Fazą ruchomą może być gaz, ciecz lub ciecz w stanie nadkrytycznym, a fazą nieruchomą ciało stałe lub ciecz.

Podobne dokumenty
Jakościowe i ilościowe oznaczanie alkoholi techniką chromatografii gazowej

Identyfikacja alkoholi techniką chromatografii gazowej

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop.

Ilościowa analiza mieszaniny alkoholi techniką GC/FID

GraŜyna Chwatko Zakład Chemii Środowiska

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 5, 4 dodr. Warszawa, 2015.

Jakościowa i ilościowa analiza mieszaniny alkoholi techniką chromatografii gazowej

Identyfikacja węglowodorów aromatycznych techniką GC-MS

Kontrola produktu leczniczego. Piotr Podsadni

Techniki immunochemiczne. opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami

Pytania z Wysokosprawnej chromatografii cieczowej

4A. Chromatografia adsorpcyjna B. Chromatografia podziałowa C. Adsorpcyjne oczyszczanie gazów... 5

Ćwiczenie 1 Analiza jakościowa w chromatografii gazowej Wstęp

Chromatografia kolumnowa planarna

Cz. 5. Podstawy instrumentalizacji chromatografii. aparatura chromatograficzna w skali analitycznej i modelowej - -- w części przypomnienie -

Instrukcja do ćwiczeń laboratoryjnych

ROZDZIELENIE OD PODSTAW czyli wszystko (?) O KOLUMNIE CHROMATOGRAFICZNEJ

OPTYMALIZACJA EFEKTÓW ROZDZIELANIA W KOLUMNACH KAPILARNYCH DOBÓR PRĘDKOŚCI PRZEPŁYWU GAZU

POTWIERDZANIE TOŻSAMOSCI PRZY ZASTOSOWANIU RÓŻNYCH TECHNIK ANALITYCZNYCH

Rys. 1. Chromatogram i sposób pomiaru podstawowych wielkości chromatograficznych

OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC

Kolumnowa Chromatografia Cieczowa I. 1. Czym różni się (z punktu widzenia użytkownika) chromatografia gazowa od chromatografii cieczowej?

Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej

HPLC? HPLC cz.1. Analiza chromatograficzna. Klasyfikacja metod chromatograficznych

4. WYZNACZENIE IZOTERMY ADSORPCJI METODĄ ECP

Jolanta Jaroszewska-Manaj 1. i identyfikacji związków organicznych. Jolanta Jaroszewska-Manaj 2

CHROMATOGRAFIA II 18. ANALIZA ILOŚCIOWA METODĄ KALIBRACJI

Ślesin, 29 maja 2019 XXV Sympozjum Analityka od podstaw

Przemysłowe laboratorium technologii ropy naftowej i węgla II

3. Jak zmienią się właściwości żelu krzemionkowego jako fazy stacjonarnej, jeśli zwiążemy go chemicznie z grupą n-oktadecylodimetylosililową?

Techniki Rozdzielania Mieszanin

5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ

MATERIAŁY DO ĆWICZEŃ LABORATORYJNYCH - CHROMATOGRAFIA JONOWA

Pytania z Chromatografii Cieczowej

Spis treści CZĘŚĆ I. PROCES ANALITYCZNY 15. Wykaz skrótów i symboli używanych w książce... 11

Prof. dr hab. inż. M. Kamiński 2006/7 Katedra Chemii Analitycznej Wydział Chemiczny PG. Ćwiczenie: LC / GC. Instrukcja ogólna

Adsorpcyjne oczyszczanie gazów z zanieczyszczeń związkami organicznymi

Instrukcja do ćwiczeń laboratoryjnych

PORÓWNANIE FAZ STACJONARNYCH STOSOWANYCH W HPLC

PODSTAWY CHROMATOGRAFII GAZOWEJ

WPŁYW ILOŚCI MODYFIKATORA NA WSPÓŁCZYNNIK RETENCJI W TECHNICE WYSOKOSPRAWNEJ CHROMATOGRAFII CIECZOWEJ

Wysokosprawna chromatografia cieczowa dobór warunków separacji wybranych związków

