(54) Sposób przerobu zasolonych wód odpadowych z procesu syntezy tlenku etylenu

Podobne dokumenty
(12) OPIS PATENTOWY. (21) Numer zgłoszenia: (22) Data zgłoszenia: (61) Patent dodatkowy do patentu:

(54) Sposób wydzielania zanieczyszczeń organicznych z wody

(54) Sposób otrzymywania cykloheksanonu o wysokiej czystości

(12) OPIS PATENTOWY (19) PL (11) (13) B1

(21) Numer zgłoszenia:

(12) OPIS PATENTOWY (19) PL (11)

PL B1 (12) OPIS PATENTOWY (19) PL (11) (13) B1 C02F 3/ BUP 13/ WUP 07/00

Biopaliwo do silników z zapłonem samoczynnym i sposób otrzymywania biopaliwa do silników z zapłonem samoczynnym. (74) Pełnomocnik:

(12) OPIS PATENTOWY (19) PL (11)

PL B1. Sposób wydzielania toluilenodiizocyjanianu z mieszaniny poreakcyjnej w procesie fosgenowania toluilenodiaminy w fazie gazowej

(21) Numer zgłoszenia: (54) Sposób wytwarzania preparatu barwników czerwonych buraka ćwikłowego

(13) B1 (12) OPIS PATENTOWY (19) PL (11) PL B1 B01D 63/00

Sposób otrzymywania dwutlenku tytanu oraz tytanianów litu i baru z czterochlorku tytanu

PL B1. ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE, Szczecin, PL BUP 21/13

PL B1. B & P ENGINEERING Spółka z o.o. Spółka Komandytowa,Przeworsk,PL BUP 18/08

(19) PL (11) (13)B1

PL B BUP 02/ WUP 04/08

(12) OPIS PATENTOWY (19) PL (11) (13) B1

J CD CD. N "f"'" Sposób i filtr do usuwania amoniaku z powietrza. POLITECHNIKA LUBELSKA, Lublin, PL BUP 23/09

OPIS PATENTOWY C22B 7/00 ( ) C22B 15/02 ( ) Sposób przetwarzania złomów i surowców miedzionośnych

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 21/10. MARCIN ŚRODA, Kraków, PL

(12) OPIS PATENTOWY (19) PL (11)

(12) OPIS PATENTOWY (19) PL (11) (13) B1

PL B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (13) B1. (21) Numer zgłoszenia: (51) Int.Cl. C10G 7/06 (2006.

(86) Data i numer zgłoszenia międzynarodowego: , PCT/JP02/ (87) Data i numer publikacji zgłoszenia międzynarodowego:

(54) Sposób usuwania i odzyskiwania kwasu azotowego, kwasu siarkowego i tlenków azotu i

PL B1. UNIWERSYTET EKONOMICZNY W POZNANIU, Poznań, PL BUP 21/09. DARIA WIECZOREK, Poznań, PL RYSZARD ZIELIŃSKI, Poznań, PL

PL B1. ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE, Szczecin, PL BUP 24/15

PL B1. ECOFUEL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Jelenia Góra, PL BUP 09/14

PL B1. RESZKE EDWARD, Wrocław, PL MEDOŃ PIOTR, Wrocław, PL BUP 01/13. EDWARD RESZKE, Wrocław, PL PIOTR MEDOŃ, Wrocław, PL

PL B1. Sposób epoksydacji (1Z,5E,9E)-1,5,9-cyklododekatrienu do 1,2-epoksy-(5Z,9E)-5,9-cyklododekadienu

PL B1. Akademia Górniczo-Hutnicza im. Stanisława Staszica,Kraków,PL BUP 14/02. Irena Harańczyk,Kraków,PL Stanisława Gacek,Kraków,PL

(12) OPIS PATENTOWY (19) PL (11) (13) B1

Sposób otrzymywania kompozytów tlenkowych CuO SiO 2 z odpadowych roztworów pogalwanicznych siarczanu (VI) miedzi (II) i krzemianu sodu

