Synteza związków znakowanych i ich zastosowanie w chemii organicznej, biochemii i medycynie

Podobne dokumenty
Repetytorium z wybranych zagadnień z chemii

RJC E + E H. Slides 1 to 41

Otrzymywanie halogenków alkilów

Syntezy izotopomerów L-tyrozyny i ich wykorzystanie do badania mechanizmu działania. ania β-tyrozynazy

1. REAKCJA ZE ZWIĄZKAMI POSIADAJĄCYMI KWASOWY ATOM WODORU:

Wykład 6. Korzystałem z : R. Morrison, R. Boyd: Chemia organiczna (wyd. ang.)

Reakcje związków karbonylowych zudziałem atomu węgla alfa (C- )

Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT.

Badanie biotransformacji L-alaniny. i jej pochodnych metodami izotopowymi

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

Laboratorium. Podstawowe procesy jednostkowe w technologii chemicznej

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Inżynieria Środowiska

Aminy. - Budowa i klasyfikacja amin - Nazewnictwo i izomeria amin - Otrzymywanie amin - Właściwości amin

Zagadnienia. Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I

KINETYKA INWERSJI SACHAROZY

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

Nazwy pierwiastków: ...

Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych

Wskaż grupy reakcji, do których można zaliczyć proces opisany w informacji wstępnej. A. I i III B. I i IV C. II i III D. II i IV

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU.

Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015

EGZAMIN MATURALNY Z CHEMII

Spektrometria mas (1)

Zadanie 2. (2 pkt) Roztwór kwasu solnego o ph = 5 rozcieńczono 1000 krotnie wodą. Oblicz ph roztworu po rozcieńczeniu.

Halogenki alkilowe- atom fluorowca jest związany z atomem węgla o hybrydyzacji sp 3 KLASYFIKACJA ZE WZGLĘDU NA BUDOWĘ FRAGMENTU ALKILOWEGO:

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

Stereochemia Ułożenie atomów w przestrzeni

Mechanizm dehydratacji alkoholi

Węglowodory poziom podstawowy

pierwszorzędowe drugorzędowe trzeciorzędowe (1 ) (2 ) (3 )

VIII Podkarpacki Konkurs Chemiczny 2015/2016

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 13 stycznia 2017 r. zawody II stopnia (rejonowe)

KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015

Właściwości chemiczne nukleozydów pirymidynowych i purynowych

1. Podstawowe prawa i pojęcia chemiczne

EFEKT SOLNY BRÖNSTEDA

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. II Etap - 18 stycznia 2016

Substytucje Nukleofilowe w Pochodnych Karbonylowych

Kwasy karboksylowe grupa funkcyjna: -COOH. Wykład 8 1

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII... DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje wojewódzkie

Pochodne węglowodorów, w cząsteczkach których jeden atom H jest zastąpiony grupą hydroksylową (- OH ).

Spis treści. Budowa i nazewnictwo fenoli

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej

Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony

10. Alkeny wiadomości wstępne

Obliczenia chemiczne

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II

Odwracalność przemiany chemicznej

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ĆWICZENIE 5. Związki aromatyczne

Spis treści 1. Struktura elektronowa związków organicznych 2. Budowa przestrzenna cząsteczek związków organicznych

RJC Y R R Y R R R H R H. Slides 1 to 24

Chemia organiczna. Zagadnienia i przykładowe pytania do kolokwiów dla Biotechnologii (I rok)

Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy. Dział Zakres treści

Addycje Nukleofilowe do Grupy Karbonylowej

PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE

TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII

Chemia organiczna. Mechanizmy reakcji chemicznych. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego

Obliczenia stechiometryczne, bilansowanie równań reakcji redoks

ZADANIE 1 W temperaturze 700 K gazowa mieszanina dwutlenku węgla i wodoru reaguje z wytworzeniem pary wodnej i tlenku węgla. Stała równowagi reakcji

8. Trwałość termodynamiczna i kinetyczna związków kompleksowych

Materiały dodatkowe kwasy i pochodne

O MATURZE Z CHEMII ANALIZA TRUDNYCH DLA ZDAJĄCYCH PROBLEMÓW

XV Wojewódzki Konkurs z Chemii

KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa

1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego:

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2018/2019 ETAP REJONOWY

Dysocjacja kwasów i zasad. ponieważ stężenie wody w rozcieńczonym roztworze jest stałe to:

Zad. 1. Br 2 + Zad. 2

Inżynieria Biomedyczna

PRZYKŁADOWE ZADANIA WĘGLOWODORY

18 i 19. Substytucja nukleofilowa w halogenkach alkili

ALKENY WĘGLOWODORY NIENASYCONE

I ,11-1, 1, C, , 1, C

Reakcje chemiczne. Typ reakcji Schemat Przykłady Reakcja syntezy

Laboratorium 5. Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony

Beata Mendak fakultety z chemii II tura PYTANIA Z KLASY PIERWSZEJ

Sprawdzian 2. CHEMIA. Przed próbną maturą. (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 34. Imię i nazwisko ...

