Klasyczny rachunek zdań 1/2

Podobne dokumenty
Kultura logiczna Klasyczny rachunek zdań 1/2

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Kultura logiczna Klasyczny rachunek zdań 2/2

Podstawowe Pojęcia. Semantyczne KRZ

LOGIKA Klasyczny Rachunek Zdań

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Wprowadzenie do logiki Zdania, cz. I Wprowadzenie do Klasycznego Rachunku Zdań

Rachunek logiczny. 1. Język rachunku logicznego.

Kultura logiczna Wnioskowania dedukcyjne

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Wstęp do logiki. Klasyczny Rachunek Zdań II

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów

Logika Matematyczna (2,3)

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

Wprowadzenie do logiki Klasyczny Rachunek Zdań część 3

Logika pragmatyczna dla inżynierów

Metodologia prowadzenia badań naukowych Semiotyka, Argumentacja

Matematyka ETId Elementy logiki

Klasyczny rachunek predykatów

ĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

LOGIKA I TEORIA ZBIORÓW

Elementy logiki matematycznej

Rachunek zdań i predykatów

Michał Lipnicki (UAM) Logika 11 stycznia / 20

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

4 Klasyczny rachunek zdań

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I

Schematy Piramid Logicznych

Adam Meissner.

Kultura logicznego myślenia

Logika Matematyczna (1)

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 8. Modalności i intensjonalność

Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Rachunek zdań. Zdanie w sensie logicznym jest to wyraŝenie jednoznacznie stwierdzające, na gruncie reguł danego języka, iŝ tak a

Logika Matematyczna (1)

Logika Radosna 1. Jerzy Pogonowski. Semantyka KRZ. Zakład Logiki Stosowanej UAM

Lekcja 3: Elementy logiki - Rachunek zdań

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW

Dowody założeniowe w KRZ

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Wprowadzenie do logiki Pojęcie wynikania

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP

ROZDZIAŁ 1. Rachunek funkcyjny

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Elementy logiki i teorii mnogości

Wstęp do logiki. Klasyczny Rachunek Zdań III

Lista 1 (elementy logiki)

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Drzewa Semantyczne w KRZ

Logika intuicjonistyczna

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

WSTĘP ZAGADNIENIA WSTĘPNE

DODATEK 1: Wtedy h(α) = 1 oraz h(β) = 0. Jak pamiętamy ze szkoły, obraz sumy zbiorów jest sumą obrazów tych zbiorów. Mamy zatem:

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Wstęp do logiki. Klasyczny Rachunek Predykatów I

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

0. ELEMENTY LOGIKI. ALGEBRA BOOLE A

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

Składnia rachunku predykatów pierwszego rzędu

Predykat. Matematyka Dyskretna, Podstawy Logiki i Teorii Mnogości Barbara Głut

Semantyka rachunku predykatów

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI

Definicja: alfabetem. słowem długością słowa

Andrzej Wiśniewski Logika II. Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne

Jak wnioskują maszyny?

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:

III rok kognitywistyki UAM,

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)];

Internet Semantyczny i Logika I

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań

Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z...

logicznych oczywiście

Logika. Michał Lipnicki. 8 października Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 8 października / 44

Logika Temporalna i Automaty Czasowe

Transkrypt:

Klasyczny rachunek zdań /2 Elementy logiki i metodologii nauk spotkanie VI Bartosz Gostkowski Poznań, 7 XI 9

Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe reguły semantyczne Schematy zdaniowe

ZDANIE W SENSIE LOGICZNYM Zdanie w sensie logicznym, to taki obiekt językowy, o którym można orzekać prawdę i fałsz. Ostatni dinozaur miał niebieskie oczy. W Jaworznie Szczakowej kibicują Pogoni. E. Husserl studiował u F. Brentany. 2+2=5 SĄ ZDANIAMI W SENSIE LOGICZNYM Ostatnia nadzieja chrześcijańskiej Europy Czy tu można kupić kawę? 7x8 Nie należy ufać superłotrom. NIE SĄ ZDANIAMI W SENSIE LOGICZNYM

ZDANIE W SENSIE LOGICZNYM Zdanie w sensie logicznym, to taki obiekt językowy, o którym można orzekać prawdę i fałsz. Uwaga! Koncepcja zdania w sensie logicznym przedstawiona w dalszej części prezentacji jest bardzo silnie związana z Fregowską koncepcją filozofii języka, która identyfikuje się jako Fregowska. Nie jest to jedyne dostępne rozwiązanie problemów semantyki zdań i sądów.