PL B1. Sposób otrzymywania nieorganicznego spoiwa odlewniczego na bazie szkła wodnego modyfikowanego nanocząstkami

(86) Data i numer zgłoszenia międzynarodowego: , PCT/EP03/ (87) Data i numer publikacji zgłoszenia międzynarodowego:

Układ siłowni z organicznymi czynnikami roboczymi i sposób zwiększania wykorzystania energii nośnika ciepła zasilającego siłownię jednobiegową

PL B1. Sposób usuwania zanieczyszczeń z instalacji produkcyjnych zawierających membrany filtracyjne stosowane w przemyśle spożywczym

(54)Układ stopniowego podgrzewania zanieczyszczonej wody technologicznej, zwłaszcza

Klasyfikacja procesów membranowych. Magdalena Bielecka Agnieszka Janus

(12) OPIS PATENTOWY (19) PL (11) (13) B1

Sposób ciągłego przepływowego uzdatniania wody basenowej i system do ciągłego przepływowego uzdatniania wody basenowej według tego sposobu

PL B1. Instytut Automatyki Systemów Energetycznych,Wrocław,PL BUP 26/ WUP 08/09. Barbara Plackowska,Wrocław,PL

(73) Uprawniony z patentu: (72) (74) Pełnomocnik:

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 03/06

PL B1. GULAK JAN, Kielce, PL BUP 13/07. JAN GULAK, Kielce, PL WUP 12/10. rzecz. pat. Fietko-Basa Sylwia

(12) OPIS PATENTOWY (19) PL (11) (13) B1

PL B1. Instytut Chemii Przemysłowej im.prof.ignacego Mościckiego,Warszawa,PL BUP 07/06

(12) OPIS PATENTOWY (19) PL

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 12/17

(12) OPIS PATENTOWY (19) PL

(57) (13) B1 (12) OPIS PATENTOWY (19) PL (11) PL B1

PL B1. EKOPROD SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Bytom, PL

(12) OPIS PATENTOWY (19) PL

(12) OPIS PATENTOWY (13) PL (11)

PL B1. Gąsienica dwurzędowa zwłaszcza do czołgu w wersji bezstopniowej, dwustopniowej i trzystopniowej BUP 16/05

(51) IntCl7: C01B 21/14

Odwrócona osmoza (RO) PATRYCJA WĄTROBA

(86) Data i numer zgłoszenia międzynarodowego: , PCT/AT01/00022 (87) Data i numer publikacji zgłoszenia międzynarodowego:

PL B1. Ośrodek Badawczo-Rozwojowy Izotopów POLATOM,Świerk,PL BUP 12/05

PL B1. INSTYTUT METALI NIEŻELAZNYCH, Gliwice, PL BUP 26/07

PL B1. Sposób zabezpieczania termiczno-prądowego lampy LED oraz lampa LED z zabezpieczeniem termiczno-prądowym

UZDATNIANIE WODY W PRZEMYŚLE SPOŻYWCZYM TECHNIKI MEMBRANOWE. 26 marca 2010 Woda i Ścieki w Przemyśle Spożywczym - Białystok 2010

PL B1. FLUID SYSTEMS SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Warszawa, PL BUP 11/18

(12)OPIS PATENTOWY (19) PL (11)

(12) OPIS PATENTOWY PL B1 (19) PL (11) (51) IntCl7 B65D 88/34 B65D 88/06 E04H 7/16 F17C 3/00. (22) Data zgłoszenia:

PL B1. Elektrolityczna, nanostrukturalna powłoka kompozytowa o małym współczynniku tarcia, zużyciu ściernym i korozji

PL B1 (12) O P I S P A T E N T O W Y (19) P L (11) (13) B 1 A61K 9/20. (22) Data zgłoszenia:

PL B1. Sposób odzysku nieprzereagowanego o-krezolu z masy pokondensacyjnej zawierającej kwas metylofenoksyoctowy

Sposób otrzymywania białek o właściwościach immunoregulatorowych. Przedmiotem wynalazku jest sposób otrzymywania fragmentów witellogeniny.

