 temperatura topnienia [K] 1687 1074 1358 Kr Van der Waalsa 0.116 117 H2O wodorowe 0.6 273 * na atom lub cząsteczkę
Promienie atomowe i jonowe Promienie atomowe/jonowe można określać na podstawie odległości międzyatomowych (wyznaczonych metodami dyfrakcyjnymi). Promienie te zależą od struktury kryształu, liczby koordynacyjnej, typu wiązania i stopnia utlenienia. źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 3, tab. 9, str. 96
Odkształcenia sprężyste prawo Hooke'a: =E naprężenie: = F/S (siła/powierzchnia) odkształcenie: = l/l (względna zmiana długości) moduł Younga: E Prawo Hooke'a jest prawdziwe dla małych odkształceń (obszar liniowy). obszar sprężystości po ustaniu naprężenia ciało wraca do pierwotnych rozmiarów dzieli się na obszar liniowy (zakres działania pr. Hooke'a) i nieliniowy obszar plastyczności po ustaniu naprężenia pozostaje trwałe odkształcenie ciała