CHROMATOGRAFIA BARWNIKÓW ROŚLINNYCH

ĆWICZENIE 3: CHROMATOGRAFIA PLANARNA

Zakład Chemii Analitycznej

-- w części przypomnienie - Gdańsk 2010

Metody chromatograficzne w chemii i biotechnologii, wykład 5. Łukasz Berlicki

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM

CHROMATOGRAFIA GAZOWA (GC)

Zjawiska powierzchniowe

Ćw. 5 Oznaczanie węglowodorów lekkich w powietrzu atmosferycznym

RP WPROWADZENIE. M. Kamiński PG WCh Gdańsk Układy faz odwróconych RP-HPLC, RP-TLC gdy:

Kreacja aromatów. Techniki przygotowania próbek. Identyfikacja składników. Wybór składników. Kreacja aromatu

powstałego w roztworach o ph 4-13, przeprowadzonego przed analizą w anion wodorowęglanowy HCO 3

Instrukcja ćwiczenia laboratoryjnego HPLC-2 Nowoczesne techniki analityczne

OD HPLC do UPLC. Prof. dr hab. inż. Agata Kot-Wasik. Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska

CHROMATOGRAFIA CHROMATOGRAFIA GAZOWA

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH WYMIANA JONOWA

8. CHROMATOGRAFIA CIENKOWARSTWOWA

Politechnika Śląska Wydział Chemiczny Katedra Technologii Chemicznej Organicznej i Petrochemii INSTRUKCJA. Metody analizy związków chemicznych:

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

Metody chromatograficzne w chemii i biotechnologii, wykład 6. Łukasz Berlicki

Chromatografia. Chromatografia po co? Zastosowanie: Podstawowe rodzaje chromatografii. Chromatografia cienkowarstwowa - TLC

Wysokosprawna chromatografia cieczowa instrukcja do ćwiczenia.

Oznaczanie lekkich węglowodorów w powietrzu atmosferycznym

OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ

Zastosowanie chromatografii żelowej w skali preparatywnej do otrzymywania niskodyspersyjnych

Strona 1 z 6. Wydział Chemii Uniwersytetu Jagiellońskiego Podstawy Chemii - Laboratorium Rozdzielanie Substancji - Wprowadzenie

chemia wykład 3 Przemiany fazowe

HPLC. Badanie czystości chlorowodorku propranololu. chlorowodorku propranololu. Badanie uwalniania. z tabletki

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1

pętla nastrzykowa gaz nośny

CHROMATOGRAFIA W UKŁADACH FAZ ODWRÓCONYCH RP-HPLC

Chromatografia. Chromatografia po co? Zastosowanie: Optymalizacja eluentu. Chromatografia kolumnowa. oczyszczanie. wydzielanie. analiza jakościowa

Chromatograf gazowy z detektorem uniwersalnym i podajnikiem próbek ciekłych oraz zaworem do dozowania gazów

Strona 1 z 6. Wydział Chemii UJ, Chemia medyczna Podstawy Chemii - Laboratorium Rozdzielanie Substancji - Wprowadzenie

Instrukcja do ćwiczeń laboratoryjnych

ZASTOSOWANIE WYSOKOSPRAWNEJ CHROMATOGRAFII CIECZOWEJ DO OZNACZANIA BENZOESANU SODU W PRODUKTACH SPOŻYWCZYCH

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

Wysokosprawna chromatografia cieczowa w analizie jakościowej i ilościowej

Połączenie HPLC z ICP-MS

rodzajach chromatografii cieczowej w związku ze wszczętym na

Znaczenie i zastosowania chromatografii oraz rodzaje technik chromatograficznych

RP WPROWADZENIE. M. Kamioski PG WCh Gdaosk 2013

Instrukcja do ćwiczeń laboratoryjnych

prof. dr hab. Małgorzata Jóźwiak

CHROMATOGRAFIA. Sprawdzono w roku 2017 przez A. Hałkę-Grysińską. Teoria Metody rozdzielcze i proces rozdzielania

CIWOŚCI LIPOFILOWYCH WYBRANYCH PESTYCYDÓW TECHNIKĄ CHROMATOGRAFII PLANARNEJ

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II. OznaczanieBTEX i n-alkanów w wodzie zanieczyszczonej benzyną metodą GC/FID oraz GC/MS 1