ZDANIE W SENSIE LOGICZNYM: sądy i wartości logiczne Zdanie w sensie logicznym, to taki obiekt językowy, o którym można orzekać prawdę i fałsz. WARTOŚCI LOGICZNE ZDANIE PRAWDA / FAŁSZ

ZDANIE W SENSIE LOGICZNYM- ZNACZENIE I OZNACZANIE Relacja między zdaniem a odpowiadającą mu wartością logiczną (prawdą lub fałszem) jest analogiczna do relacji między nazwą a jej desygnatami. ZDANIE PRAWDA / FAŁSZ ODNOSI SIĘ DO, OZNACZA

ZDANIE W SENSIE LOGICZNYM- ZNACZENIE I OZNACZANIE Sądem nazywamy każdą myśl, która zdaje sprawę z pewnego stanu rzeczy, czyli która zdaje sprawę z tego, że tak a tak jest, lub, że tak a tak nie jest. K. Ajdukiewicz, Logika pragmatyczna Sąd pełni podobną rolę w przypadku zdań, jaką treść pełniła w przypadku nazw. (i) wyraża znaczenie, jakie przysługuje zdaniu, WYRAŻA ZDANIE SĄD PRAWDA / FAŁSZ ODNOSI SIĘ DO, OZNACZA

ZDANIE W SENSIE LOGICZNYM- ZNACZENIE I OZNACZANIE Sądem nazywamy każdą myśl, która zdaje sprawę z pewnego stanu rzeczy, czyli która zdaje sprawę z tego, że tak a tak jest, lub, że tak a tak nie jest. K. Ajdukiewicz, Logika pragmatyczna Sąd pełni podobną rolę w przypadku zdań, jaką treść pełniła w przypadku nazw. (i) wyraża znaczenie, jakie przysługuje zdaniu, (ii) determinuje odniesienie przedmiotowe zdania. WYRAŻA DETERMINUJE ZDANIE SĄD PRAWDA / FAŁSZ ODNOSI SIĘ DO, OZNACZA

Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe reguły semantyczne Schematy zdaniowe

KRZ: ALFABET KLASYCZNY RACHUNEK ZDAŃ, to język formalny, określony za pomocą zestawu reguł słownikowych, składniowych i semantycznych. A. Reguły słownikowe [ALFABET] Def.. Symbolem języka KRZ jest: (i) p, q, r, (ii),,,, (iii) (, ) [dowolna zmienna zdaniowa] [dowolny spójnik zdaniowy] [nawias- pełni funkcję pomocniczą]

Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe reguły semantyczne Schematy zdaniowe

KRZ: SKŁADNIA KLASYCZNY RACHUNEK ZDAŃ, to język formalny, określony za pomocą zestawu reguł słownikowych, składniowych i semantycznych. B. Reguły składni Def.2. Wyrażeniem języka KRZ jest dowolny skończony ciąg symboli języka KRZ. ((((((((((((((pqr ppppppppppppppppp p q SĄ WYRAŻENIAMI KRZ

KRZ: SKŁADNIA KLASYCZNY RACHUNEK ZDAŃ, to język formalny, określony za pomocą zestawu reguł słownikowych, składniowych i semantycznych. B. Reguły składni Def.3. Formuła języka KRZ [wyrażenie dobrze zbudowane]: (i) dowolna zmienna jest formułą języka KRZ; (ii) jeśli wyrażenie α jest formułą języka KRZ, to α jest formułą języka KRZ; (iii) jeśli wyrażenia α i β są formułami języka KRZ, to następujące wyrażenia KRZ również będą formułami języka KRZ: (α β) (α β) (α β) (α β) (iv) żadne inne wyrażenie nie jest formułą języka KRZ.

KRZ: SKŁADNIA Def.3. Formuła języka KRZ [wyrażenie dobrze zbudowane]: (i) dowolna zmienna jest formułą języka KRZ; (ii) jeśli wyrażenie α jest formułą języka KRZ, to α jest formułą języka KRZ; (iii) jeśli wyrażenia α i β są formułami języka KRZ, to następujące wyrażenia KRZ również będą formułami języka KRZ: (α β) (α β) (α β) (α β) (iv) żadne inne wyrażenie nie jest formułą języka KRZ. Poprawność dowolnej formuły KRZ można udowodnić za pomocą definicji 3. (p q) ( p q)