(12) OPIS PATENTOWY (19) PL (11)

PL B1. ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE, Szczecin, PL BUP 06/14

POLITECHNIKA GDAŃSKA

(86) Data i numer zgłoszenia międzynarodowego: , PCT/EP93/01308

(19) PL (11) (13) B1 (12) OPIS PATENTOWY PL B1 E 21F 5/00 E21C 35/04

PL B1. INSTYTUT MASZYN PRZEPŁYWOWYCH PAN, Gdańsk, PL JASIŃSKI MARIUSZ, Wągrowiec, PL GOCH MARCIN, Braniewo, PL MIZERACZYK JERZY, Rotmanka, PL

PL B BUP 06/04

(13) B1 (12) OPIS PATENTOWY (19) PL (11) PL B1 F16F 9/14 F16F 9/30 RZECZPOSPOLITA POLSKA. Urząd Patentowy Rzeczypospolitej Polskiej

PL B1. ZAWADA HENRYK, Siemianowice Śląskie, PL ZAWADA MARCIN, Siemianowice Śląskie, PL BUP 09/13

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 12/13

(2)Data zgłoszenia: (57) Układ do obniżania temperatury spalin wylotowych oraz podgrzewania powietrza kotłów energetycznych,

PL B1 STEFANIAK ZBYSŁAW T. M. A. ZAKŁAD INNOWACJI TECHNICZNYCH, ELBLĄG, PL BUP 02/ WUP 04/10

RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (13) B1

PL B1. A-Z MEDICA Sp. z o.o.,gdańsk,pl BUP 10/02

(54) Tworzywo oraz sposób wytwarzania tworzywa na okładziny wałów maszyn papierniczych. (72) Twórcy wynalazku:

PL B1. ZAKŁADY CHEMICZNE ZACHEM SPÓŁKA AKCYJNA, Bydgoszcz, PL BUP 05/09

(13) B1 PL B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11) (21) Numer zgłoszenia: , (51) IntCl5: B01 D 36/00 B01 D 35/00

(12) OPIS PATENTOWY (19) PL (11) (13) B1

(86) Data i numer zgłoszenia międzynarodowego: , PCT/EP96/05837

(12) OPIS PATENTOWY (19) PL. (86) Data i numer zgłoszenia międzynarodowego: , PCT/DK95/00453

NANOFILTRACJA MODELOWYCH ŚCIEKÓW GARBARSKICH OPTYMALIZACJA PARAMETRÓW PROCESOWYCH

ZASTOSOWANIE MEMBRAN DO OCZYSZCZANIA ŚCIEKÓW Z PRZEMYSŁU SPOŻYWCZEGO

PL B1. C & T ELMECH SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Pruszcz Gdański, PL BUP 07/10

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 24/18. BERNARD POŁEDNIK, Lublin, PL WUP 02/19. rzecz. pat.

(12) OPIS PATENTOWY (19)PL

Utylizacja i neutralizacja odpadów Międzywydziałowe Studia Ochrony Środowiska

Wykład 1. Wprowadzenie do metod membranowych

PL B1. INSTYTUT TECHNOLOGICZNO- PRZYRODNICZY, Falenty, PL BUP 08/13

ODWRÓCONA OSMOZA. Separacja laktozy z permeatu mikrofiltracyjnego serwatki

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 19/09. MACIEJ KOKOT, Gdynia, PL WUP 03/14. rzecz. pat.

