MONOWARSTWY I MULTIWARSTWY



Podobne dokumenty
Repetytorium z wybranych zagadnień z chemii

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu)

Podstawy elektrochemii

dla której jest spełniony warunek równowagi: [H + ] [X ] / [HX] = K

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni

Natężenie prądu elektrycznego

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski

Opracowała: mgr inż. Ewelina Nowak

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

Zjawiska powierzchniowe

K02 Instrukcja wykonania ćwiczenia

1 k. AFM: tryb bezkontaktowy

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Funkcje błon biologicznych

METODY BADAŃ BIOMATERIAŁÓW

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr.

Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

Wykład 17: Optyka falowa cz.2.

Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection)

TEORIA PASMOWA CIAŁ STAŁYCH

Akademickie Centrum Czystej Energii. Ogniwo paliwowe

E dec. Obwód zastępczy. Napięcie rozkładowe

Podstawowe pojęcia 1

IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO

Grafen materiał XXI wieku!?

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR

EWA PIĘTA. Streszczenie pracy doktorskiej

PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA

WYZNACZANIE ROZMIARÓW

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia

1. za pomocą pomiaru SEM (siła elektromotoryczna róŝnica potencjałów dwóch elektrod) i na podstawie wzoru wyznaczenie stęŝenia,

OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA

Podstawy fizyki wykład 2

Model wiązania kowalencyjnego cząsteczka H 2

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Wytwarzanie niskowymiarowych struktur półprzewodnikowych

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Różne dziwne przewodniki

Opracowała: mgr inż. Ewelina Nowak

Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph

Elektryczne własności ciał stałych

Właściwości kryształów

Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O

Zjawisko Halla Referujący: Tomasz Winiarski

Inżynieria Środowiska

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

Elektrolity polimerowe. 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:

Pasmowa teoria przewodnictwa. Anna Pietnoczka

POLITECHNIKA BIAŁOSTOCKA

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia

Czym jest prąd elektryczny

Układy zdyspergowane. Wykład 6

Spektroskopia molekularna. Spektroskopia w podczerwieni

LASERY I ICH ZASTOSOWANIE

Woda. Najpospolitsza czy najbardziej niezwykła substancja Świata?

Zaburzenia periodyczności sieci krystalicznej

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU.

Dobór materiałów konstrukcyjnych cz.13

Obliczenia stechiometryczne, bilansowanie równań reakcji redoks

STRUKTURA PASM ENERGETYCZNYCH

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Metody badań składu chemicznego

TYPY REAKCJI CHEMICZNYCH

IV. TRANZYSTOR POLOWY

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

wykład 6 elektorochemia

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji

EFEKT SOLNY BRÖNSTEDA

Elektrochemia - szereg elektrochemiczny metali. Zadania

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB)

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

Pomiar drogi koherencji wybranych źródeł światła

Przejścia promieniste

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera.

Odwracalność przemiany chemicznej

Kryteria oceniania z chemii kl VII

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej

Katedra Chemii Nieorganicznej i Analitycznej Uniwersytet Łódzki ul.tamka 12, Łódź

Transkrypt:

MONOWARSTWY I MULTIWARSTWY Wojciech FABIANOWSKI Politechnika Warszawska, Wydział Chemii, Katedra Chemii i Technologii Polimerów, ul. Noakowskiego 3, 00-664 Warszawa e-mail: wofab@ch.pw.edu.pl 1. MONOWARSTWY I MULTIWARSTWY Na granicy faz woda-powietrze, na powierzchni ciał stałych, w wyniku procesów samorzutnych może powstać warstwa cząsteczek zbudowana z ściśle obok siebie ustawionych molekuł, zorientowanych w przestrzeni i o grubości odpowiadającej długości pojedynczej cząsteczki. Jest to tak zwana monowarstwa, dwuwymiarowy stan uporządkowanych cząsteczek. W wyniku powtarzanego procesu przenoszenia pojedynczych monowarstw (Langmuir-Blodgett Transfer) lub powtarzanego procesu chemisorpcji i osadzania kolejnych monowarstw (self-assembly) można otrzymać cienkie warstwy o grubości równej kilku-kilkudziesięciu monowarstwom i są to tak zwane multiwarstwy. Szereg prac poświęcono procesowi otrzymywania monowarstw i multiwarstw [1-5]. Ponieważ szereg zjawisk fizycznych i chemicznych ma miejce na powierzchni faz, nie jest zaskoczeniem, że tematyka ta ma duże znaczenie badawcze a w szczególności praktyczne. Jednocześnie warto dodać, że grubość pojedynczej warstwy jest rzędu 1-2 nanometrów, a zatem już z samej natury rzeczy monowarstwy i multiwarstwy są podmiotem prac poświęconych nanotechnologii. Aby ułatwić poznawanie tej ciekawej dziedziny wiedzy przedstawiono dalej przegląd metod stosowanych do charakteryzowania cienkich warstw i powierzchni jak również niektóre z ich potencjalnych zastosowań. 79

W. Fabianowski Membrany teoria i praktyka 2. METODY STOSOWANE DO CHARAKTERYZOWANIA MONOWARSTW I MULTIWARSTW W poniższym przeglądzie większy nacisk położono na zastosowanie różnych metod badawczych do charakteryzownia cienkich warstw, niż na ich podstawy fizyczne, wskazując w miarę możności odpowiednie źródła literaturowe. W ostatnich szczególnie latach obserwuje się rozwój ciekawych i wysoce wyspecjalizowanych metod badawczych, nie zawsze dostępnych dla każdego badacza. Dlatego szczególny nacisk położono na metody łączące w sobie precyzję i jednocześnie dostępne w większości laboratoriów. 2.1. POMIAR KĄTA ZWILŻANIA Jedna z najczęściej stosowanych metod do charakteryzowania stanu powierzchni polimerów, ciał stałych, pokrytych monowarstwą lub multiwarstwą jest pomiar kąta zwilżania. Kąt zwilżania definiuje się na podstawie już prawie 200-letniego prawa Younga i co ciekawe, okazuje się, że na podstawie pomiarów kąta zwilżania można uzyskać wciąż nowe informacje [1,6-9]. Na rys. 2.1 przedstawiono kształt kropli cieczy L na powierzchni ciała stałego S w obecności par cieczy V: Rys. 2.1. Kąt zwilżania Θ wynikający z równowagi sił na granicy faz S/L/V. Z równania Younga czyli równowagi sił na granicy faz S/L/V wynika, że: 80 γ SV = γ SL + γ LV cosθ (2.1) Symbole γ SV, γ SL, γ LV oznaczają odpowiednio swobodne energie powierzchniowe [mjm -2 ] ciała stałego S w kontakcie z parami V, ciała stałego S w kontakcie z cieczą L i cieczy L w kontakcie z parami V. W rzeczywistości γ SV = γ S - Π L, gdzie γ S jest swobodną energią powierzchniową ciała stałego a Π L jest ciśnieniem wywieranym przez ciecz zaadsorbowaną na powierzchni ciała stałego. Praca adhezji W ad pomiędzy fazą stałą S a fazą ciekłą L jest równa sumie swobodnych energii powierzchniowych obu