SPEKTROMETRIA IRMS. (Isotope Ratio Mass Spectrometry) Pomiar stosunków izotopowych (R) pierwiastków lekkich (H, C, O, N, S)

Ważne pojęcia. Stopień utlenienia. Utleniacz. Reduktor. Utlenianie (dezelektronacja)

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

18. Reakcje benzenu i jego pochodnych

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony

CHARAKTERYSTYKA KARBOKSYLANÓW

MATERIAŁY POMOCNICZE 1 GDYBY MATURA 2002 BYŁA DZISIAJ CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY ARKUSZ EGZAMINACYJNY I

Chemia - laboratorium

Zadanie 1. (3 pkt) a) Dokończ poniższe równanie reakcji (stosunek molowy substratów wynosi 1:1).

14. Reakcje kwasów karboksylowych i ich pochodnych

1 Hydroliza soli. Hydroliza soli 1

imię i nazwisko, nazwa szkoły, miejscowość Zadania I etapu Konkursu Chemicznego Trzech Wydziałów PŁ V edycja

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych

Kryteria oceniania z chemii kl VII

Roztwory buforowe (bufory) (opracowanie: dr Katarzyna Makyła-Juzak)

Transkrypt:

Synteza związków znakowanych i ich zastosowanie w chemii organicznej, biochemii i medycynie Część III Prof. dr hab. Marianna Kańska

IZTPWE METDY BADANIA MECANIZMÓW EAKCJI Ustalenie mechanizmów reakcji jest jednym z bardzo ważnych zadań fizykochemii organicznej, która ułatwia zrozumienie i sterowanie złożonymi syntezami związków biologicznie czynnych. Znajomość mechanizmów reakcji ułatwia odtworzenie in vitro przebiegu syntez, zachodzących in vivo w organizmach żywych, oraz opracowanie nowych dróg syntezy bardzo skomplikowanych związków organicznych. W badaniach mechanizmów reakcji stosuje się różne metody eksperymentalne, a wśród nich również metody izotopowe. W chemii organicznej można wyróżnić trzy metody, gdzie stosuje się znakowanie izotopami zarówno promieniotwórczymi, jak i stabilnymi.

1. Metoda wskaźników izotopowych, która umożliwia w warunkach laboratoryjnych lub in vivo prześledzenie drogi interesującego nas atomu, lub stabilnych grup atomów, w cząsteczce biorącej udział w reakcji organicznej lub bioorganicznej. 2. Metoda specyficznej wymiany izotopowej, która jest stosowana w radiochemii i znajduje szerokie zastosowanie w syntezie znakowych związków organicznych oraz w badaniu trwałości wiązań. Dzięki tej metodzie ustalono, które atomy wodoru w cząsteczce organicznej są labilne i wymieniają się miejscami z wodorami labilnymi cząsteczek rozpuszczalnika zawierającymi wodory np. w grupach aminowych, hydroksylowych, czy merkaptanowych. Takie radiochemiczne wstępne informacje są często wykorzystywane w syntezach związków organicznych znakowanych metodą wymiany izotopowej. Istnieje bogata literatura na temat wymian izotopowych, a mimo to metoda ta w dalszym ciągu jest wykorzystywana do ustalania struktury skomplikowanych związków organicznych

3. Metoda kinetycznego efektu izotopowego, KEI- (Kinetic Isotope Effect, KIE), która polega na wyznaczeniu stałych szybkości przebiegających reakcji z użyciem cięższego i lżejszego izotopu. Najczęściej wyznaczane są KEI deuteru, trytu i węgla. Cząsteczka chemiczna, wykorzystywana w tych badaniach, jest znakowana izotopem w ściśle określonym miejscu. Korelacja między doświadczalnie zmierzonym, a teoretycznie wyliczonym KEI jest jedną z najlepszych metod do wyjaśnienia struktury i detali kompleksu aktywnego, a także zmian, jakie zachodzą w wiązaniu w trakcie przechodzenia od substratu do produktu. Metoda KEI jest szczególnie użyteczna, kiedy do badania mechanizmu danej reakcji używa się kolejno substratów znakowanych w różnych pozycjach, przy których mogą występować zmiany w wiązaniach chemicznych. Dodatkowych cennych szczegółów może dostarczyć użycie substratu z różnymi podstawnikami, indukującymi zmiany w otoczeniu wiązań ulegających przekształceniu w trakcie badanego procesu.

Mechanizm reakcji Mechanizm opisuje przebieg reakcji chemicznej. Mówi on o tym: a) które wiązania ulegają pęknięciu, b) jakie wiązania się się tworzą, c) jaka jest kolejność tych zjawisk, d) z ilu etapów składa się rozpatrywany proces, e) jakie są względne szybkości poszczególnych etapów Poznanie odpowiedzi na te pytania jest często bardzo trudnym zadaniem. Szczególnie może to być skomplikowane w przypadku reakcji enzymatycznych, ze względu na złożoną strukturę enzymu i zachodzące procesy katalityczne.