WYDZIAŁ CHEMICZNY POLITECHNIKI WARSZAWSKIEJ KATEDRA TECHNOLOGII CHEMICZNEJ. Laboratorium LABORATORIUM Z TECHNOLOGII CHEMICZNEJ

Termodynamika. Energia wewnętrzna ciał

Chemia Analityczna. Chromatografia. Tłumaczyła: inż. Karolina Hierasimczyk

Disulfid allilowo-propylowy

3. Ogniwa galwaniczne i ich podział (ogniwa chemiczne i stężeniowe). 5. Zasada i sposoby pomiaru siły elektromotorycznej ogniwa (metoda kompensacyjna

Metody chromatograficzne (rozdzielcze) w analizie materiału biologicznego (GC, HPLC)

4-Metylopent-3-en-2-on

Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE HEPTANU

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak

analiza chemiczna jakościowa ilościowa

Technik sorpcji i chromatografii to także techniki przygotowania wsadu do rozdzielania / próbki do analizy

Transkrypt:

Chromatografia jest to metoda fizykochemicznego rozdziału składników mieszaniny związków w wyniku ich różnego podziału pomiędzy fazę ruchomą a nieruchomą. Fazą ruchomą może być gaz, ciecz lub ciecz w stanie nadkrytycznym, a fazą nieruchomą ciało stałe lub ciecz. Rozdział mieszaniny związków jest spowodowany procesem rozpuszczania lub procesem adsorpcji w zależności od rodzaju fazy nieruchomej. O czasie przebywania poszczególnych składników w układzie chromatograficznym decyduje energia adsorpcji lub wielkości stałej podziału pomiędzy fazę ruchomą a nieruchomą. Aby nastąpił pełen rozdział składników mieszaniny muszą one różnić się między sobą powyższymi parametrami. Proces rozdziału można opisać następująco: Próbka mieszaniny w postaci gazowej jest wprowadzona na początek kolumny chromatograficznej. W kolumnie znajduje się wypełnienie (faza nieruchoma) i przepływa przez nie gaz (faza ruchoma).

Gdy składniki mieszaniny rozdzielanej zetkną się z fazą nieruchomą np. fazą ciekłą (wypełnieniem) pewna część każdego z nich rozpuszcza się w tej fazie, reszta pozostaje w fazie gazowej. Bezwzględna ilość rozpuszczającego się składnika zależy od jego stężenia w gazie nośnym oraz od wartości współczynnika podziału pomiędzy fazę gazową a fazę ciekłą. Zakłada się, że podział każdej substancji pomiędzy dwie fazy jest niezależny od obecności innych substancji i zależy jedynie od temperatury kolumn i rodzaju fazy ciekłej. Pomiędzy fazą ruchomą a nieruchomą ustala się równowaga dynamiczna z ciągłym przechodzeniem danego związku z jednej fazy do drugiej. Przenoszenie odbywa się tylko w fazie gazowej z szybkością powiązaną ze stałą podziału. Jeżeli różnice w wartościach stałych podziału są odpowiednio duże otrzymujemy pełny rozdział składników W przypadku wypełnienia stałego podczas przejścia rozdzielanej mieszaniny następują ciągłe procesy adsorpcji i desorpcji na powierzchni wypełnienia kolumny. W zależności od energii adsorpcji poszczególne składniki przesuwają się wzdłuż kolumny z różną szybkością. Związki o dużej energii adsorpcji wędrują wolno, a o małej szybko. Jeżeli różnica w energii adsorpcji jest wystarczająco duża to proces rozdziału jest całkowity.