Transkrypt:

RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 186722 (21) Numer zgłoszenia: 327212 (22) Data zgłoszenia: 03.07.1998 (13) B1 (51) IntCl7 C07C 31/20 C07C 29/76 (54) Sposób przerobu zasolonych wód odpadowych z procesu syntezy tlenku etylenu i glikolu (73) Uprawniony z patentu: Instytut Chemii Przemysłowej im. Prof. lgnacego Mościckiego, Warszawa, PL (43) Zgłoszenie ogłoszono: 17.01.2000 BUP 01/00 (45) O udzieleniu patentu ogłoszono: 27.02.2004 WUP 02/04 (72) Twórcy wynalazku: Tadeusz Porębski, Warszawa, PL Włodzimierz Ratajczak, Warszawa, PL Sławomir Tomzik, Warszawa, PL Wojciech Kokosiński, Płock, PL Stanisław Sieradzki, Płock, PL Ryszard Moderacki, Płock, PL Grzegorz Marton, Płock, PL Paweł Krysztofik, Siecień, PL Marek Karol Sęp, Płock, PL Marzena Talma-Piwowar, Warszawa, PL (74) Pełnomocnik: Królikowska Anna, Instytut Chemii Przemysłowej PL 186722 B1 (57) 1. Sposób przerobu zasolonych wód odpadowych z procesu syntezy tlenku etylenu i glikolu, znamienny tym, że zasolone wody odpadowe poddaje się dwustopniowej filtracji w temperaturze do 80 C i pod ciśnieniem do 3,5 MPa z zastosowaniem membran poliamidowych, po czym permeat z drugiego stopnia filtracji poddaje się destylacji uzyskując glikol etylenowy, a retentat korzystnie zawraca się do pierwszego stopnia filtracji, zaś retentat z pierwszego stopnia filtracji membranowej ewentualnie poddaje się nanofiltracji z zastosowaniem membrany poliamidowej a uzyskany w wyniku tego procesu permeat zawraca się do pierwszego stopnia filtracji do powtórnego przerobu.

Sposób przerobu zasolonych wód odpadowych z procesu syntezy tlenku etylenu i glikolu Zastrzeżenia patentowe 1. Sposób przerobu zasolonych wód odpadowych z procesu syntezy tlenku etylenu i glikolu, znamienny tym, że zasolone wody odpadowe poddaje się dwustopniowej filtracji w temperaturze do 80 C i pod ciśnieniem do 3,5 MPa z zastosowaniem membran poliamidowych, po czym permeat z drugiego stopnia filtracji poddaje się destylacji uzyskując glikol etylenowy, a retentat korzystnie zawraca się do pierwszego stopnia filtracji, zaś retentat z pierwszego stopnia filtracji membranowej ewentualnie poddaje się nanofiltracji z zastosowaniem membrany poliamidowej a uzyskany w wyniku tego procesu permeat zawraca się do pierwszego stopnia filtracji do powtórnego przerobu. 2. Sposób według zastrz. 1, znamienny tym, że w pierwszym stopniu filtracji prowadzi się osmozę odwróconą przez zastosowanie membrany poliamidowej o retencji chlorku sodu powyżej 70%. 