składników, pomniejszoną o międzyfazową energię swobodną na granicy faz S/L: W ad = γ S + γ L - γ SL (2.2) Wprowadzając równanie (2.1) w postaci γ SV = γ SL + γ LV cosθ i zakładając, że Π L 0; γ L = γ LV otrzymujemy: W ad = γ S + γ L - γ SL = γ S + γ L - γ SV + γ LV cosθ= γ L (1 + cosθ) (2.3) Równanie (2.3) jest podstawą do wyznaczenia powierzchniowej energii swobodnej ciał stałych, polimerów i wyznaczania składu warstw powierzchniowych kopolimerów zawierających zarówno ugrupowania hydrofilowe jak i hydrofobowe [10-12]. W tym przypadku korzystać można z równania Cassiego [13], w którym mierzone wartości kątów zwilżania dla poszczególnych składników powierzchni hydrofilowych i hydrofobowych, oznaczonych indeksami 1 i 2 odpowiednio Θ 1 i Θ 2, wiąże się z ich zawartością f 1 i f 2 (f 1 + f 2 = 1) w fazie powierzchniowej i mierzonym kątem zwilżania Θ dla powierzchni kopolimeru: cosθ = f 1 cosθ 1 + (1-f 1 )cosθ 2 (2.4) W przypadku pomiarów kąta zwilżania na powierzchni mieszanych monowarstw i multiwarstw, zdaniem Gee i Israelachvili [14] równanie Cassiego powinno uwzględniać średnią geometryczną oddziaływań a nie liniową addytywność W ad = f 1 W 1 + f 2 W 2 będącą podstawą równania (2.4). A zatem w przypadku monowarstw i multiwarstw zbudowanych z związków amfifilowych 1 i 2 rodzaju równanie Cassiego przybiera następującą postać: (1+cosΘ) 2 = f 1 (1 + cosθ 1 ) 2 + (1-f 1 )(1 + cosθ 2 ) 2 (2.5) Przy pomiarach kąta zwilżania należy zwracać uwagę na następujące zagadnienia: WIELKOŚĆ KROPLI, KĄT ZWILŻANIA ROSNĄCY (ANG. ADVANCING) I MALEJĄCY (ANG. RECEDING), SZORSTKOŚĆ POWIERZCHNI Do pomiarów kąta zwilżania służy zwykle pozioma lunetka (goniometr) zaopatrzona w krzyż pajęczy i skalę, co umożliwia bezpośredni pomiar kąta zwilżania podczas obserwacji (z obu boków) kropli cieczy osadzonej na badanym podłożu. Rzadziej korzysta się z obserwacji pionowej (lunetka do obserwacji kropli "od góry") i obliczaniu wówczas wartości kąta Θ z równania Bikermana [15]: 81

W. Fabianowski Membrany teoria i praktyka d V 3 3 24sin Θ = Π(2 3cos Θ + cos 3 Θ) (2.6) gdzie d - mierzona średnica kropli na podłożu, V - dodana objętość kropli Przy pewnej wprawie można w szybki sposób goniometrycznie mierzyć kąty Θ z dokładnością do 1-2 o. Zwykle dokonuje się pomiaru kąta Θ z lewej i prawej strony obserwowanej kropli, co najmniej dla 5 kropli osadzonych w różnych miejscach próbki. Wielkość kropli a zatem i kąt Θ zależą jednak od kilku czynników [16,17]. Dodając strzykawką powoli ciecz L do kropli można zaobserwować, że skokowa zmiana kąta zwilżania Θ następuje dopiero po przekroczeniu pewnej granicznej wartości Θ a, zwanej rosnącym kątem zwilżania (ang. advancing CA) (rys. II.2). Podobnie usuwając małymi porcjami ciecz L z kropli, obserwuje się zmniejszanie kąta Θ aż do pewnej granicznej wartości Θ r, zwanej malejącym kątem zwilżania (ang. receding CA), po przekroczeniu którego następuje skokowe zmniejszenie powierzchni zajmowanej przez kroplę. Rys. 2.2. Rosnący Θ a i malejący Θ r kąt zwilżania. 82

Histereza Θ a - Θ r jest miarą szorstkości powierzchni r, definiowanej jako stosunek powierzchni właściwej próbki do jej powierzchni geometrycznej (r 1). Ostatnio histerezę θ a - θ r wiąże się przede wszystkim z oddziaływaniami A-B (kwasowo-zasadowymi) na badanej powierzchni [18]. KRYTYCZNE NAPIĘCIE POWIERZCHNIOWE ZISMANA Mierząc kąty θ a dla homologicznej serii związków o malejącej wartości napięcia powierzchniowego γ L Zisman [1,19] zaobserwował liniową zależność γ L od wartości cosθ a : cosθ a = 1 - β(γ L - γ C ) (2.7) gdzie β - stała, γ C krytyczne napięcie powierzchniowe, przy którym gdy γ L = γ C to cosθ a = 1 czyli badana powierzchnia jest całkowicie zwilżana przez hipotetyczny rozpuszczalnik o tej wartości (γ C ) napięcia powierzchniowego. Wartość γ C jest wyznaczana z ektrapolacji γ L, dla której cosθ a wynosi 1 (przecięcie się z osią rzędnych). Wartość γ C jest stosunkowo rzadko stosowana do charakteryzowania własności monowarstw i multiwarstw. Więcej informacji związanych szczególnie z adhezją pomiędzy dwoma ciałami stałymi z/bez obecności monowarstwy, multiwarstwy można uzyskać z charakteryzowania obecności centrów kwasowo-zasadowych AB na powierzchni, szczególnie metodą trzech cieczy [9,18,20-28]. ANALIZOWANIE STANU POWIERZCHNI CIAŁ STAŁYCH METODĄ TRZECH CIECZY Analiza stanu powierzchni ciał stałych metodą trzech cieczy opiera się na założeniu, że swobodna energia powierzchniowa ciała stałego i cieczy pozostającej z nim w kontakcie może być wyprowadzona z różnych oddziaływań międzycząsteczkowych pochodzących od ciała stałego i cieczy. A zatem praca adhezji W A fazy 1 w kontakcie z fazą 2 jest równa sumie prac adhezji związanych z oddziaływaniami dyspersyjnymi typu sił van der d Waalsa, Lifshitza ( W ) oraz oddziaływań typu wiązań wodorowych, A12 polarnych, oraz ogólnie sił kwasowo-zasadowych ( W ): AB A12 d AB W A12 = W + W (2.8) A12 A12 O ile zgodnie przyjmuje się, za Good-Girifalco-Fowkes, że praca adhezji d WA12 wywołana siłami dyspersyjnymi faz S 1 i S 2 jest równa średniej geometrycznej oddziaływań dyspersyjnych γ d pochodzących od poszczególnych faz: 83