Metody wyznaczania mechanizmów reakcji 1. Badanie produktów produktów reakcji: identyfikacja, dowody stereochemiczne. 2. Badanie produktów pośrednich: izolacja produktów pośrednich, wykrywanie produktów pośrednich (metody spektroskopowe i rezonansowe), wychwycenie produktów pośrednich (przy założeniu, że produkt pośredni będzie reagować z danym reagentem dając ściśle określony produkt), dodatek oczekiwanego produku pośredniego. 3. Badania kinetyczne: równanie kinetyczne (mechanizm musi objaśniać obserwowane równanie i rząd reakcji), badania katalizy (również inhibicji), efekty izotopowe. 4. Stosowanie cząsteczek znakowanych izotopowo (analiza produktów takimi technikami, jak MS, NM itp.).

Kinetyczny efekt izotopowy k 1 A 1 B ------------ A 1 B k 2 A 2 B ------------ A 2 B k 1 -stała szybkości reakcji z udziałem izotopu lżejszego ( 1 B) k 2 -stała szybkości reakcji z udziałem izotopu lżejszego ( 2 B) k 1 = k 2 1 nie ma KIE k k 1 2 1 jest KIE k k 1 2 1 odwrotny KIE

Kinetyczny efekt izotopowy Jednym z najpotężniejszych narzędzi w badaniu mechanizmów reakcji jest metoda kinetycznego efektu izotopowego. Jest ona bardzo często stosowana do badania mechanizmów reakcji enzymatycznych. Teoretyczne wyjaśnienie kinetycznych efektów izotopowych jest złożonym i trudnym zadaniem. Z praktycznego punktu widzenia istotne jest jedynie uzmysłowienie sensu fizycznego tego zjawiska. Zastąpienie atomu pierwiastka, w cząsteczce związku biorącym udział w reakcji, na jego cięższy izotop często powoduje zmianę szybkości reakcji. óżna szybkość tych dwóch reakcji jest nazywana kinetycznym efektem izotopowym i określa się ją jako stosunek stałych szybkości: k iz. lżejszego / k iz. cięższego

óżnica ta wynika z tego, że energia oscylacyjna wiązania chemicznego na najniższym możliwym poziomie (zero-point energy) nie jest zerowa (wynosi: E = hυ) i zależy od masy zredukowanej: zgodnie z prawem ook a: µ = m1m2 m m 1 2 υ 1 2 k µ (k- stała siłowa niezależna od masy). Z tego wynika że wiązanie z cięższym izotopem będzie miało niższą energię oscylacji i rozerwanie wiązania będzie wymagało większej energii.

brazowo przedstawiono to na poniższym schemacie: Energia dysocjacji wiązań C- i C-D Ta właśnie różnica w energiach dysocjacji jest powodem różnych szybkości procesów z udziałem izotopów. Efekt izotopowy obserwujemy jedynie wówczas, gdy rozpatrywany etap jest wystarczająco wolny, aby mieć decydujący wpływ na szybkość całego procesu.

Kinetyczne efekty izotopowe. Najważniejsze kryteria podziału. 1. Podział KEI ze względu na wielkość stosunku k k is.lighter is.heavier efekty normalne, występują wówczas gdy szybkość reakcji dla związku z izotopem lżejszym jest większa niż dla związku z izotopem cięższym k k is lighter. > 1 is. heavier brak efektu izotopowego k k is. lighter is. heavier = 1 efekty odwrotne (obserwowane rzadko) gdy: k k is lighter. < 1 is. heavier

Metody wyznaczania mechanizmów reakcji 1. Badanie produktów produktów reakcji: identyfikacja, dowody stereochemiczne. 2. Badanie produktów pośrednich: izolacja produktów pośrednich, wykrywanie produktów pośrednich (metody spektroskopowe i rezonansowe), wychwycenie produktów pośrednich (przy założeniu, że produkt pośredni będzie reagować z danym reagentem dając ściśle określony produkt), dodatek oczekiwanego produku pośredniego. 3. Badania kinetyczne: równanie kinetyczne (mechanizm musi objaśniać obserwowane równanie i rząd reakcji), badania katalizy (również inhibicji), efekty izotopowe. 4. Stosowanie cząsteczek znakowanych izotopowo (analiza produktów takimi technikami, jak MS, NM itp.).