3. Sposób według zastrz. 1, znamienny tym, że w pierwszym stopniu filtracji membranowej stosuje się membranę poliamidową o retencji siarczanu magnezu wynoszącej 96% - 98%. 4. Sposób według zastrz. 1, znamienny tym, że w drugim stopniu filtracji prowadzi się osmozę odwróconą z zastosowaniem membrany poliamidowej o retencji chlorku sodu 96% - 98%. 5. Sposób według zastrz. 1, znamienny tym, że retentat z pierwszego stopnia filtracji poddaje się nanofiltracji z zastosowaniem membrany poliamidowej o retencji siarczanu magnezu wynoszącej 96% - 98%. 6. Sposób według zastrz. 1, znamienny tym, że permeat z drugiego stopnia filtracji poddaje się destylacji pod normalnym ciśnieniem odpędzając wodę, a następnie destylacji pod obniżonym ciśnieniem uzyskując jako destylat - glikol etylenowy. * * * Przedmiotem wynalazku jest sposób przerobu wód odpadowych zawierających glikol, tworzących się w układzie zobojętniania gazów poreakcyjnych powstających w procesie syntezy tlenku etylenu i glikolu. Zawierają one glikol etylenowy i niższe poliglikole etylenowe w łącznej ilości 1,5-5% wagowego oraz sole sodowe kwasu węglowego i kwasów organicznych w łącznej ilości około 2% wagowych. Strumień ten kierowany jest do kanalizacji ściekowej i stanowi główne źródło zanieczyszczeń na instalacji produkującej tlenek etylenu i glikol etylenowy. Znane są różne sposoby przerobu wodnych roztworów glikolu etylenowego. Na przykład w sposobie według polskiego opisu patentowego nr 167 235 obróbka odpadowej uwodnionej frakcji glikolowej prowadząca do wydzielenia glikolu monoetylenowego w wyniku zatężania, odwadniania i destylacji w/w frakcji polega na tym, że zasoloną i zawodnioną frakcję glikolową zawierającą około 50% wagowych glikolu i do 1% wagowego soli sodowych zatęża się całkowicie poprzez jej rozprężenie, a następnie przedestylowanie w systemie kolumn rektyfikacyjnych. Destylację prowadzi się tylko do osiągnięcia pewnego granicznego stężenia soli sodowych w cieczy wyczerpanej. Sposób ten zawodzi w przypadku przerobu wód odpadowych (ścieków) z produkcji tlenku etylenu i glikolu, zawierających do 5% wagowych glikoli i znaczne ilości (0,5-2,5%) soli sodowych. W trakcie zatężania takiego strumienia w warnikach kolumn destylacyjnych wypadają osady soli uniemożliwiające prowadzenie procesu, a równocześnie wydestylowany glikol jest niskiej jakości i zawiera produkty jego termicznego rozkładu katalizowanego przez sole sodowe.