Ze względu na naturę zjawisk chromatografię dzielimy na: adsorpcyjną - rozdział odbywa się w wyniku różnego powinowactwa adsorpcyjnego składników mieszaniny do powierzchni fazy stacjonarnej, zwanej adsorbentem; podziałową rozdział związany jest z rożnymi wartościami współczynnika podziału składników mieszaniny między dwie nie mieszające się fazy, z których jedną jest faza stacjonarna (ciecz na nośniku), a drugą faza ruchoma (gaz, ciecz lub płyn w stanie nadkrytycznym); jonowymienną - podstawą rozdzielania są różnice w sile oddziaływań międzycząsteczkowych pomiędzy jonami z roztworu a jonami związanymi z fazą stacjonarną (zwaną jonitem); sitową, - zwaną żelową lub chromatografią wykluczania, w której o rozdzielaniu składników mieszaniny decydują rozmiary cząsteczek. Ze względu na stosowane techniki eksperymentalne chromatografię możemy podzielić na: planarną (możliwa jedynie w chromatografii cieczowej, którą można podzielić na chromatografię bibułową i cienkowarstwową; kolumnową (stosowaną we wszystkich metodach chromatograficznych).

Aparatura do chromatografii gazowej Analizę chromatograficzną zarówno ilościową jak i jakościową prowadzi się za pomocą chromatografu.

l - butla z gazem nośnym; 2 - zawór redukcyjny; 3 - zawór dokładnej regulacji; 4 - układ oczyszczający gaz nośny; 5 - blok dozownika wraz z dzielnikiem strumienia; 6 - układ regulujący przepływ i mierzący ciśnienie gazu; 7 - komora z kolumnami chromatograficznymi; 8 - detektor; 9 - elektroniczny układ zasilający; l0 urządzenie rejestrujące; 11- przepływomierz; 12 - komory termostatujące

Zasada działania chromatografu jest następująca: gaz nośny ze zbiornika lub wytwornicy poprzez system zaworów i regulatorów oraz układ oczyszczający przepływa do dozownika, a następnie kolumny i detektora. Mieszaninę substancji wprowadza się w dozowniku do strumienia gazu nośnego, który transportuje ją do kolumny. W kolumnie chromatograficznej następuje rozdział i poszczególne składniki docierają do detektora, gdzie są wykrywane i przetwarzane na sygnał elektryczny. Sygnał ten jest wzmacniany i rejestrowany przez rejestrator w postaci pików chromatograficznych.

Gazy nośne Gaz nośny w chromatografii gazowej nie bierze udziału w procesie rozdziału, a jego rola sprowadza się do mechanicznego przenoszenia substancji rozdzielanych. W związku z tym o wyborze rodzaju gazu decydują czynniki niezwiązane bezpośrednio z rozdziałem. Gazy nośne powinny charakteryzować się następującymi cechami: obojętność w stosunku do badanej próbki, wysoka czystość, powinny spełniać wymagania stawiane przez detektor. Ponadto gazy te powinny być bezpieczne, tanie i łatwo dostępne. Najczęściej stosowane gazy w chromatografii to hel, argon, azot oraz wodór.

Wypełnienia i fazy ciekłe stosowane w chromatografii Wypełnienia stałe w chromatografii gazowej powinny charakteryzować się powierzchniami właściwymi rzędu kilkudziesięciu do kilkuset m 2 /g. Powierzchnie nie mogą być zbyt małe ponieważ nie uzyska się rozdziału, ani zbyt duże, gdyż proces adsorpcji będzie procesem nieodwracalnym. Inne cechy to: bierność chemiczna w stosunku do substancji i gazu nośnego, jednorodność powierzchni. Ziarna adsorbentu powinny posiadać określoną granulację pozwalającą na przepływ gazu nośnego oraz dużą wytrzymałość mechaniczną. Najczęściej jako adsorbenty stosuje się sita molekularne, tlenki glinu, krzemionkę, węgle aktywne lub porowate polimery. Na wypełnieniach stałych najczęściej rozdziela się mieszaniny gazowe lub związki ciekłe o niskich masach cząsteczkowych. Rozdzielanie składników mieszaniny na ciekłych fazach stacjonarnych następuje na skutek różnic w ich rozpuszczalności. Najważniejszym wymogiem w stosunku do fazy ciekłej jest jej selektywność w stosunku do składników rozdzielanej mieszaniny. Ponadto faza ciekła musi być cieczą w warunkach pracy kolumny. Jednocześnie powinna być możliwie najmniej lotna. Faza ciekła powinna być trwała i nie reagować z rozdzielanymi związkami.