3. Podział KEI ze względu na położenie znacznika izotopowego w stosunku do miejsca w cząsteczce, gdzie zachodzi etap determinujący szybkość reakcji: a) pierwszorzędowe, b) αdrugorzędowe c) βdrugorzędowe Na przykładzie mechanizmu E1 można wyjaśnić te efekty. Według tego mechanizmu, najwolniejszym etapem jest rozerwanie wiązania pomiędzy atomem węgla a grupą X (odchodzącą), co prowadzi do utworzenia karbokationu. Ten etap będzie decydował o szybkości całego procesu. W związku z tym podstawienie atomu 12 C 1 izotopem 14 C spowolni reakcję. Taki efekt izotopowy jest nazywany efektem pierwszorzędowym. Analogicznie dla wodoru 2 wystąpi efekt αdrugorzędowy, a dla wodoru 3 wystąpi efekt βdrugorzędowy. 3 2 C C 1 X wolno 3 2 C C 1 3 2 3 2 C C szybko 1 C C 1 Mechanizm E1

4. Podział na efekty substratowe i rozpuszczalnikowe substratowe występują wówczas gdy zmiana składu izotopowego substratu powoduje zmianę szybkości reakcji, rozpuszczalnikowe występuje wówczas gdy zmiana rozpuszczalnika np. z 2 na D 2 powoduje zmianę szybkości reakcji. 5. Podział efektów izotopowych znajdujących odbicie w zmianie kinetycznych parametrów reakcji enzymatycznych: kinetyczne efekty izotopowe na V max kinetyczne efekty izotopowe na V max /K m

4. Podział na efekty substratowe i rozpuszczalnikowe substratowe występują wówczas gdy zmiana składu izotopowego substratu powoduje zmianę szybkości reakcji, rozpuszczalnikowe występuje wówczas gdy zmiana rozpuszczalnika np. z 2 na D 2 powoduje zmianę szybkości reakcji. 5. Podział efektów izotopowych znajdujących odbicie w zmianie kinetycznych parametrów reakcji enzymatycznych: kinetyczne efekty izotopowe na V max kinetyczne efekty izotopowe na V max /K m

METDY WYZNACZANIA KINETYCZNYC EFEKTÓW IZTPWYC 1. Bezpośrednie wyznaczanie kinetycznych efektów izotopowych. 2. Metoda zaburzeń równowagi. 3. Metody z użyciem spektrometrii mas.

Wyznaczanie KIE wg równań Bigeleisena i Wolsgerga ) ln(1 ) ln(1 ] 1) ( 1) ( ln[1 ) 1 1 1 ln( 0 0 0 0 f f f f p p p p = α ) ln(1 ) (1 ln 1) ( 1) ( ) (1 ln 1 1) ( ) (1 ln 0 0 0 0 f f f f s s s s = α ] ) (1 ) ( 1 1 ln[ ] ) (1 ) ( 1 1 ln[ ] 1) ( ) (1 ) ( 1 1 ln[ ] 1) ( ) (1 ) ( 1 1 ln[ p s s p p s p p s s p p s p f f f f f f f f f f f f = α 0 0 0 ) ( ) ( ln ln s p s p s p p = α - 0 - aktywność molową lub stosunek zawartości izotopu lżejszego do izotopu cięższego w substracie przed rozpoczęciem reakcji, - p - aktywność molową lub stosunek zawartości izotopu lżejszego do izotopu cięższego w produkcie w chwili, gdy stopień przereagowania wynosi f, - s - aktywność molową lub stosunek zawartości izotopu lżejszego do izotopu cięższego w substracie, gdy stopień przereagowania wynosi f, - f - stopień przereagowania. - α - kinetyczny efekt izotopowy,

Badanie mechanizmu elektrofilowej substytucji w pierścieniu aromatycznym (1) Ar Y Ar Y Powoli; etap określajacy szybkość reakcji (2) Ar Y Z ArY : Z Szybko (1a) Ar Y Ar Y ArY Mechanizm elektrofilowej substytucji w pierścieniu aromatycznym

Badanie mechanizmu elektrofilowej substytucji w pierścieniu aromatycznym Znajomość efektu izotopowego oraz ogólna znajomość przyczyn jego występowania, stwarza możliwość wyjaśnienia, dlaczego ten efekt interesuje chemika organika. Z dotychczasowych ustaleń eksperymentalnych, dotyczących reakcji elektrofilowej substytucji w związkach aromatycznych, wynika, że zachodzą one według jednego mechanizmu, niezależnie od rodzaju reagenta biorącego w niej udział. Dla reagenta YZ ogólny mechanizm tej reakcji można zapisać następująco: (1) Ar Y Ar Y Powoli; etap określajacy szybkość reakcji (2) Ar Y Z ArY : Z Szybko Mechanizm elektrofilowej substytucji w pierścieniu aromatycznym

Mechanizm obejmuje dwa zasadnicze etapy: Etap (1) atak reagenta elektrofilowego na pierścień z utworzeniem karbokationu oraz etap (2) oderwanie protonu od karbokationu przez dowolną zasadę. Pytanie skąd wiadomo, że elektrofilowa substytucja w pierścieniu aromatycznym obejmuje dwa etapy, a nie tylko jeden. (1a) Ar Y Ar Y ArY raz skąd wiadomo, że pierwszy z dwóch etapów [etap (1)] przebiega znacznie wolniej niż [etap (2)]? dpowiedź uzyskano w wyniku serii badań rozpoczętych przez Melandera (z Instytutu Chemii im. Nobla w Sztokholmie) i prowadzonych także przez wielu innych badaczy. óżnorodne związki aromatyczne znakowane atomami deuteru i trytu w pierścieniu aromatycznym poddano nitrowaniu, bromowaniu i alkilowaniu metodą Friedla-Craftsa. Stwierdzono, że w reakcjach tych następuje wymiana atomów deuteru lub trytu z taką samą szybkością jak atomów zwykłego wodoru (protu). ównież nie zaobserwowano wyraźnego efektu izotopowego. Wiadomo, że wiązanie węgiel-deuter ulega rozerwaniu wolniej niż wiązanie węgiel-prot, a wiązanie węgiel-tryt jeszcze wolniej. Jak więc możemy interpretować fakt, że nie stwierdza się w tym przypadku efektu izotopowego?