KRZ: SKŁADNIA Def.3. Formuła języka KRZ [wyrażenie dobrze zbudowane]: (i) dowolna zmienna jest formułą języka KRZ; (ii) jeśli wyrażenie α jest formułą języka KRZ, to α jest formułą języka KRZ; (iii) jeśli wyrażenia α i β są formułami języka KRZ, to następujące wyrażenia KRZ również będą formułami języka KRZ: (α β) (α β) (α β) (α β) (iv) żadne inne wyrażenie nie jest formułą języka KRZ. Poprawność dowolnej formuły KRZ można udowodnić za pomocą definicji 3.. (p q) ( p q) są formułami na mocy warunku (i)

KRZ: SKŁADNIA Def.3. Formuła języka KRZ [wyrażenie dobrze zbudowane]: (i) dowolna zmienna jest formułą języka KRZ; (ii) jeśli wyrażenie α jest formułą języka KRZ, to α jest formułą języka KRZ; (iii) jeśli wyrażenia α i β są formułami języka KRZ, to następujące wyrażenia KRZ również będą formułami języka KRZ: (α β) (α β) (α β) (α β) (iv) żadne inne wyrażenie nie jest formułą języka KRZ. Poprawność dowolnej formuły KRZ można udowodnić za pomocą definicji 3.. (p q) ( p q) są formułami na mocy warunku (i) 2. (p q) ( p q) jest formułą na mocy warunku (iii) oraz.

KRZ: SKŁADNIA Def.3. Formuła języka KRZ [wyrażenie dobrze zbudowane]: (i) dowolna zmienna jest formułą języka KRZ; (ii) jeśli wyrażenie α jest formułą języka KRZ, to α jest formułą języka KRZ; (iii) jeśli wyrażenia α i β są formułami języka KRZ, to następujące wyrażenia KRZ również będą formułami języka KRZ: (α β) (α β) (α β) (α β) (iv) żadne inne wyrażenie nie jest formułą języka KRZ. Poprawność dowolnej formuły KRZ można udowodnić za pomocą definicji 3.. (p q) ( p q) są formułami na mocy warunku (i) 2. (p q) ( p q) jest formułą na mocy warunku (iii) oraz. 3. (p q) ( p q) są formułami na mocy warunku (ii) oraz.

KRZ: SKŁADNIA Def.3. Formuła języka KRZ [wyrażenie dobrze zbudowane]: (i) dowolna zmienna jest formułą języka KRZ; (ii) jeśli wyrażenie α jest formułą języka KRZ, to α jest formułą języka KRZ; (iii) jeśli wyrażenia α i β są formułami języka KRZ, to następujące wyrażenia KRZ również będą formułami języka KRZ: (α β) (α β) (α β) (α β) (iv) żadne inne wyrażenie nie jest formułą języka KRZ. Poprawność dowolnej formuły KRZ można udowodnić za pomocą definicji 3.. (p q) ( p q) są formułami na mocy warunku (i) 2. (p q) ( p q) jest formułą na mocy warunku (iii) oraz. 3. (p q) ( p q) są formułami na mocy warunku (ii) oraz. 4. (p q) ( p q) jest formułą na mocy warunku (iii) oraz 3.

KRZ: SKŁADNIA Def.3. Formuła języka KRZ [wyrażenie dobrze zbudowane]: (i) dowolna zmienna jest formułą języka KRZ; (ii) jeśli wyrażenie α jest formułą języka KRZ, to α jest formułą języka KRZ; (iii) jeśli wyrażenia α i β są formułami języka KRZ, to następujące wyrażenia KRZ również będą formułami języka KRZ: (α β) (α β) (α β) (α β) (iv) żadne inne wyrażenie nie jest formułą języka KRZ. Poprawność dowolnej formuły KRZ można udowodnić za pomocą definicji 3.. (p q) ( p q) są formułami na mocy warunku (i) 2. (p q) ( p q) jest formułą na mocy warunku (iii) oraz. 3. (p q) ( p q) są formułami na mocy warunku (ii) oraz. 4. (p q) ( p q) jest formułą na mocy warunku (iii) oraz 3. 5. (p q) ( p q) jest formułą na mocy warunku (iii), oraz 4. i 2.

KRZ: SKŁADNIA Konwencja notacyjna: Jeśli formuła ma kształt (α funk β), gdzie funk to któryś z funktorów dwuargumentowych (,,, ), to zewnętrzny nawias można opuścić.

Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe reguły semantyczne Schematy zdaniowe

KRZ: SEMANTYKA KLASYCZNY RACHUNEK ZDAŃ, to język formalny, określony za pomocą zestawu reguł słownikowych, składniowych i semantycznych. B. Reguły semantyczne KRZ to (bardzo podstawowy) język logiki klasycznej, to znaczy, że obowiązują w nim dwa ważne założenia: (i) ekstensjonalność- wszystkie występujące w języku funktory są ekstensjonalne. (ii) dwuwartościowość- każde zdanie języka przyjmuje jedną z dwu wartości logicznych (oznaczanych tradycyjnie jako i ).

EKSTENSJONALNOŚĆ- intuicje Porównajmy dwa zdania: (a) Słoń kroczy naprzód i krowy patrzą z podziwem. (b) Podróżnik jest przekonany, że słoń kroczy naprzód, a krowy patrzą z podziwem. 3. Prawdziwość zdania (a), zależy od tego jaką wartość logiczną mają zdania, z których zostało zbudowane i od tego, jakiego spójnika (funktora) użyto dla złączenia ich ze sobą. Jeśli jest tak, że zdanie słoń kroczy naprzód oraz zdanie krowy patrzą z podziwem są zdaniami prawdziwymi, to zdanie (a) jest prawdziwe. 4. Prawdziwość zdanie (b) nie zależy od prawdziwości/ fałszywości zdań, z których się ono składa, oraz tego jakich funktorów użyto, by połączyć je ze sobą, tylko od tego, jakie były przekonania podróżnika. W szczególności, jeśli jego przekonania były inne, to choćby słoń kroczył, a krowy patrzyły, zdanie (b) będzie fałszywe.

EKSTENSJONALNOŚĆ Porównajmy dwa zdania: (a) Słoń kroczy naprzód i krowy patrzą z podziwem. (b) Podróżnik jest przekonany, że słoń kroczy naprzód, a krowy patrzą z podziwem. W zdaniu (a) występuje i, które jest funktorem ekstensjonalnym. Def. 4. Funktor ekstensjonalny, to taki spójnik zdaniowy, że wartość logiczna zdania, które powstanie przy jego użyciu zależy tylko od: (i) (ii) wartości logicznej zdań składowych (lub jednego zdania składowego), charakterystyki prawdziwościowej zastosowanego spójnika.

EKSTENSJONALNOŚĆ Porównajmy dwa zdania: (a) Słoń kroczy naprzód i krowy patrzą z podziwem. (b) Podróżnik jest przekonany, że słoń kroczy naprzód, a krowy patrzą z podziwem. W zdaniu (b) występuje intensjonalny spójnik jest przekonany, że. Def. 5. Funktor intensjonalny, to taki spójnik zdaniowy, który nie jest ekstensjonalny. Janina wierzy, że Janina wie, że Janina boi, się, że Janina ma nadzieję, że etc. przykłady funktorów intensjonalnych

SPÓJNIKI EKSTENSJONALNE Wszystkie spójniki języka KRZ są ekstensjonalne, oto ich charakterystyka: NEGACJA p p Konwencja notacyjna: Alternatywna notacja: ~ Interpretacja w j. naturalnym: nieprawda, że

SPÓJNIKI EKSTENSJONALNE Wszystkie spójniki języka KRZ są ekstensjonalne, oto ich charakterystyka: KONIUNKCJA p q p q Konwencja notacyjna: Alternatywna notacja:, & Interpretacja w j. naturalnym: i

SPÓJNIKI EKSTENSJONALNE Wszystkie spójniki języka KRZ są ekstensjonalne, oto ich charakterystyka: ALTERNATYWA p q p q Konwencja notacyjna: Interpretacja w j. naturalnym: lub

SPÓJNIKI EKSTENSJONALNE Wszystkie spójniki języka KRZ są ekstensjonalne, oto ich charakterystyka: IMPLIKACJA p q p q Konwencja notacyjna: Alternatywna notacja:, Interpretacja w j. naturalnym: jeśli, to

SPÓJNIKI EKSTENSJONALNE Wszystkie spójniki języka KRZ są ekstensjonalne, oto ich charakterystyka: RÓWNOWAŻNOŚĆ p q p q Konwencja notacyjna: Alternatywna notacja:, Interpretacja w j. naturalnym: wtedy i tylko wtedy, gdy

Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe reguły semantyczne Schematy zdaniowe

SCHEMATY ZDANIOWE W KRZ Język KRZ okazuje się przydatny do ukazania (pewnych aspektów) logicznej struktury zdań języka naturalnego. Słoń jest największym żyjącym ssakiem lądowym lub kawa jest gorąca.

SCHEMATY ZDANIOWE W KRZ Język KRZ okazuje się przydatny do ukazania (pewnych aspektów) logicznej struktury zdań języka naturalnego. lub oznacza Słoń jest największym żyjącym ssakiem lądowym. oznacza Kawa jest gorąca.