Detektory Do najczęściej stosowanych detektorów należą: detektor przewodnictwa cieplnego - katarometr (TDC) oraz detektor płomieniowo-jonizacyjny (FID). Schemat i układ elektryczny katarometu przedstawiono na rys.2 Tego typu detektor mierzy zmiany przewodnictwa cieplnego przepływającego gazu. Poszczególne gazy różnią się znacznie przewodnictwem cieplnym. Dla mieszanin gazowych wartość przewodnictwa jest funkcją ich składu.

Detektor płomieniowo- jonizacyjny (FiD) Detektor ten mierzy zmianę natężenia prądu jonowego płomienia wodorowopowietrznego, do którego wprowadza się gaz opuszczający kolumnę chromatograficzną - rys. 3. Palnik znajduje się pomiędzy dwiema elektrodami. Jeżeli do płomienia dociera czysty gaz nośny to wytwarzana jest niewielka ilość termojonów tego gazu. Jony te docierają do elektrody, powodując powstanie prądu jonowego o niewielkim natężeniu. Jest to prąd podstawowy. Gdy z kolumny do palnika dopływają związki organiczne to proces jonizacji zachodzi w znacznym stopniu i obserwujemy wzrost prądu jonowego. Jest on wzmacniany i rejestrowany w postaci piku chromatograficznego. Schemat detektor plomieniowojonizacyjnego A - wlot gazu nośnego; B - wlot wodorowy; C - wlot powietrza; D - dyfuzor; E - palnik; F - kominek; G- elementy chłodzące; 1- gniazdo współosiowe; K - elektroda zbierająca

Wielkości mierzone w chromatografii Krzywe elucji Całkowity czas retencji tr (odcinek OB) - jest to czas przebywania danego składnika w kolumnie od momentu zadozowania do momentu zarejestrowania piku tego składnika. Jest to suma czasu, w którym związek oddziałuje z wypełnieniem kolumny i czasu przejścia przez układ chromatograficzny. Czas retencji substancji niezatrzymywanej tm (odcinek OA) jest to czas przejścia przez układ chromatograficzny substancji, która nie oddziałuje z wypełnieniem kolumny chromatograficznej. Zredukowany czas retencji t' R (odcinek OB - OA) jest to czas, w którym dany związek oddziałuje z wypełnieniem kolumny chromatograficznej, charakterystyczny dla danego związku i danego wypełnienia. Jeżeli wartości poszczególnych czasów retencji pomnożymy przez objętościową szybkość przepływu to otrzymamy odpowiednie wielkości objętości retencji. współczynnik retencji (tr-tm)/tm

Współczynnik podziału możemy wyrazić wzorem Nernsta K=Cs/Cm Wzrost współczynnika K wydłuża czas retencji Wzrost objętości fazy stacjonarnej wydłuża czas retencji Vs=10% Vr Wzrost szybkości przepływu fazy ruchomej zmniejszenie czasu retencji Czas retencji zależy od długości kolumny Oddziaływania międzycząsteczkowe: Kulombowskie, dipol-dipol, dipol-dipol indukowany, siły dyspersyjne, siły związane z tworzeniem wiązań wodorowych, oddziaływania akceptorowo-donorowe, Kształt pikówizoterma sorpcji

Sprawność kolumny chromatograficznej= wysokość równoważna półce teoretycznej Półka teoretyczna-objętość kolumny, w której osiąga się stan równowagi między stężeniami substancji chromatografowanej w fazie ruchomej i nieruchomej. Kolumny chromatograficzne: kolumny z wypełnieniem (analityczne o średnicy wew. 2-6mm i dł-0,5-3m, mikropakowane 0,8-2 mm, kilkanaście metrów, preparatywne 2,5-5 cm, 1-16m); stal nierdzewna, szkło, aluminium, miedź, teflon kolumny o przekroju otwartym (kapilary ze szkła lub kwarcu średnicy 0,1-1 mm, dł. 10-300m Kolumny z warstwą porowatą adsorbentu na ściankach Kolumny z naniesionym na ścianki nośnikiem nasyconym ciekłą fazą stacjonarną Kolumny z ciekłą fazą stacjonarną na ściankach Wybór parametrów analizy- wybór fazy stacjonarnej-wybór wypełnienia, długość kolumny, temperatura pieca, wybór detektora, wielkość próbki, szybkość przepływu gazu nośnego.