Jeżeli szybkości substytucji różnych izotopów wodoru są taki same, może to tylko oznaczać, że w reakcjach, których szybkość porównujemy, nie następuje rozerwanie wiązania węgiel-wodór. Interpretacja ta jest zgodna z przyjętym mechanizmem. Powolne przyłączenie reagenta elektrofilowego określa szybkość całego procesu substytucji. Powstający karbokation szybko traci jon wodorowy i przekształca się w cząsteczkę produktu. Etap (1) jest etapem określającym szybkość reakcji. W etapie tym nie następuje rozerwanie wiązania węgiel-wodór, dlatego szybkość tego etapu, a więc szybkość całej reakcji, nie zależy od rodzaju izotopu wodoru, który znajduje się w pierścieniu. Gdyby reakcja substytucji obejmowała etap (1a), to musiał by on być etapem określającym szybkość reakcji, a ponieważ następowałoby w nim rozerwanie wiązania węgiel-wodór, powinniśmy zaobserwować kinetyczny efekt izotopowy. Gdyby natomiast etap (2) w sekwencji dwuetapowej przebiegał dostatecznie wolno w porównaniu z etapem (1), wówczas musiałby on wpływać na całkowitą szybkość reakcji i ponownie należałoby się spodziewać wystąpienia KEI.

Badanie mechanizmu kondensacji Dieckmana eakcja kondensacji Dieckmana polega na katalizowanej przez zasadę cyklizacji wewnętrznej estru dikarboksylowego do β-ketoestru C 2 C C 2 C B - (1) CC C 2 C (2) (3) Mechanizm kondensacji Dieckmana Każdy z trzech etapów może określać kinetykę procesu. Problem który z etapów jest kinetycznie istotnym, rozwiązano znakując kolejno ester węglem 14 C, raz w grupie metylenowej, drugi raz w grupie karbonylowej.

1. Jeżeli etap (1) jest istotny kinetycznie, wtedy powinniśmy obserwować KEI 14 C w grupie metylenowej oraz brak KEI 14 C w grupie karbonylowej. 2. Jeżeli etap drugi jest istotny kinetycznie, wtedy powinniśmy obserwować KEI zarówno dla węgla w grupie metylenowej jak i w grupie karbonylowej, gdyż w stanie przejściowym tego etapu ulegają zmianie wiązania chemiczne przy obu tych węglach. 3. Jeżeli etap trzeci jest istotny kinetycznie, wtedy w stanie przejściowym reakcji wiązania chemiczne przy węglu grupy metylenowej nie ulegają zmianie. W tym przypadku KEI 14 C grupy karbonylowej powinien być obserwowany. Pomiary doświadczalne wykazały istnienie kinetycznego efektu izotopowego zarówno dla węgla metylenowego i dla węgla z grupy karbonylowej; Grupa metylenowa; k 12 /k 14 = 1,089 Grupa karbonylowa; k 12 /k 14 = 1,084 znacza to, że etap drugi tj. tworzenie nowego wiązania węgiel węgiel decyduje o kinetyce reakcji.

Badanie mechanizmu reakcji addycji elektrofilowej chlorku 2,4 dinitrobenzenosulfenowego do styrenu i jego para pochodnych w środowisku kwasu octowego β α Z 1 ArSX ArS β Ar X β S β S α α X α Ar X Z 2 Z 3 Z 4 ArS X Z Mechanizm reakcji addycji elektrofilowej chlorku 2,4-dinitrobenzenosulfenowego

Jeżeli reakcje addycji chlorku 2,4-dinitrobenzenosulfenylowego do styrenu i jego para pochodnych prowadzi się w kwasie octowym, to wiadomo, że reakcja przebiega zgodnie z regułą Markownikowa i dodatnia część cząsteczki chlorku 2,4-dinitrobenzenosulfenowego przyłącza się do βc natomiast ujemny chlor przyłącza się do αc i powstają odpowiednie siarczki chloro fenyloetylowo-2,4- dinitrofenylowe. Powstaje pytanie, jaką strukturę posiada kompleks aktywny powstający w etapie określającym szybkość reakcji w reakcji elektrofilowej? Prezentowany schemat zawiera trzy różne struktury stanów przejściowych dające ten sam produkt końcowy. Na temat reakcji elektrofilowej addycji do nienasyconych węglowodorów ukazało się wiele prac, ale nie było jednomyślności jaką strukturę ma kompleks aktywny. Problem ten mógł być rozwiązany przez 14 wyznaczenie KEI C w pozycji α- i β-styrenów zawierających elektronodonorowe i elektronoakceptorowe podstaw\niki. Przewidziano, że jeżeli kompleks aktywny posiada strukturę (2) to powinniśmy obserwować kinetyczny efekt izotopowy dla βc, ponieważ tworzy się wiązanie z siarką tylko przy tym węglu. Natomiast jeżeli kompleks aktywny posiada strukturę (3) bądź (4) wówczas powinniśmy obserwować KEI dla αc i dla βc.