186 722 3 Okazało się, że trudności tych można uniknąć jeśli wody odpadowe podda się obróbce w sposób według wynalazku, polegający na tym, że zasolone wody odpadowe poddaje się dwukrotnej filtracji na membranach. Sposób przerobu zasolonych wód odpadowych zawierających glikol, prowadzący do odzysku glikolu przez destylację, według wynalazku polega na tym, że zasolone wody odpadowe poddaje się dwustopniowej filtracji w temperaturze do 80 C i pod ciśnieniem do 3,5 MPa z zastosowaniem membran poliamidowych, po czym permeat z drugiego stopnia filtracji poddaje się destylacji uzyskując glikol etylenowy, a retentat z drugiego stopnia korzystnie zawraca się do pierwszego stopnia filtracji membranowej. Retentat z pierwszego stopnia filtracji ewentualnie poddaje się nanofiltracji z zastosowaniem membrany poliamidowej a uzyskany w wyniku tego procesu permeat zawraca się do pierwszego stopnia filtracji do ponownego przerobu. Korzystnie jest na pierwszym stopniu filtracji prowadzić osmozę odwróconą przez zastosowanie membrany poliamidowej o retencji chlorku sodu powyżej 70% lub stosować na tym stopniu filtracji membranę poliamidową o retencji siarczanu magnezu wynoszącej 96% - 98%. W drugim stopniu filtracji korzystnie jest prowadzić osmozę odwróconą z zastosowaniem membrany poliamidowej o retencji chlorku sodu 96% - 98%. Korzystnie jest także w celu zwiększenia odzysku glikolu, retentat z pierwszego stopnia filtracji poddać nanofiltracji z zastosowaniem membrany poliamidowej o retencji siarczanu magnezu wynoszącej 96% - 98%. Korzystnie jest odzyskiwać glikol z permeatu z drugiego stopnia filtracji przez poddanie go destylacji pod normalnym ciśnieniem odpędzając wodę, a następnie destylacji pod obniżonym ciśnieniem uzyskując jako destylat - glikol etylenowy. Sposób według wynalazku, pozwala na wydzielenie 75-85% wagowych glikoli zawartych w wodach odpadowych. Wynalazek pozwala na uzyskanie z wód odpadowych wodnego roztworu glikoli, w którym stężenie soli jest na poziomie poniżej 0,04% wagowego. Roztwór ten jest wartościowym półproduktem, z którego ze względu na minimalną zawartość soli można z powodzeniem odzyskiwać glikole poprzez destylację. Uzyskanie pozytywnego efektu nastąpiło dzięki zastosowaniu membranowych procesów filtracyjnych to jest odwrotnej osmozy i/lub nanofiltracji. W wyniku użycia do filtracji wód odpadowych membran poliamidowych charakteryzujących się niską retencją glikoli i wysoką retencją soli sodowych kwasu węglowego i kwasów organicznych uzyskuje się rozdzielenie strumienia wsadowego (nadawy) na permeat - odsolony roztwór wodno-glikolowy oraz retentat zawierający zatężone sole sodowe. Permeat poddawany jest znanemu procesowi destylacyjnego wydzielenia glikoli, retentat korzystnie kierowany jest do procesu nanofiltracji, gdzie prowadzone jest dalsze zatężanie strumienia ścieków w celu uzyskania stężenia soli sodowych na poziomie 8,0-12,0% wagowych. Permeat z procesu nanofiltracji, zawierający glikol w stężeniu wyższym niż w wyjściowych wodach glikolowych, zawracany jest do pierwszego stopnia filtracji do ponownego przerobu a retentat, będący zatężonym wodnym roztworem soli, odprowadzany jest do zakładowej oczyszczalni ścieków lub przerabiany w znany sposób. Znaczna redukcja ilości glikoli odprowadzanych do ścieków, poza korzyściami ekonomicznymi wynikającymi z odzysku glikoli ma również istotne znaczenie dla ochrony środowiska naturalnego. Sposób według wynalazku, przerobu zasolonych wód odpadowych w celu odzysku glikoli, zilustrowano w przykładach. Przykład 1. Ze zbiornika 1 (rysunek) nadawę, utworzoną z połączenia: glikolowych wód odpadowych o ph = 8,2, zawierających glikole w ilości około 1,7 % wagowego, węglany sodowe w ilości 1,5% wagowego oraz sole sodowe kwasów organicznych w ilości 0,3% wagowego (głównie mrówczan sodu), retentatu uzyskiwanego z drugiego stopnia osmozy odwróconej (filtr II) oraz z permeatu z węzła nanofiltracji (filtr III), podano na filtr I, na którym poddawano ją procesowi odwróconej osmozy, stosując do tego celu membranę poliamidową, charakteryzującą się retencją NaCl równą 98%. W wyniku procesu, prowa-