W. Fabianowski Membrany teoria i praktyka d W A12 = 2(γ d S 1 γ d S 2 ) 1/2 (2.9) AB to istnieją istotne rozbieżności w powiązaniu W A12 czyli oddziaływań kwasowo-zasadowych czy to ze średnią geometryczną indywidualnych czynników zmodyfikowaną o czynnik Φ czy też średnią harmoniczną [7,8, 19,20,29]. Ostatnio van Oss, Good, Chaudhury [9,20] zaproponowali, że składnik pracy adhezji pochodzący z oddziaływań kwasowo-zasadowych może być zapisany za pomocą parametrów γ + i γ - dla fazy 1 i 2, będących miarą kwasowości i zasadowości typu Lewisa powierzchni 1 i 2, w oparciu o arbitralne założenie, że dla wody γ + = γ - = γ AB /2 = 25.5 mjm -2. Wartość W może być wówczas przedstawiona w następującej postaci: AB A12 W = 2 ( γ AB A12 + 1 γ ) 1/2 + 2( γ - 2 1 + γ 2 ) 1/2 (2.10) W ten sposób, mierząc kąty zwilżania dla powierzchni ciała stałego, polimeru za pomoca dijodometanu (tylko oddziaływania dyspersyjne), oraz dla dwóch cieczy polarnych, można określić parametry energii powierzchniowej ciała stałego - pochodzące od sił dyspersyjnych oraz kwasowych i zasadowych. Ma to szczególne znaczenie przy pomiarze adhezji w obecności/niebecności monowarstwy na powierzchni ciała stałego, multiwarstwy między dwiema różnymi fazami [9,19,20], opisanych w rozdziale 3.2. Przykładowo w tab. 2.1 podano wielkości energii powierzchniowych [mjm -2 ] wyznaczonych dla poli(metakrylanu metylu) PMMA oraz chlorowanego poli(chlorku winylu) CPVC, które zostały obliczone dla różnych par rozpuszczalników polarnych oraz dijodometanu. Poniżej podano zestaw trzech równań, na podstawie których obliczono cząstkowe energie powierzchniowe kwasowe ( γ ), zasadowe ( γ ) oraz dyspersyjne ( γ ) [9]. + S Tab. 2.1. Parametry energii powierzchniowej (mjm -2 ) PMMA oraz CPVC obliczone dla kątów zwilżania Θ a oraz Θ r * S LW S Polimer/Ciecz polarna Θ a Θ r PMMA Formamid-woda Gliceryna-woda Glikol etylenowy-woda γ LW S 35.0 + γ S γ S 0 11.9 0 12.5 0 12.2 γ LW S 43.9 + γ S γ S 0.15 13.9 0 18.5 0 16.3 84 CPVC Formamid-woda Gliceryna-woda Glikol etylenowy-woda * Udział 43.5 0.9 4.9 0.1 3.3 0.5 4.9 γ obliczono dla dijodometanu (ciecz 1) LW S 48.5 0.2 17.5 0.1 14.2 0 14.2

LW γ S = LW γ L1 [(1 + cosθ 1 ) 2/4 ] (2.11) γ L2 (1 + cosθ 2 ) = 2 [( γ L3 (1 + cosθ 3 ) = 2 [( LW γ S LW γ S γ ) 1/2 + ( γ ) 1/2 + ( LW L2 LW L3 + γ S + γ S γ ) 1/2 + ( γ ) 1/2 + ( L2 L3 γ S γ S + γ L2 ) 1/2 ] + γ L3 ) 1/2 ] LW S LW LW LW /+ /+ Wartości γ L1, γ L2, γ L3, γ L2, γ L3 wyznaczono w osobnych doświadczeniach z wodą oraz z pomiarów kątów zwilżania na niepolarnej powierzchni o znanym γ (parafinie) [9]. Należy zaznaczyć, że przedstawione rozwiązania oparte głównie na pracach F. Fowkesa i równaniu Younga-Dupré (2-1,2-2) nie uzyskały powszechnego uznania [21,22]. Prowadzone są prace nad innymi sposobami przeprowadzenia pomiarów kąta zwilżania [23], obliczeniami teoretycznymi [22,24]. CZUŁOŚĆ POMIARÓW KĄTÓW ZWILŻANIA Pomiary oparte o kąt zwilżania charakteryzują się nie tylko dużą prostotą, ale również zaskakująco wysoką czułością na stan chemiczny charakteryzowanej monowarstwy. Whitesides [30-33] na powierzchni złota osadzał mieszane monowarstwy, zbudowane z tioli lub disulfidów zakończonych grupą -CH 3 oraz -COOH; grupą eterową -O(CH 2 ) n CH 3 ; grupą hydroksylową -CH 2 OH. Tiole zakończone grupą hydrofilową miały łańcuchy węglowodorowe krótsze od tioli zakończonych grupą metylową o kolejno 1;2;3;4;5 grup metylenowych -CH 2 -. Okazało się, że gdy grupa hydrofilowa była umieszczona na końcu łańcucha krótszego o 5 grup -CH 2 -, zostawała całkowicie jakby przykryta przez dłuższy łańcuch alkilowy i obserwowano skokowy wzrost wartości kąta zwilżania przez wodę. A zatem pomiar kąta zwilżania jest czuły na zmiany zachodzące w monowarstwie w odległości 5 x 1.2Å = 6 Å (1.2Å - Długość pojedynczego wiązania C-C). Pomiar wartości kąta zwilżania jest nie tylko czułą metodą do oceny stopnia czystości powierzchni [34] ale również do precyzyjnego charakteryzowania natury chemicznej badanych monowarstw i multiwarstw. Obecnie prowadzi się prace mające na celu powiązanie mierzonych wartości kwasowo-zasadowych γ +, γ - ciała stałego z/bez monowarstwy, z wyznaczoną inną metodą charakterystyką powierzchni (Odwrócona Chromatografia Gazowa [9,35-38] ang. Inverse Gas Chromatography) oraz z mierzoną wytrzymałością elektromechaniczną enkapsulowanych urządzeń elektronicznych [39-41]. 2.2. POMIAR GRUBOŚCI WARSTWY METODĄ ELIPSOMETRYCZNĄ Zasadniczym parametrem charakteryzującym monowarstwy oraz multiwarstwy jest ich grubość. Pomiar grubości opiera się na wykorzystaniu zjawiska interferencji promienia padającego i odbitego od cienkiego filmu. 85

W. Fabianowski Membrany teoria i praktyka W przypadku, gdy występuje zgodność faz obu promieni następuje ich wzmocnienie a jednocześnie dla innych długości fali następuje ich wygaszenie i dlatego obserwowane kolorowe paski noszą nazwę barw interferencyjnych. Do pomiaru grubości monowarstw na powierzchni ciał stałych służą specjalne przyrządy zwane elipsometrami, w których wykorzystuje się fakt zmiany stanu polaryzacji światła po odbiciu od powierzchni próbki S. Wyznaczany jest azymut P polaryzatora i azymut A analizatora, dla których następuje całkowite wygaszenie światła odbitego (po przejściu przez analizator) - to znaczy takie ustawienia P, C i A, że eliptycznie spolaryzowane światło padające po odbiciu jest spolaryzowane liniowo i całkowicie wygaszone. Znając wartości azymutów P, C i A można wyznaczyć pary wartości kątów i Ψ, dla których następuje całkowite wygaszenie światła. Zwykle liczba ustawień kompensatora C jest ograniczona, np. do tylko jednego (+45 0 ) ustawienia i wówczas w zakresie do 180 0 azymuty P i A zostają ograniczone do dwóch stref, zwanych ćwiartkami : strefa 2: -45 0 P 2 135 0 ; 0 0 A 2 90 0 strefa 4: -135 0 P 4 45 0 ; -90 0 A 4 0 0 W tym przypadku 2 = 270 0 - P 2 ; Ψ 2 = A 2 4 = 90 0-2P 4 ; Ψ 4 = -A 4 Rys. 2.3. Schemat pracy elipsometru PCSA do pomiaru grubości monowarstwy/ multiwarstwy na stałym podłożu: L - źródło światła (laser He-Ne, 632,8 nm), P polaryzator, C kompensator, S - badana monowarstwa/multiwarstwa na płytce szklanej (NS = 1.5; KS = 0.0) lub na płytce Si z naparowaną warstwą metalu (stałe optyczne NS = 3.8858; KS = 0.018 dla kąta padania ϕ = 70 0, T - precyzyjny stolik do poziomowania próbki S, A analizator, D - detektor natężenia światła. 86