Badania doprowadziły do wyznaczenia KEI dla α C i β C następujących dla kolejno podstawionych styrenów: α C p-c 3 ; p-; p-cl; k/k α = 1,004; 1,022; 1,027 β C p-c 3 ; p-: p-cl; k/k β = 1,037; 1,032; 1,035 znaczenia wartości k/k α i k/k β wykazały, że kinetyczny efekt izotopowy dla węgla 14 C jest zależny od miejsca podstawienia izotopowego oraz od charakteru podstawników w pierścieniu aromatycznym. Wyznaczona wartość k/k β dla β C jest dość duża i nie zależny od charakteru podstawników w pozycji para pierścienia. Natomiast k/k α jest zależny od charakteru podstawnika. Wyraźnie mały kinetyczny efekt izotopowy węgla 14 C w reakcji addycji ArSCl do styrenu, posiadający elektronodonorowy podstawnik w pozycji para pierścienia aromatycznego, sugeruje, że struktura stanu przejściowego jest zbliżona do struktury otwartej karbokationu (2), w której dodatni ładunek jest zlokalizowany przy węglu α. Wiązanie β C-S tworzy się niezależnie od mechanizmu i dlatego jest jasne, że KEI występuje i jego wartość nie zmienia się, niezależnie od tego jaki podstawnik jest w pierścieniu aromatycznym.

Jeśli aktywny kompleks miałby strukturę (3) lub (4) to utworzone wiązanie pomiędzy α C i siarką powinno być taki samo lub podobne i wówczas KEI dla α C powinien być podobny. Im silniejsze jest wiązanie α C-S tym większy powinien być KEI. Jeżeli ładunek dodatni na α C jest bardziej zdelokalizowany w pierścieniu wówczas wiązanie α C-S jest bardzo słabe lub go nie ma i wtedy jest brak kinetycznego efektu izotopowego. Jeżeli podstawnik jest elektronodonorowy (-C 3 ), to wolna para elektronowa jest do pewnego stopnia zdelokalizowana, co powoduje zwiększenie chmury elektronowej pierścienia, a następnie osłabienie ładunku dodatniego przy α C. Wiązanie α C-S jest wtedy bardzo słabe i w konsekwencji tego KEI jest bardzo mały. becność chloru w pozycji para pierścienia powoduje, że gęstość elektronowa w pierścieniu jest mniejsza niż w cząsteczce styrenu i dlatego też wiązanie α C-S jest silniejsze i KEI jest większy. A więc jeżeli podstawnik jest elektronodonorowy, to aktywny kompleks ma strukturę (2). Jeżeli podstawnik jest elektronoakceptorowy, to aktywny kompleks ma strukturę (3) lub (4). easumując, struktura kompleksu aktywnego powstającego w etapie określającym szybkość reakcji zależy od budowy podstawnika znajdującego się przy podwójnym wiązaniu.

Badania mechanizmu reakcji eliminacji bromu z kwasów dibromocynamonowych do odpowiednich kwasów cynamonowych I etap: Br C C Br KI KBr IBr II etap: KJ IBr KBr I 2 I 2 KI KI 3 (KI, J 2 )

Mechanizm eliminacji kwasu para metylo[(2),(3s)]-dibromocynamonowego Br C Br C Br C wolno szybko C 3 C 3 C 3

Mechanizm eliminacji kwasu para metylo[(2),(3s)]-dibromocynamonowego E 1 (jednocząsteczkowy)? Br β C α Br - Br - β C α Br - Br β C α - Br -, - Br E 2 (zsynchronizowany)? Badania wykazały, że kinetyczny efekt izotopowy 14 C występuje w pozycjach α, β, oraz jest zależny od miejsca podstawienia izotopowego i od charakteru podstawnika w pierścieniu aromatycznym. Gdy: =, p-c 3, oraz p-n 2 wtedy (k 12 \k 14 ) w pozycji α wynoszą odpowiednio: 1,05226; 1,0094; 1,0233. Natomiast (k 12 \k 14 ) w pozycji β dla podstawników = p-c 3 i wynoszą odpowiednio: 1,072; 1,0483

Wnioski dotyczące mechanizmu reakcji eliminacji bromu z kwasu [(2),(3S)]-dibromocynamonowego Zakładany mechanizm E 1 (jednocząsteczkowy) KEI k / α k k / β k k / * k nie tak nie E 2 (zsynchronizowany) tak tak nie