Analiza jakościowa w chromatografii Analizę jakościową w chromatografii można prowadzić dwojako. Pierwsze to wykorzystanie czasu lub objętości retencji drugie zaś zastosowanie chemicznych lub fizykochemicznych metod identyfikacji. Analiza ilościowa w chromatografii Powierzchnia piku jest proporcjonalna do całkowitej ilości związku opuszczającego kolumnę. Jakikolwiek przyrost tej powierzchni musi być również proporcjonalny do przyrostu ilości tego związku. Molowy współczynnik korekcji Względne powierzchnie molowe Metoda kalibracji bezwzględnej, metoda wzorca wewnętrznego, metoda normalizacji wewnętrznej

Wysokosprawna chromatografia cieczowa (HPLC - High Performance Liquid Chromatography; High Pressure Liquid Chromatography) jest dziś popularną i najbardziej uniwersalną techniką chromatograficzną. Jest to technika kolumnowa, ciśnieniowa, w której faza ruchoma przepływa przez kolumnę wypełnioną drobnoziarnistą fazą stacjonarną pod dużym ciśnieniem (najczęściej 200-400 atm.). Dzięki temu faza stacjonarna może być drobnoziarnista i gęsto upakowana (duża powierzchnia styku z fazą ruchomą, ale i duże opory dla przepływu fazy ruchomej), a faza ruchoma przepływa z prędkością kilkunastu mililitrów na minutę (w standardowych kolumnach) co pozwala skrócić czas analizy. Stałość przepływu i wysokie ciśnienie zapewnia specjalna pompa, a jako detektor najczęściej stosuje się spektrofotometr UV, który sprzężony z komputerem rejestruje chromatogram, na podstawie którego można jakościowo i ilościowo określić konkretny składnik mieszaniny. HPLC jest stosowana jako chromatografia podziałowa, adsorpcyjna

HPLC jest stosowana jako chromatografia podziałowa, adsorpcyjna, w układzie faz odwróconych, zarówno izokratycznie (taki sam skład fazy ruchomej przez cały proces) jak i gradientowo. Ten ostatni sposób polega na tym, że w czasie procesu faza ruchoma zmienia swój skład (w sposób kontrolowany) tak, aby wszystkie składniki uległy rozdzieleniu, a czas analizy nie był zbyt długi. Elucja gradientowa ma szerokie zastosowanie w przypadku chromatografowania mieszanin złożonych, które zawierają składniki różniące się polarnością. W elucji gradientowej proces chromatografowania rozpoczyna się eluentem o małej mocy elucyjnej, a następnie, dodając rozpuszczalnika o dużej mocy elucyjnej, zwiększa się moc elucyjną mieszaniny w czasie. W chromatografii cieczowej występują dwa pojęcia: eluent (faza ruchoma wprowadzana do kolumny) oraz eluat (faza ruchoma wypływająca z kolumny).

Analiza jakościowa Analiza jakościowa polega na identyfikacji pików odpowiadających poszczególnym składnikom próbki. Analiza opiera się na porównaniu czasu retencji piku identyfikowanej substancji z czasem retencji piku wzorca, ale pod warunkiem zachowania jednakowych warunków chromatograficznych. Korzy tając z wielkości retencyjnych, należy pamiętać, że retencja może się zmieniać przy niewielkich zmianach składu fazy ruchomej.

Analiza ilościowa Ilościową zawartość składników w próbce oblicza się, wiedząc, że ilość składników jest proporcjonalna do powierzchni lub wysokości pików im odpowiadających (przy założeniu, że są symetryczne). Na wyniki analizy chromatograficznej wpływ ma jakość zastosowanego przyrządu oraz stałość warunków prowadzenia analizy. W czasie analizy temperatura kolumny, skład fazy ruchomej i wielkość próbek dozowanych do kolumny nie powinny ulegać zmianie. W chromatografii cieczowej analizę można wykonać przez porównywanie powierzchni lub wysokości piku składnika analizowanej próbki i powierzchni bądź wysokości piku wzorca zewnętrznego.