Po uśrednieniu, znając wartość kąta padania ϕ, współczynnik załamania światła w otoczeniu, stałe optyczne podłoża, długość promieniowania λ można obliczyć stałe optyczne cienkiego filmu - współczynnik załamania światła i grubość (z dokładnością do 1-2 Å) [42,43]. Schemat pracy elipsometru przedstawiono na rys. 2.3. Zwykle przyjmuje się wartość współczynnika załamania światła n dla monowarstw z łańcuchem węglowodorowym równą 1.50; zmniejszenie wartości n do 1.45 w niewielkim stopniu wpływa na obliczoną grubość (zmniejszenie o mniej niż 2Å) [44]. Elipsometr pozwala na zmierzenie z dużą dokładnością grubości monowarstw, wynoszących zwykle od 20 do 35Å. Duża dokładność elipsometru stwarza jednocześnie pewne wymagania przy przeprowadzaniu samych pomiarów. Należy pamiętać, że podkład - płytka Si nie jest płytką płaskorównoległą, lecz w wyniku relaksacji naprężeń, obróbki termicznej jest zawsze w pewnym stopniu wygięta. Odchylenia od płaskości mogą być rzędu grubości monowarstwy i w ten sposób mogą rzutować na jakość otrzymanych wyników. Dlatego pomiary elipsometryczne należy prowadzić w tych samych punktach, dla których wyznaczone zostały stałe optyczne podłoża. Pomiary elipsometryczne są uśredniające, to znaczy obie monowarstwy przedstawione na rys. 2.4 dadzą ten sam wynik grubości TL. A przecież ich zachowanie się (w procesie delaminacji, w zakresie odporności powierzchni metalu na korozję, blokowanie dostępu do powierzchni elektrody) będzie zupełnie inne. Dlatego istnieje stosowna potrzeba innej metody pomiarowej, wrażliwej na niedoskonałości w strukturze monowarstwy, szczególnie osadzonej na warstwie metalu. Wymagania te spełniają pomiary cyklowoltamperometryczne omówione w rozdziale 2.5. Rys. 2.4. Wyniki elipsometryczne pomiaru grubości dla monowarstwy A i monowarstwy B osadzonych z tego samego związku na tym samym podłożu dadzą ten sam wynik grubości TL. 2.3. WIDMA FTIR OTRZYMANE METODĄ RAS, ATR, GA Spektroskopia absorbcyjna szczególnie w zakresie IR przez szereg lat nie mogła być stosowana do badania monowarstw i multiwarstw ze względu na ich niewielką grubość i małą wartość absorbcji. Pewne rozwiązania techniczne, zwiększające czy to liczbę wewnętrznych odbić od powierzchni kryształu Si, Ge lub ZnSe pokrytego monowarstwą (Metoda Wielokrotnego 87

W. Fabianowski Membrany teoria i praktyka Wewnętrznego Odbicia lub Osłabionego Całkowitego Odbicia - ang. Multiple Internal Reflection MIR; Attenuated Total Reflection ATR), liczbę odbić od powierzchni luster (Ag, Au) pokrytych monowarstwą (Spektroskopia Odbiciowo-Absorbcyjna, ang. Reflection-Absorbtion Spectroscopy RAS) czy też ślizganie się promienia świetlnego padającego pod dużym kątem w stosunku do normalnej do powierzchni przez monowarstwę na powierzchni metalu i w ten sposób wydłużając drogę optyczną promienia świetlnego w monowarstwie (Spektroskopia Ślizgającego się Kąta - ang. Grazing Angle Spectroscopy GAS). Wszystkie te sposoby, przedstawione na rys. 2.5, prowadziły do tylko częściowego rozwiązania problemu analizy widm IR monowarstw i cienkich warstw [45]. Rys. 2.5. Różne techniki pozwalające na zwiększenie Absorbcji pochodzącej od monowarstwy lub multiwarstwy: a) ATR (MIR) [52,53], b) RAS [73], c) GAS [44,49,50]. Dopiero zastosowanie Transformacji Fouriera do analizy widm IR, kilkusetkrotne powtarzanie widm i wykorzystanie poprawki Fellgetta oraz użycie przystawek ATR, RAS lub GAS pozwoliło na pełną analizę widm IR do badania monowarstw i multiwarstw na powierzchni ciał stałych [1-3, 46,47]. Szczególnie ważne w analizie widm IR monowarstw i multiwarstw są prace współpracowników G. Whitesidesa - R. Nuzzo i D. Allary [44,48-50] oraz J. Sagiva [51-53]. D. Allara badając widma FTIR sulfidów i merkaptanów (RSR', RSSR', RSH) tworzących SA monowarstwy na powierzchni Au [44,48] oraz soli Cd kwasu arachidowego na Ag [50] stwierdził, że jedyny istotny składnik oscylującego pola elektrycznego jest do 88

powierzchni metalu (prawo wyboru powierzchni, ang. surface selection rule). A zatem intensywność absorbcji I dla danego drgania jest wprost proporcjonalna do cos 2 Φ mz, gdzie Φ mz jest to kąt pomiędzy badanym momentem przejścia m a normalną do powierzchni z. A zatem widmo dobrze uporządkowanej monowarstwy, z wszystkimi wiązaniami o konfiguracji trans w stosunku do łańcucha alkilowego i położonymi do powierzchni metalu wiązaniami CH 2 nie będzie wykazywało absorbcji drgań rozciągających ν s CH 2 2850 cm -1. Odchylenie od prostopadłości łańcucha polimeru, monowartwy powoduje, że momenty przejścia drgania ν s CH 2 nie tworzą kąta 90 0 z normalną do powierzchni i pojawia się pewna ich absorbcja I [50-52,54]. W ten sposób można obliczyć kąt pochylenia (orientacji) łańcuchów alkilowych w monowarstwie na powierzchni metalu: cosφ mz I = 3I obs calc 1 2 (2.12) gdzie I obs - zmierzona wartość absorbcji dla monowarstwy, I calc - zmierzona wartość absorbcji dla próbki anizotropowej (ten sam disulfid RSSR' lub merkaptan RSH w pastylce KBr). Jednocześnie pewne informacje o stopniu uporządkowania monowarstwy można uzyskać z analizy położeń pasm w zakresie 2800-2900 cm -1, a dokładniej drgań asymetrycznych ν a CH 2. Dla stanu nieuporządkowanego (niskocząsteczkowe tiole, monowarstwy tioli zbudowane z łańcuchów węglowych niedłuższych niż 9 atomów C, stopiony PE) pozycja pasma ν a CH 2 znajduje się w zakresie 2921-2924 cm -1. W przypadku bardziej krystalicznego - uporządkowanego ułożenia łańcuchów węglowodorowych i większych oddziaływań międzyłańcuchowych (monowarstwy tioli z łańcuchami węglowymi dłuższymi niż 9 atomów C, krystaliczny PE) pasmo absorbcji ν a CH 2 przesuwa się w stronę fal dłuższych (2918 cm -1 ) [44,49,52]. Podobną analizę przeprowadzono dla badań nad stabilnością termiczną monowarstw i temperaturami przejścia od stanu krystalicznego uporządkowanego do stanu nieuporządkowanego [51,52]. Badając monowarstwy związane z podłożem siłami jonowymi (sól kadmowa kwasu arachidowego/al/szkło), kowalencyjnymi (OTS/Al/szkło) lub tylko fizycznymi (LBT kwasu arachidowego/al/szkło) Sagiv stwierdził, że do temperatury 110 0 zachowany zostaje stan uporządkowania dla wszystkich trzech rodzajów monowarstw, ale do temperatury 140 0 tylko już dla monowarstwy związanej z podłożem wiązaniami kowalencyjnymi, czyli dla OTS. Absorbcję pochodzącą od drgań mających momenty przejścia w płaszczyźnie do powierzchni substratu można obserwować w widmach ATR [52,53] a drgania pochodzące od wiązań symetrycznych we Wzmocnionych Powierzchniowo Widmach Ramana (ang. Surface Enhanced Raman Spectroscopy) [55-58]. W tym ostatnim przypadku badając SA monowarstwy disulfidów RSSR' oraz sulfidów RSR' na powierzchni Ag potwier- 89