4 186 722 dzonego pod ciśnieniem 3,0 MPa w temperaturze 50 C, uzyskano permeat oraz retentat. Permeat z filtra I, zawierający 0,2% wagowego soli sodowych (łącznie sole węglanów i kwasów organicznych) i 1,8% wagowego glikolu poddano filtracji membranowej na filtrze II, stosując identyczną membranę poliamidową jak w pierwszym stopniu filtracji i prowadząc proces filtracji w temperaturze 40 C pod ciśnieniem 2,0 MPa. Po drugim stopniu osmozy odwróconej, to jest po filtrze II, uzyskano permeat końcowy w ilości 87% objętościowych w stosunku do początkowej ilości wód odpadowych oraz retentat, który zawracano do wyjściowych wód odpadowych. Permeat końcowy po filtrze II zawierał węglany sodowe w ilości 0,02% wagowego i sole kwasów organicznych w ilości 0,03% wagowego. Permeat ten poddano następnie destylacyjnemu odwodnieniu prowadząc proces w kolumnie z wypełnieniem, którego wysokość równoważna była czterem półkom teoretycznym. Proces prowadzono pod ciśnieniem atmosferycznym do chwili uzyskania temperatury wrzenia cieczy wyczerpanej równej 160 C. Dalszy proces destylacji prowadzono pod ciśnieniem 13,0 kpa odbierając w temperaturze 130-135 C frakcję glikolową, zawierającą 75% glikolu obecnego w strumieniu wód odpadowych poddanym obróbce. Retentat z pierwszego stopnia osmozy odwróconej (po filtrze I) poddano procesowi nano filtracji na filtrze III, uzyskując permeat i retentat końcowy, stanowiący 13% w stosunku do początkowej ilości wód odpadowych. W retentacie końcowym stwierdzono 12,5% wagowego soli sodowych i 3,3% wagowego glikoli. Nanofiltrację prowadzono w temperaturze 50 C i pod ciśnieniem 3,5 MPa w module membranowym zawierającym kompozytową membranę poliamidową charakteryzującą się retencją siarczanu magnezu wynoszącą 96-98%. Permeat z filtra III, zawierający sole sodowe i glikole, zawracano do zbiornika 1 do nadawy podawanej do pierwszego stopnia osmozy odwróconej na filtrze I. Przykład 2. Nadawę, utworzoną w zbiorniku 1(rysunek) z połączenia glikolowych wód odpadowych o składzie jak w przykładzie pierwszym, z retentatem, uzyskiwanym z drugiego stopnia osmozy odwróconej (filtr II) oraz z permeatem z węzła nanofiltracji (filtr III), poddano procesowi odwróconej osmozy, stosując do tego celu membranę poliamidową, charakteryzującą się retencją NaCl wynoszącą 75-80%. W wyniku procesu prowadzonego pod ciśnieniem 3,0 MPa w temperaturze 80 C uzyskano permeat oraz retentat. Następnie z filtra I uzyskany permeat, zawierający 0,5% wagowego soli sodowych (łącznie sole węglanów i kwasów organicznych) i 1,9% wagowego glikoli, poddano drugiemu stopniowi osmozy odwróconej na filtrze II, stosując membranę poliamidową charakteryzującą się retencją NaCl równą 97-98%. Filtrację prowadzono w temperaturze 80 C po ciśnieniem 2,5 MPa. Po drugim stopniu osmozy odwróconej uzyskano permeat końcowy w ilości 82% objętościowych w stosunku do początkowego strumienia wód odpadowych oraz retentat, który zawracano do zbiornika 1 do przygotowania nadawy. Permeat końcowy zawierał glikole w ilości 1,6% wagowego, węglany w ilości 0,015% wagowego i sole kwasów organicznych w ilości 0,013% wagowego. Permeat ten, tak jak w przykładzie 1, poddano destylacyjnemu odwodnieniu i destylacji próżniowej uzyskując w efekcie frakcję glikolową, zawierającą 77% glikolu obecnego w roztworze odpadowym poddanym utylizacji. Retentat z pierwszego stopnia odwróconej osmozy (po filtrze I) poddano procesowi nanofiltracji na filtrze III, uzyskując permeat zawrotowy i retentat końcowy. W retentacie końcowym, stanowiącym 18% objętościowych w stosunku do początkowego strumienia wód odpadowych, stwierdzono 8,7% wagowego soli sodowych i 2,3% wagowego glikoli. Strumień retentatu końcowego stanowił 18,0% objętościowych w stosunku do wejściowego strumienia wód odpadowych. Nanofiltrację prowadzono stosując membranę poliamidową o retencji siarczanu magnezu wynoszącej 96-98%, przy czym filtrację wykonano w temperaturze 50 C i pod ciśnieniem 3,5 MPa. Permeat zawrotowy uzyskany na filtrze III kierowano do pierwszego stopnia osmozy odwróconej. Przykład 3. Po połączeniu w zbiorniku 1 (rysunek) glikolowych wód odpadowych o ph = 10,8, zawierających 2,0% wagowych glikoli, 1,8% wagowego węglanów sodu i 0,4% wagowego soli sodowych kwasów organicznych z retentatem uzyskiwanym z filtra II oraz permeatem z filtra III otrzymano nadawę, którą poddano na filtrze I pierwszej nanofiltracji, stosując do tego celu moduł za-