SCHEMATY ZDANIOWE W KRZ Język KRZ okazuje się przydatny do ukazania (pewnych aspektów) logicznej struktury zdań języka naturalnego. oznacza Słoń jest największym żyjącym ssakiem lądowym. oznacza Kawa jest gorąca.

SCHEMATY ZDANIOWE W KRZ Język KRZ okazuje się przydatny do ukazania (pewnych aspektów) logicznej struktury zdań języka naturalnego. p q p oznacza Słoń jest największym żyjącym ssakiem lądowym. q oznacza Kawa jest gorąca.

SCHEMATY ZDANIOWE W KRZ Tłumacząc zdanie języka naturalnego na KRZ, otrzymujemy jego schemat logiczny. Def. 4. Schematem logicznym zdania, jest zatem formuła KRZ, która powstała przez: (i) konsekwentne zastąpienie wszystkich zdań prostych przez przyporządkowane im zmienne zdaniowe (wszystkie wystąpienia tego samego zdania prostego zastępujemy z pomocą tej samej zmiennej zdaniowej); (ii) zastąpienie spójników ekstensjonalnych obecnych w zdaniu z języka naturalnego, przez odpowiednie spójniki KRZ.

SCHEMATY ZDANIOWE W KRZ Dzięki schematowi widać jak wartość logiczna zdania złożonego zależy w sposób systematyczny od wartości logicznych zdań prostych, z których jest zbudowane. Jeśli doña Leona szła na zachód i spotkała uciekające słonie, to została zdeptana. (p q) r p- Doña Leona szła na zachód. q- Doña Leona spotkała uciekające słonie. r- Doña Leona została zdeptana.

SCHEMATY ZDANIOWE W KRZ (p q) r Schemat, który odpowiada badanemu zdaniu, zawiera trzy zmienne zdaniowe. Każda ze zmiennych może przyjmować wartość lub 2, musimy zatem rozważyć 8 różnych kombinacji wartości logicznych. 2 n W ogólności, kombinacji będzie zawsze 2 n gdzie n to liczba zmiennych zdaniowych występujących w badanej formule. Dla ciekawych, dlaczego tak jest, proponuję rozważyć problem w następujący sposób: niech każdą zmienną reprezentuje worek, w którym ukryto dwie kulki: czarną i białą. Teraz, należy wylosować z każdego worka po jednej kulce. Na ile sposobów może przebiegać takie losowanie?

SCHEMATY ZDANIOWE W KRZ (p q) r p q r Najłatwiej wypisać wszystkie możliwe kombinacje wartości logicznych, kierując się następujacą regułą: Niech i będzie liczbą wszystkich kombinacji. (i) Dla pierwszej zmiennej (pierwsza kolumna), wypisz najpierw i/2 jedynek, oraz i/2 zer.

SCHEMATY ZDANIOWE W KRZ (p q) r p q r Najłatwiej wypisać wszystkie możliwe kombinacje wartości logicznych, kierując się następujacą regułą: Niech i będzie liczbą wszystkich kombinacji. (i) Dla pierwszej zmiennej (pierwsza kolumna), wypisz najpierw i/2 jedynek, oraz i/2 zer. (ii) Dla kolejnej zmiennej, weź liczbę jedynek z poprzedniej kolumny, podziel ją przez 2, wynik oznacza liczbę jedynek, zanim zaczniesz wpisywać zera, powtarzaj, aż zapełnisz kolumnę.

SCHEMATY ZDANIOWE W KRZ (p q) r p q r Najłatwiej wypisać wszystkie możliwe kombinacje wartości logicznych, kierując się następujacą regułą: Niech i będzie liczbą wszystkich kombinacji. (i) Dla pierwszej zmiennej (pierwsza kolumna), wypisz najpierw i/2 jedynek, oraz i/2 zer. (ii) Dla kolejnej zmiennej, weź liczbę jedynek z poprzedniej kolumny, podziel ją przez 2, wynik oznacza liczbę jedynek, zanim zaczniesz wpisywać zera, powtarzaj, aż zapełnisz kolumnę.

TABELA PRAWDZIWOŚCIOWA (p q) r p q r (p q) r

TABELA PRAWDZIWOŚCIOWA (p q) r p q r (p q) r

p q r (p q) (p q) r (p q) r TABELA PRAWDZIWOŚCIOWA

p q r (p q) (p q) r (p q) r TABELA PRAWDZIWOŚCIOWA