W. Fabianowski Membrany teoria i praktyka dzono rozpad wiązań S-S (zanik pasma 542 cm -1 ) i tworzenie się wiązania Ag-S (pasmo absorbcji 246 cm -1 dla S związanej z grupą fenylową, 302 cm- 1 dla S związanej z grupą benzylową). W ten sposób tłumaczono dobre działanie smarne disulfidów a słabe sulfidów [57]. Widma FTIR monowarstw i multiwarstw wnoszą dużo informacji na temat ich struktury, chemisorbcji, wpływu podłoża, orientacji dodanego barwnika [59-61]. Pease badał chemisorbcję kwasów tłuszczowych C14 - C22 z domieszką 1-4.8 % fluoroforu - pochodnej karboksylowej pirenu z rozpuszczalnika HD na powierzchni Al/Al 2 O 3 oraz na szkle. Z widm fluorescencyjnych wyznaczył ilość adsorbowanej pochodnej pirenu i stwierdził, że wraz z wydłużaniem się łańcucha węglowego w kwasie tłuszczowym maleje ilość adsorbowanej pochodnej pirenu, która jest jakby wypychana z coraz lepiej uporządkowanej SA monowarstwy. Porównując stężenia pochodnej pirenu/c 14 -C 22 w monowarstwie wyznaczono ujemną energię swobodną adsorpcji pochodnej pirenu przypadającą na jedną grupę CH 2 w łańcuchu kwasu tłuszczowego ~ 230 cal/mol (960J/mol) [59]. Jednocześnie warto podkreślić, że mimo dużego postępu w dziedzinie konstrukcji aparatów FTIR i ich oprzyrządowania, zbieranie widm IR nie jest sprawą łatwą. Mnożące się wątpliwości interpretacyjne dobrze oddaje cytat z książki A. Ulmana... Such an FTIR study may help to establish, for example, that there are diffrent degrees of packing (e.g. liquid-like and solid-like) in different parts of the monolayer, due to different types of interactions between the different functional groups (Takie badania FTIR mogą pomóc w ustaleniu, przykładowo, że występują różne stopnie upakowania (np. podobne do cieczy oraz podobne do ciała stałego) w różnych częściach monowarstwy, wynikające z różnych oddziaływań pomiędzy różnymi grupami funkcyjnymi). 90 2.4. SPEKTROSKOPIA FOTOELEKTRONOWA XPS, XPS-GA Spektroskopia Fotoelektronowa zwana też Elektronową Spektroskopią do Analizy Chemicznej (ang. X-Ray Photoelectron Spectroscopy XPS; Electron Spectroscopy for Chemical Analysis ESCA) pozwala na analizę energii elektronów wybitych z wewnętrznych powłok elektronowych pierwiastków znajdujących się na badanej powierzchni pod wpływem padającego monochromatycznego promieniowania X. Jeżeli wiązka promieniowania X pada pod kątem bliskim 0 0 (w stosunku do normalnej do powierzchni, czyli prawie prostopadle do powierzchni próbki) lub pod ślizgającym się kątem np. 80 0 (prawie równolegle do powierzchni próbki) - to mamy wówczas do czynienia z techniką XPS-GA (ang. Grazing Angle) pozwalającą na analizę profilu rozkładu poszczególnych pierwiastków wzdłuż (w poprzek) grubości monowarstwy [1,62]. W pierwszym przypadku otrzymujemy informacje o pierwiastkach położonych w głębi monowarstwy, w drugim przypadku o pierwiastkach znajdujących się w części wierzchniej, czyli na powierzchni monowarstwy. Technika XPS-GA pozwala na bezpośrednie

stwierdzenie, czy np. tiole, disulfidy tworzące SA monowarstwy na powierzchni Au rzeczywiście są skierowane końcem cząsteczki z atomami S skierowanymi do Au czy może jednak są odwrócone do góry nogami. Badania XPS tioli i disulfidów na powierzchni Au wykonane przez Allara [30,63,64] potwierdziły budowę monowarstwy i oddziaływania Au z S (przesunięcie elektronów S 2p z 164.8 ev do 162.7 ev) oraz rozszczepienie wiązania S-S w pierścieniu z wiązaniem disulfidowym [63]. Obserwowane jednocześnie osłabienie sygnału I Au pochodzącego od elektronów Au 4f 7/2 pozwala na obliczenie grubości monowarstwy zgodnie z wzorem: I Au = ' I Au e -d/λ (2.13) ' gdzie I Au oznacza intensywność dla czystej powierzchni Au, d - poszukiwaną grubość osadzonej monowarstwy, λ - nieelastyczną średnią drogę swobodną elektronów (ang. Inelastic Mean Free Path IMFP) w badanej monowarstwie. Otrzymano dobrą zgodność z modelami CPK (modele czaszowe Corey-Pauling-Koltun) oraz pomiarami elipsometrycznymi [65,66]. Widma XPS-GA potwierdziły proponowaną strukturę monowarstwy zbudowanej z pochodnej fosfatydylocholiny zawierającej estry kwasu lipoikowego [65]. Grupa jonowa (ugrupowanie hydrofilowe) zawierające N, P znajduje się w górnej części monowarstwy (stosunkowo wyższa intensywność sygnałów N i P przy kącie padania promieniowania X bliskim 80 0 ) a z kolei S znajduje się w dolnej części monowarstwy kontaktującej się z atomami Au podłoża (stosunkowo wyższa intensywność sygnałów S przy kącie padania bliskim 0 0 - prostopadle do monowarstwy). Metoda XPS pozwala na precyzyjną analizę składu i ilości pierwiastków znajdujących się w warstwie wierzchniej stałego podłoża. Głębokość penetracji przy kącie padania promieniowania X bliskim 0 0 wynosi do 100Å a przy kącie padania około 80 0 poniżej 20Å. Rozłożenie na składowe (ang. deconvolution) otrzymanych pików od poszczególnych pierwiastków pozwala na określenie ich stanu utlenienia oraz względnej zawartości. Aparaty do XPS posiadają jednak kilka wad. Przede wszystkim jest to wysoka cena urządzenia XPS. Po drugie konieczność pracy w ultrawysokiej próżni (rzędu 10-8 T) co może wpływać na strukturę szczególnie nietrwalych monowarstw. Po trzecie pewne trudności występują podczas analizy widm substancji osadzonych na nieprzewodzących podłożach. Ładowanie się podłoża nie zawsze może zostać skompensowane przez flood gun (emiter elektronów mających za zadanie skompensowanie statycznego ładunku utworzonego na podłożuizolatorze), które z kolei powoduje zdeformowanie i przesunięcie się pików poszczególnych pierwiastków. Przy wprawnym operatorze i dobrym instrumencie XPS (Scienta) metoda ta daje jednak nieocenione wyniki szczególnie w zakresie analizy powierzchni materiałów elektronicznych oraz powierzchni katalizatorów. 91