186 722 5 wierający spiralną membranę poliamidową charakteryzującą się zatrzymaniem siarczanu magnezu na poziomie 96-98%. W wyniku procesu prowadzonego pod ciśnieniem 3,5 MPa w temperaturze 50 C uzyskano permeat i retentat. Permeat ten, zawierający 1,2% wagowego soli sodowych (łącznie sole sodowe węglanów i kwasów organicznych) i 2,3% wagowego glikoli poddano następnie procesowi osmozy odwróconej na filtrze II, stosując membranę kompozytową poliamidową charakteryzującą się retencją NaCl na poziomie 97-98%. W wyniku filtracji, przeprowadzonej w temperaturze 50 C i pod ciśnieniem 3,5 MPa, uzyskano permeat końcowy w ilości 79% objętościowych w stosunku do początkowej ilości wód odpadowych oraz retentat, który zawracano do zbiornika 1 do przygotowywania nadawy. Permeat końcowy zawierał glikole w ilości 1,9% wagowego, węglany sodowe w ilości 0,04% wagowego i sole kwasów organicznych w ilości 0,03% wagowego. Permeat ten poddano następnie destylacyjnemu odwodnieniu prowadząc proces tak jak w przykładzie 1.W wyniku destylacji wydzielono frakcję zawierającą 74% glikoli zawartych w roztworze odpadowym poddawanym utylizacji. Retentat, uzyskany w pierwszej nanofiltracji na filtrze I, poddano na filtrze III powtórnej nanofiltracji, prowadzonej w warunkach identycznych jak pierwsza nanofiltracja. W rezultacie na filtrze III uzyskano retentat końcowy w ilości 20% objętościowych w stosunku do strumienia wód odpadowych poddanych utylizacji, w którym stwierdzono 9,5% wagowego soli sodowych i 2,5% wagowego glikoli. Permeat z filtra III, zawierający sole sodowe i glikole, zawracano do zbiornika 1 do nadawy kierowanej do pierwszego węzła nanofiltracyjnego. Przykład 4. Nadawę utworzoną z połączenia wód odpadowych, zawierających glikol etylenowy w ilości około 1,9% wagowego i węglany sodowe w ilości 0,3% wagowego, i retentatu z drugiego stopnia osmozy odwróconej (filtr II), wprowadzano na filtr I, na którym poddawano ją procesowi odwróconej osmozy, stosując do tego celu membranę poliamidową charakteryzującą się retencją NaCl równą 98%. W wyniku procesu, prowadzonego pod ciśnieniem 3,0 MPa w temperaturze 45 C, uzyskano permeat i retentat końcowy. Retentat ten, stanowiący 7% objętościowych wyjściowych wód odpadowych, zawierał 4% wagowe soli węglanowych i 2,9% wagowego glikolu etylenowego. Permeat z filtra I, zawierający 0,08% wagowego węglanów sodu i 1,9% wagowego glikolu etylenowego, poddano powtórnie procesowi osmozy odwróconej, stosując identyczną membranę poliamidową jak w filtracji I. Proces filtracji na filtrze II prowadzono pod ciśnieniem 2,0 MPa w temperaturze 45 C. Po drugim stopniu osmozy odwróconej uzyskano permeat końcowy w ilości 93% w stosunku do ilości wyjściowych wód odpadowych oraz retentat, który zawracano do pierwszego stopnia osmozy odwróconej. Permeat końcowy po filtrze II charakteryzował się zawartością glikoli wynoszącą 1,8% wagowego i węglanów sodu w ilości nie większej niż 0,01% wagowego. Permeat ten poddano następnie obróbce destylacyjnej, tak jak w przykładzie 1, uzyskując jako destylat frakcję glikolową zawierającą 80% glikoli zawartych w roztworze odpadowym poddawanym utylizacji.

186 722 Departament Wydawnictw UP RP. Nakład 50 egz. Cena 2,00 zł.