Badanie mechanizmu eliminacji amin z soli p-nitrofenylo-2-etylo-n,n,ntrimetyloamoniowej i n-propylo-n,n,n-trimetyloamoniowej eakcje eliminacji, badane metodą KEI z zastosowaniem ciężkich atomów zachodziły głownie według mechanizmu E1 i E2. W związku z tym prowadzone badania były głównie ukierunkowane w stronę wyznaczenia trwałości wiązań przy β C- i α C-X. Skomplikowana natura takiej reakcji została wyjaśniona na przykładzie wyznaczenia KEI dla kolejno znakowanych związków w trakcie rozkładu soli n- propylo-n,n,n-trimetyloamoniowej oraz p-nitrofenylo-2-etylo-n,n,n-trimetyloamoniowej β α B - β α δ C C C 2 NMe 3 C 2 NMe 3 T δ B T β α C C 2 NMe 3 BT Mechanizm eliminacji soli amoniowych do styrenu

Badano kinetyczny efekt izotopowy dla węgla 14 C, wodoru i azotu. W literaturze występują znaczne różnice w wyznaczonych efektach izotopowych przez dwie oddzielne grupy badawcze. Pierwsza grupa dla podstawnika = C 3 otrzymała: k/k β = 1,036 dla 14 C w pozycji β, k/k α = 1,069 dla 14 C w pozycji α, oraz k /k T = 2 dla trytu w pozycji β. eakcja ta była prowadzona w temperaturze 50 o C. Ponadto wyznaczono KEI dla reakcji w tych samych warunkach z podstawnikiem = p-n 2 C 6 4 dla 14 C w pozycji α, gdzie otrzymano: k/k α = 1,026. Z tego widać, że występujące znaczne efekty izotopowe przy α C, β C i β wpływają na etapy determinujące szybkość reakcji. Druga grupa badawcza dla podstawnika = p-n 2 C 6 4 wyznaczyła kinetyczny efekt izotopowy: eakcję prowadzono w temperaturze 100 o C. k/k α = 1,078 dla 14 C w pozycji 2, k 14 /k 15 = 1,024 dla azotu, i k /k T = 2,12 dla trytu w pozycji β. Przyczyna tych rozbieżności nie jest znana, ale autorzy wyciągają podobne wnioski, że zmiany wiązań przy N, α C, β C i β decydują o szybkości reakcji.

Badanie mechanizmu reakcji dehydrohalogenacjii β α C CCl 3 β α C 2 C 2 NMe 3 Br para podstawiony 2,2-difenylo-1,1,1-trichloroetan bromek para podstawiony 2-fenyloetylo-N,N,N-trimetyloamoniowy β α C 2 C 2 Cl para podstawiony 1-chloro-2-fenyloetan β C Cl para podstawiony 1-chloro-1-fenyloetan α C 3

Badanie mechanizmu reakcji dehydrohalogenacjii Zaproponowany mechanizm reakcji dehydrohalogenacji przedstawia poniższy schemat C 3 - β C α CCl 2 E1cb? - C 3 wolno β C α CCl 2 - Cl - szybko β C α CCl 2 Cl Cl zsynchronizowany E2 - C 3, - Cl - Przed dokładnym przebadaniem reakcji dehydrohalogenacji sądzono, że przebiega ona w środowisku zasadowym według mechanizmu E1cB, ale nie wykluczono również mechanizmu podobnego do E2. W związku z czym przebadano proces eliminacji z użyciem czterech uprzednio podanych układów.

Zakładany mechanizm eliminacji amoniaku i odtworzenie miejsca aktywnego Enzym N N C - 2 N 3 N Enzym N a) b) N 2 C 2 - Enzym N N N 2 C 2 - c) a) Addycja Michaela b) β eliminacja c) odtworzenie dehydroalaniny przez β -eliminację Enzym N N N 3

Mechanizm reakcji eliminacji z udziałem PAL zaproponowany przez avir a i anson a N B N N 2 Ph C - e Si B : - N B: N 2 N Ph C - e Si B : - N B: 2 N N Ph - C - B e N B: 2 N N Ph B C -

Mechanizm reakcji eliminacji z udziałem PAL zaproponowany przez Schuster a i etey a N N 3 N - C N N 3 N : B e Si e Si - C N N B N N B - C - C 3 N N 3

Kinetyczny efekt izotopowy /T w pozycji 3-pro-S L-tyrozyny Liaza fenyloalaninowa katalizuje również eliminację amoniaku z L-tyrozyny, co pozwala na zbadanie wpływu grupy elektrodonorowej na wielkość kinetycznego efektu izotopowego w tej reakcji. Nie można jednocześnie wykluczyć, że reakcja eliminacji z udziałem L-tyrozyny przebiega według innego mechanizmu. Potwierdzeniem takiej tezy byłby wynik znacząco różny od otrzymanego dla L-Phe, czyli na przykład brak efektu lub duży efekt. T 14 N 2 C PAL p = 8,7, 30 o C 14 C N 2 T