W. Fabianowski Membrany teoria i praktyka 92 2.5. WOLTAMETRIA CYKLICZNA Elektrochemiczne metody analizy odnoszą się głównie do monowarstw oraz multiwarstw osadzonych na metalach, czyli do charakteryzowania stanu powierzchni elektrod. Spośród wielu metod badawczych [1,67-70] służących do charakteryzowania cienkich warstw na powierzchni elektrod największe znaczenie uzyskała woltametria cykliczna (ang. cyclic voltammetry CV) polegająca na analizie otrzymanej odpowiedzi prądowej wymuszonej przyłożeniem cyklicznie zmiennego w czasie napięcia (przemiatanie napięciem) [71,72]. Elektroda z cienką warstwą modyfikującą, po zanurzeniu w odpowiednim elektrolicie i poddana reakcji elektrochemicznej może zachowywać się w następujący sposób: - Monowarstwa lub multiwarstwa zachowuje się jak przewodnik elektronowy. Na granicy faz monowarstwa - elektrolit może biec reakcja elektrochemiczna (np ultenianie żelazo (II) w anionie kompleksowym Fe(CN) -4 6 do żelazo (III) w anionie kompleksowym -3 Fe(CN) 6 ) - Monowarstwa lub multiwarstwa może być izolatorem dla elektronów, ale być przepuszczalna dla jonów z elektrolitu. Cienka warstwa na elektrodzie zachowuje się w tym przypadku jak membrana. - Monowarstwa lub multiwarstwa jest zarówno izolatorem i jednocześnie jest nieprzepuszczalna dla cząsteczek rozpuszczalnika oraz jonów. Cienka warstwa na elektrodzie zachowuje się w tym przypadku jak warstwa barierowa. Własności Au elektrod modyfikowanych SA monowarstwami tioli o różnej długości (C 12, C 14, C 16, C 18 ) osadzanymi z chloroformu, HD były badane przez Finklea, Allara, Sagiv [44,73-77]. Porównując wielkości prądu I redukcja i I utleniania dla zanurzonych w elektrolicie (0.5-1M KCl, K 2 SO 4 ) z dodatkiem 1-3 mm Fe +2, Fe(CN) -4 6, Ru(NH 3 ) +3 6, błękit metylenowy, dla elektrod z osadzoną monowarstwą lub dla elektrod bez osadzonej monowarstwy stwierdzono, że monowarstwy szczególnie te zbudowane z wyższych tioli (oktadecylowy merkaptan OM) w znacznym stopniu zmniejszają wartości tych prądów. Porównując wielkość prądu redoks dla elektrody z monowarstwą do wielkości prądu zmierzonego dla elektrody czystej bez monowarstwy, to dla pierwszego skanu obliczono stopień pokrycia - czyli szczelność warstwy barierowej. W przypadku monowarstw OM/Au stwierdzono kilkusetkrotne zmniejszenie wielkości prądu I redukcji, co świadczy o dużej szczelności SA monowarstw [44,65,73-75]. Dokładniejsza analiza wykazuje jednak, że szczelność powłoki zależy od szybkości zmian przykładanego napięcia. Jeżeli zmiany napięcia są szybkie, to wówczas elektroda tak jakby widziała dyfundujące cząsteczki tylko w niewielkiej odległości od porów. Sytuacja ta jest przedstawiona na rys. 2.6A. Jeżeli zmiany napięcia są powolne, to elektroda poprzez pory tak jakby widziała wszystkie cząsteczki

znajdujące się w odpowiednim profilu stężeń i może zachowywać się tak jak elektroda czysta, niemodyfikowana (rys. 2.6B). Rys. 2.6. Przebieg reakcji elektrochemicznej na powierzchni elektrody z porami o promieniu r [71]: A - reakcja szybka, (Dt) 1/2 << r, B - reakcja wolna, (Dt) 1/2 >> r, (D - współczynnik dyfuzji; t - czas). A zatem analizując zgodnie z teorią Amatore-Saveant-Tessier elektrody Au zabezpieczone monowarstwami, można obliczyć nie tylko wielkość porów (defektów monowarstw) ale i średnią między nimi odległość [73,77-82]. Sagiv stwierdził, że w monowarstwie OTS/OM/Au znajdują się pory o średnicy 5-10 nm i oddalone są od siebie o 50-100 nm [73]. Finklea badając monowarstwy OM osadzone na elektrodzie Au, z pomiarów impedancyjnych (ang. Electrochemical Impedance Spectroscopy, EIS) wyznaczył wielkość i rozkład porów przy niewielkiej liczbie defektów (mniej niż 0.1 część powierzchni Au jest dostępna dla reakcji elektrochemicznej) [77]. Stwierdził, że pory o średnicy 0.1-10 µm są oddalone od siebie od 1 do 100 µm a odchylenia od teorii przypisał nierównomiernemu rozkładowi defektów (lokalnym zgrupowaniom porów). Przez monowarstwy jony przenikają z różną szybkością. Z badanych anionów najszybciej przenikają aniony nadchloranowy ClO 4, chlorkowy Cl - a najwolniej silnie hydratowany (a zatem największy) anion fluorkowy F - [44]. W rozpuszczalnikach organicznych (acetonitryl) prawdopodobnie z powodu spęcznienia monowarstwy, SA monowarstwy tiolowe/au tracą własności blokujące [75]. Monowarstwy, które wykazują przewodnictwo elektronowe, mają w swojej strukturze wbudowane inteligentne cząsteczki, ulegające odwracalnym reakcjom utleniania-redukcji. Są to zwykle pochodne soli amoniowych, mających co najmniej jeden długi, C 18 alkil (umożliwiający tworzenie SA 93

W. Fabianowski Membrany teoria i praktyka monowarstw) i grupę aktywną elektrochemicznie, np pochodną ferrocenową lub bipirydylową [83-87] (rys. 2.7) Rys. 2.7. (Ferrocenylometylo) dimetyloktadecylo amoniowy heksafluorofosfor N-Metylo N'-oktadecylobipirydylowy chlorek. Z analizy CV wyznaczono gęstość upakowania cząsteczek na powierzchni elektrody, ich ułożenie przestrzenne, wpływ ułożenia cząsteczek na transport elektronów oraz jonów wzdłuż powierzchni monowarstwy, biwarstwy; wpływ plastyfikującego działania dodanego oktanolu [83-89]. Cienkie warstwy tego rodzaju mają praktyczne znaczenie w badaniach sensorów, modyfikacji powierzchni katalizatorów oraz ogólnie w rozwijającej się dziedzinie struktur nanowymiarowych, przypominających układy biologiczne [71]. 94 2.6. ODPORNOŚĆ TERMICZNA Zmiany zachodzące w monowarstwach i multiwarstwach pod wpływem temperatury były badane metodą Programowanej Temperaturowo Desorbcji (ang. Thermally Programmed Desorption TPD) [63], zmian w widmach FTIR omówionych w rozdziale 2.3 [51], zmian w widmach promieniowania X rozpraszanych pod małymi kątami (ang. Small Angle X-Ray Scattering SAXS), elipsometrię, zmiany kąta zwilżania, mikroskopię interferencyjną [90-92]. Szczegółową analizę zmian zachodzących przede wszystkim w strukturach monowarstw i multiwarstw otrzymanych metodą LBT oraz SA monowarstw tioli na powierzchni Au w bardzo szerokim zakresie temperatur - od 50 K do około 402 K podaje Ulman [2]. Już w temperaturze pokojowej obserwuje się łatwe przechodzenie struktury monowarstw ze wszystkimi wiązaniami w pozycji trans w wiązania typu gauche oraz rozchylanie się równolegle ułożonych łańcuchów. W przypadku SA monowarstw utworzonych na powierzchni Au z merkaptanów zakończonych grupą hydroksylową, obserwowano, że grupy hydrofilowe -OH znajdujące się w warstwie wierzchniej HO(CH 2 ) 11 SH w ciągu około 30 minut

zostają jakby pogrzebane pod warstwą zgiętych łańcuchów węglowodorowych i obserwuje się wzrost kąta zwilżania z 20 0 do około 60 0 [93]. Wygrzewanie monowarstw tioli/au przez długi okres czasu (40 godzin) w niezbyt wysokich temperaturach (50 0 ) zmniejsza liczbę defektów monowarstwy [94]. Ale zbyt długie wygrzewanie szczególnie w podwyższonych temperaturach prowadzi do utlenienia tioli do pochodnych sulfonianowych i zmniejszenia ich trwałości [95]. Stabilność monowarstwy można podwyższyć przez zwiększenie oddziaływań grupy ulegającej chemisorpcji z podłożem [51], wydłużenie łańcucha węglowodorowego (każda grupa CH 2 zwiększa odporność termiczną o 10 K) [92], wprowadzenie grup amidowych w pozycji β do grupy tiolowej (wiązanie wodorowe) [96], wiązanie boranowe -B-O-B- w głowie monowarstwy zwiększają kilkukrotnie jej odporność termiczną [97]. Przede wszystkim trwałość monowarstwy ulega zwiększeniu przez jej usieciowanie - spolimeryzowanie monowarstwy, multiwarstwy a nawet związanego z nią przeciwjonu (np sole akrylowe). O ile dla niespolimeryzowanych monowarstw począwszy od temperatury 110 0 obserwuje się zupełny zanik struktury uporządkowanej i postępujący proces desorpcji, to po spolimeryzowaniu odporność termiczna wzrasta o ponad 100 0, sięgając temperatur 200 0-250 0 [91]. Można wykorzystać ten fakt zwiększonej odporności spolimeryzowanych monowarstw i multiwarstw do modyfikacji powierzchniowej układów elektronicznych, następnie ich kopolimeryzacji z polimerem zabezpieczającym i poddanie działaniu wysokiej temperatury podczas dalszej obróbki termicznej (warstwy poliimidowe wymagają czasem jak Pyralin-2555 firmy Du Pont krótkiego ogrzewania w temperaturze 450 0 ) [98; 99] co po reakcji sieciowania i kopolimeryzacji można wykonać bez obawy desorpcji monowarstwy/multiwarstwy zabezpieczającej. 2.7. WŁASNOŚCI ELEKTRYCZNE Szczególnie interesujące wydają się być właściwości elektryczne monowarstw i multiwarstw na powierzchni ciał stałych (metali, półprzewodników) w kontakcie z drugą fazą (półprzewodnikiem, izolatorem). W jaki sposób obecność cienkiej warstwy zmienia pracę wyjścia Φ elektronów, czyli ilość pracy potrzebnej do przeniesienia elektronów z poziomu Fermiego w metalu do punktu w próżni poza powierzchnią metalu [71,100]. Miarą zmian Φ może być pomiar potencjału powierzchniowego metalu mierzonego bez oraz z obecnością cienkiej warstwy modyfikującej - monowarstwy. F. Fowkes zaproponował umieszczenie na powierzchni metalu monowarstwy w warstwie oleju, przez co zmniejszył wpływ przypadkowych zanieczyszczeń adsorbujących się na powierzchni metalu [101]. Jeżeli na powierzchni metalu zostanie zaadsorbowana warstwa o polaryzacji ujemnej, czyli bogata w elektrony, to do przeniesienia elektronów do próżni musi być wykonana dodatkowa praca i zatem wartość Φ ulegnie zwiększeniu. I odwrotnie, jeżeli na powierzchni metalu zostanie zaadsorbowana war- 95

W. Fabianowski Membrany teoria i praktyka stwa o polaryzacji dodatniej, np jony dodatnie, to wówczas wartość Φ zostanie zmniejszona. Zmiany pracy wyjścia Φ (zmiany potencjału powierzchni, zmiany potencjału Volty) mogą być m. in. określane metodą wibrującego kondensatora Zismana [100], zarówno dla granic faz metalciecz [101,102] jak również dla granicy faz ciecz- powietrze [103-105]. Obliczono w ten sposób momenty dipolowe cząsteczek w monowarstwie, stałą dielektryczną, określono ich ułożenie [103,104] oraz wyjaśniono przyczynę znacznie podwyższonego przewodnictwa jonowego H + na granicy faz woda-kwas palmitynowy [105; 106]. Zmierzono również charakterystyki prądowo-napięciowe I/V oraz pojemności monowarstw, biwarstw oraz cienkich filmów otrzymanych metodą LBT [107,108]. Mino stwierdził, że cienkie multiwarstwy otrzymane metodą SA zbudowane z 5 monowarstw pochodnych winylowych nie spełniają prawa Ohma, lecz wartość prądu jest ograniczona ładunkiem przestrzennym (ang. Space Charge Limited Current SCLC) [109]. Multiwarstwy zbudowane z 5-40 monowarstw spełniają prawo Ohma. Wartość napięcia przebicia nie zależy od grubości filmu i wynosi około 1.7 10 2 [MV/m]. Pomiary Elektrochemicznej Impedancji Spektroskopowej pozwalają na obliczenie grubości monowarstw [110] oraz na obliczenie liczby porów, niedokładności w strukturze monowarstwy na podłożu przewodzącym (tiole/au) [77] oraz na podłożu dielektrycznym (alkilosiloksany/sio 2 ) [110]. Fowkes [101] wykazał, że stal nierdzewna ma charakter powierzchni kwasowej, na której chętnie ulegają chemisorbcji aminy. Z kolei stal węglowa ma charakter powierzchni amfoterycznej a aluminium amfoteryczny z przewagą własności zasadowych (szybciej chemisorbcji ulegają kwasy organiczne niż aminy). Zmiany wywołane chemisorbcją monowarstw na powierzchni ciał stałych mają istotne znaczenie w zabezpieczaniu przed korozją [41,99] lub zbyt wczesnym zużywaniem się szczególnie zaawansowanych technicznie urządzeń elektronicznych [111]. Prace badawcze na temat zabezpieczania powierzchni metalowych, półprzewodnikowych cienkimi warstwami oraz następnie pokrywanymi warstwami PE CVD obecnie są realizowane w Wydziale Chemicznym Politechniki Warszawskiej [98,112,113]. 96 2.8. METODY MIKROSKOPOWE Prawie wszystkie techniki mikroskopowe stosowane były do charakteryzowania monowarstw i multiwarstw, zarówno na granicy faz woda-powietrze jak również osadzonych na powierzchni ciał stałych [2, 63]. W przypadku Skaningowej Mikroskopii Elektronowej (ang. Scanning Electron Microscopy SEM) oraz Transmisyjnej Mikroskopii Elektronowej (ang. Transmission Electron Microscopy TEM) otrzymano obrazy powierzchni z monowarstwami, ale ograniczające się głównie do obszarów z defektami, wtrąceniami [114]. Szczególnie przydatne okazały się zdjęcia SEM do badania adhezji pomiędzy płytką Si a naparowaną warstwą Au w obecności środka sprzęgającego, czyli 11-trichlorosilyloundekanotiolu