Kinetyczny efekt izotopowy /T w pozycji orto pierścienia aromatycznego L-fenyloalaniny T 14 C PAL T 14 C p = 8,7 N 3 T N 2 T Wyniki badań kinetycznego efektu izotopowego /T w pozycji 2 i 6 pierścienia aromatycznego L-fenyloalaniny. Nr eksperymentu nr frakcji Stopień przereagowania [%] KEI 1-1 5,89 0,8595 1-2 9,32 0,9664 1-3 12,09 1,0254 1-4 13,86 1,0870 1-5 16,22 1,0991 2-1 9,95 1,0143 2-2 12,34 1,0354 2-3 19,70 1,1559 2-4 21,82 1,1591 2-5 24,12 1,1598

Kinetyczny efekt izotopowy 12 C/ 14 C w pozycji 2 L-Phe C * N 2 PAL p = 8,7 * C Kinetyczny efekt izotopowy 12 C/ 14 C w pozycji 2 L-fenyloalaniny Nr eksp. * 0, p, f 0, r, f p, r, f 0, r, p Średnia 1 0.9957 1.0262 1.0003 0.9981 1.0051 2 0.9955 0.9918 0.9955 0.9955 0.9946 3 1.0095 0.9696 1.0020 1.0050 0.9965 4 1.0085 1.0044 1.0075 1.0078 1.0070 średnia 1.0023 0.9980 1.0013 1.0016 1.0008 ±0.0062 ±0.0019

Procedura wyznaczenie KEI /T w pozycji 3-pro- Mieszanina reakcyjna: enzym, L-Phe [1-14 C, 3-3 ] bufor boranowy 0,2M p = 8,7 Pobieram V1 mieszaniny reakcyjnej Mierzę aktywność (A 0 ) 14 C oraz stosunek aktywności 3 / 14 C ( 0 ) t 1 t2 t 3 t 4 t 5 Pobieram 5 frakcji (każda V1) o różnym stopniu przereagowania w zakresie od 10% do 20% Procedura postępowania dla każdej frakcji Mieszanina reakcyjna p=8,7 T 14 C N 3 T 14 C eakcja enzymatyczna zatrzymana p=0-1 T 14 C N 3 T 14 C Ekstrakcja (Et 2 ) Warstwa eterowa T 14 C Warstwa wodna T 14 C N 3 Pomiar aktywnosci 14 C (A i ) Po wydzieleniu L-Phe zastosowana oraz stosunku aktywności 3 / 14 do następnego eksperymentu C p

Kinetyczny efekt izotopowy /T w pozycji 3-pro- L-Phe Nr Eksp. KEI dchylenie stand. 1 1,0594 0,0215 2 1,0535 0,0187 3 1,0566 0,0151 4 1,0480 0,0167 5 1,0585 0,0193 Średnia 1,0552 0,0046

Procedura badania KEI w pozycji 3-pro-S L-Phe Mieszanina reakcyjna: enzym, L-Phe [1-14 C, 3S- 3 ] bufor boranowy 0,2M p = 8,7 Pobieram V1 mieszaniny reakcyjnej Mierzę aktywność (A 0 ) 14 C oraz stosunek aktywności 3 / 14 C ( 0 ) t 1 t2 t 3 t 4 t 5 Pobieram 5 frakcji (każda V1) o różnym stopniu przereagowania w zakresie od 10% do 20% Procedura postępowania dla każdej frakcji Mieszanina reakcyjna p=8,7 T 14 C N 3 N 2 T elucja 2 14 C eakcja enzymatyczna zatrzymana p=0-1 T N 3 T 14 C N 3 Ekstrakcja (Et 2 ) 14 C 0,3 M N 3 Warstwa wodna Kolumna jonowymienna T Amberlit I 120 ( ) N 3 T T 14 C N 3 14 C N 3 Warstwa eterowa 14 C Pomiar aktywnosci 14 C (A i ) T T 14 C N 3 dparowanie pod zmniejszonym ciśnieniem Pomiar stosunku aktywności 3 / 14 C ( ri )

Kinetyczny efekt izotopowy D/T w pozycji 3-pro-S L-Phe Nr Eksp. KEI dchylenie Stand. 1 1,0750 0,0186 2 1,0953 0,0187 3 1,0899 0,0151 4 1,0734 0,0167 Średnia 1,0834 0,0109 (1,01%)

Zależność Swain a-schaad a α = k k T = k k D 1, 44 α = k k D 3, 26 = k k k k T T obl T obs Gdzie: k /k T - KIE dla 1 / 3. k /k D - KIE dla 1 / 2. k D /k T - KIE dla 2 / 3. Jeśli efekt 1 / 3, obliczony z efektów 1 / 2 lub 2 / 3 przy pomocy wspomnianych zależności, jest mniejszy od efektu zaobserwowanego, wtedy prawdopodobnie w reakcji następuje tunelowanie protonu. Jeśli wartość wyliczonego KIE jest większa od zaobserwowanej, to mamy do czynienia ze złożonością kinetyczną, tzn. nie tylko etap odrywania protonu decyduje o szybkości reakcji.