[115]. Obserwowany prawie 100-krotny wzrost adhezji Au do Si potwierdził celowość stosowania monowarstwy sprzęgającej. Interesujące wyniki uzyskano w badaniach za pomocą Skaningowej Mikroskopii Tunelowej (ang. Scanning Tunneling Microscopy STM) monowarstw - soli kadmowych kwasu arachidowego osadzonych metodą LBT na powierzchni grafitu [116]. Przesuwający się tuż nad powierzchnią monowarstwy (w odległości 10 Å od powierzchni) czubek elektrody wolframowej z molekularnym zaostrzonym czubkiem jest w stanie w wyniku przewodnictwa tunelowego rejestrować przy przyłożeniu niewielkiego napięcia rzędu 1V elektrony płynące pomiędzy czubkiem elektrody a podłożem z naniesioną monowarstwą. I tak dla soli kwasu arachidowego otrzymano obraz równomiernego rozłożenia łańcuchów alkilowych zajmujących zgodnie z wynikami izotermy Langmuira oraz modelu CPK powierzchnię 19.4 Å 2 przypadającą na jedną cząsteczkę [116]. Szczególnie interesujące są wyniki, w których za pomocą czubka elektrody STM, zwiększając napięcie do 2.5V między elektrodą a podłożem selektywnie usuwano fragmenty monowarstwy, tworząc dziury o średnicy 5 nm [117]. W ten sposób na poziomie molekularnym wykonano napisy (np IBM, gwiazda stanu Texas) na powierzchni płytek Si z uprzednio naniesioną monowarstwą [71]. Inny sposób wykorzystania STM (w tym przypadku Skaningowej Mikroskopii Elektrochemicznej - ang. Scanning Electrochemical Microscopy, SECM) polega na selektywnym prowadzeniu reakcji elektrochemicznej w roztworze elektrolitu nad próbką z monowarstwą przez czubek elektrody - w tym wypadku elektrody pracującej. Na śladzie przesuwanego czubka elektrody biegnie reakcja redukcji Ag + + e- Ag 0 [118]. Trudne do przecenienia możliwości STM, szczególnie w dziedzinie elektroniki prowadzą do wciąż nowych rozwiązań. I tak w NIST (National Institute of Standards and Technology) skonstruowano STM o nazwie Molecular Measuring Machine - M 3 (Maszyna Pomiarów Cząsteczkowych) zdolną do rozróżnienia 2 elementów o średnicy 1 nm na powierzchni kwadratu 50 mm 50 mm. Jest to znacznie większa powierzchnia badana od typowych STM, pracujących zwykle na powierzchniach o wymiarach 0.1 mm 0.1 mm a w praktyce znacznie mniejszych (4 µm x 4 µm). W ten sposób można zdaniem pracowników NIST [119] wykonać pracę podobną do rozróżnienia dwóch ziarenek piasku oddalonych o 1 mm na powierzchni 2500 km 2. Ograniczenia metody STM wynikają z konieczności stosowania podłoży przewodzących o bardzo wysokiej skali gładkości. Już badania monowarstw na płytkach Si są dość wątpliwe, ze względu na duże uskoki (tarasy), dochodzące do 30 nm w topografii samego podłoża. Nie wykazuje tych ograniczeń Metoda Mikroskopii Sił Atomowych (ang. Atomic Force Microscopy, AFM) pozwalająca na uzyskanie również molekularnej rozdzielczości cząsteczek osadzonych na powierzchniach przewodzących i nieprzewodzących [2]. W tym wypadku sonda mikroskopu obciążona siłą mniejszą od 10-8 N (czyli poniżej milionowej części grama) przesuwa się po powierzchni z naniesioną monowarstwą. Ugięcia skośnie umocowanej dia- 97

W. Fabianowski Membrany teoria i praktyka mentowej końcówki sondy są rejestrowane w wyniku analizy interferencyjnej odbitej wiązki laserowej. W ten sposób otrzymano obraz spolimeryzowanej monowarstwy zbudowanej z n-(2-aminoetylo)-10,12-trikosadiinamidu [120] na szkle oraz innych cząsteczek o znaczeniu biochemicznym, potwierdzając w ten sposób odległości między łańcuchowe wyznaczone uprzednio innymi metodami (metodą dyfrakcji elektronowej [121]). Szczególne znaczenie w dziedzinie badania monowarstw, głównie lipidowych, na granicy faz woda-powietrze, na powierzchni ciał stałych uzyskała mikroskopia fluorescencyjna. Mikroskop fluorescencyjny wbudowany zwykle w dno wanny Langmuira [122, 123] pozwala na wizualizację zmian zachodzących w poddanej kompresji monowarstwie, do której dodano niewielką ilość związku fluorescencyjnego. Przebiegowi procesu nukleacji, agregacji, przechodzenia od stanu ściśliwej cieczy do stanu krystalicznego towarzyszą wyraźnie widoczne różne struktury makrocząsteczkowe [59,124]. Podobne zmiany obrazów obserwowano dla kopolimerów zbudowanych z bloków sztywnych i elastycznych typu PI-PSi, PI-PBut [125]. Mikroskopia fluorescencyjna pozwoliła również na wizualizację tworzenia się fal kapilarnych w monowarstwie [126]. Należy sądzić, że ze względu na wysoką czułość metod fluorescencyjnych, ta metoda mikroskopii optycznej znajdzie istotne znaczenie w charakteryzowaniu monowarstw szczególnie pochodzenia naturalnego (np badania fal poprzecznych w fosfolipidach płucnych odpowiedzialnych za oczyszczanie pęcherzyków płucnych w procesie podobnym do efektu Marangoniego [127,128] oraz jako czujnik wykrywający obecność cząsteczek wody [129] lub rejestrujący zmiany ph [130]. 98 2.9. REAKTYWNOŚĆ CHEMICZNA MONOWARSTW Reakcje chemiczne przebiegające na powierzchni monowarstw, multiwarstw lub ogólnie - z wykorzystaniem odczynników unieruchomionych w matrycy [131,132] różnią się od klasycznych reakcji w roztworze. Z reguły biegną szybciej ze względu na wyższe lokalne stężenie reagentów oraz z racji możliwości preferencyjnego zorientowania reagujących cząsteczek na powierzchni monowarstwy - matrycy przed reakcją, są bardziej selektywne. Należy termin "selektywność" rozumieć w szerokim znaczeniu - pewne reakcje biegną z dużo większą szybkością niż w przypadku statystycznych zderzeń mających miejsce w roztworze, a inne reakcje mogą biec z prawie zerową szybkością. Reakcja utleniania grupy C=C położonej jako grupa końcowa monowarstwy, w środku monowarstwy oraz grupa C=C "schowana" pod trzema monowarstwami kwasów tłuszczowych osadzonych metodą LBT była badana przez Sagiva [133]. Na powierzchni kryształu do zbierania widm metodą ATR osadzał odpowiednie monowarstwy i poddawał je działaniu KMnO 4 /H 2 O 2 ; KMnO 4 /C 6 H 6 i obserwował zmiany w widmach FTIR (pojawienie się pasma absorbcji pochodzącego od grupy karbo-