MODELE OPERATOROWE Modele operatorowe elementów obwodów wyprowadza się wykorzystując znane zależności napięciowo-prądowe dla elementów R, L, C oraz źródeł idealnych. Modele te opisują zależności pomiędzy transformatami napięć na elementach R, L, C i prądów płynących przez te elementy. Przyjmuje się umowę, że: wielkości (przebiegi) czasowe oznacza się małymi literami, np. przebiegi czasowe prądu, napięcia: i(t), u(t) itp., wszystkie wielkości (przebiegi) czasowe są określane dla czasu t i mają transformaty Laplace a.
Przyjęta metodyka postępowania jest podobna do stosowanej w analizie stanów ustalonych w obwodach liniowych z wymuszeniami sinusoidalnymi metodą symboliczną, gdzie elementom R, L, C przyporządkowuje się impedancje (admitancje) zespolone wiążące wartości zespolone skuteczne napięć i prądów tych elementów. Prowadzone rozważania dotyczyć będą kolejno elementów R, L, C oraz źródeł autonomicznych.
Rezystor R Opis rezystora liniowego w dziedzinie czasu określa prawo Ohma: u(t) = R i(t), Po obustronnej transformacji Laplace a powyższych wzorów oraz wykorzystaniu twierdzenia o liniowości uzyskujemy: U(s) = L[u(t)] = L[R i(t)] = R L[i(t)] = R I(s), a) b) u(t) U(s) i(t) R I(s) R Wzory powyższe określają opis rezystora w dziedzinie transformat. Należy podkreślić, że ponieważ rezystor nie magazynuje energii pola elektrycznego, to jego opis zarówno w dziedzinie czasu, jak i w dziedzinie transformat nie zależy od warunków początkowych, których dla rezystora się nie określa.
Induktor L (Cewka indukcyjna) Opis induktora L przedstawiony na rys. z warunkiem początkowym i(t) = i( + ) stanowią w dziedzinie czasu równania: t= u(t) = L di(t), i( + ) = i, dt t i(t) = u(t)dt + i L. Po obustronnej transformacie Laplace a wzoru z wykorzystaniem twierdzeń o liniowości i o pochodnej transformaty uzyskujemy: di(t) di(t) U(s) = L u(t) = L L = L = sl I(s) L i dt L dt. Wyznaczając z równania prąd I(s) w funkcji napięcia U(s): I(s) = U(s) + i sl s
a) b) U(s) i(t) u(t) L I(s) sl Li i (+) = i c) U(s) d) U(s) I(s) sl I(s) sl i s Model dla zerowego warunku początkowego i() =
Modele przedstawione na powyższych rys. są równoważne. W szczególnym przypadku, gdy i( + ) = i = obowiązują równania: U(s) = sli(s) = Z(s)I(s), L I(s) = U(s) = Y(s)U(s) sl L, gdzie: Z(s), L Y(s) L impedancja i admitancja operatorowa induktora: Z(s) = sl, L Y(s) L = sl.
Kondensator C Dla kondensatora C z warunkiem początkowym u(t) = u( + ) = u t= obowiązują równania w dziedzinie czasu: du(t) i(t) = C, u( + ) = u, dt t u(t) = i(t)dt + u C. Po obustronnej transformacie Laplace a i wykorzystaniu twierdzeń o liniowości i transformacie całki uzyskujemy: t t u U(s) = L u(t) = L i(t)dt + u = L i(t)dt + L u = I(s) +. C C sc s Przekształcenie wzoru prowadzi do zależności: I(s) = scu(s) u C
a) b) U(s) i(t) u(t) u(+) u s C I(s) sc c) I(s) U(s) sc d) I(s) U(s) sc C u Model dla zerowego warunku początkowego u() =
W szczególności gdy u( + ) = u =, a zatem dla zerowego napięcia na kondensatorze w chwili komutacji obowiązują równania: U(s) = I(s) = Z C (s) I(s), sc I(s) = scu(s) = Y(s)U(s), C gdzie: Z(s), L Y(s) L impedancja i admitancja operatorowa kondensatora: Z (s) C = sc, Y(s) = sc. L
Podsumowując, należy stwierdzić, że: jeżeli elementy L, C mają niezerowe warunki początkowe, to ich modele operatorowe stanowią połączenia impedancji (admitancji) operatorowych tych elementów i źródeł autonomicznych napięciowych lub prądowych reprezentujących warunki początkowe, jeżeli warunki początkowe elementów L, C są zerowe, to ich modele operatorowe stanowią impedancje (admitancje) operatorowe.
Źródła autonomiczne Idealne źródła autonomiczne są opisane poprzez zależności czasowe określające przebiegi napięć źródeł napięciowych (SEM) i prądów źródeł prądowych (SPM). W dziedzinie transformat źródła te są opisane poprzez transformaty Laplace a przebiegów czasowych prądów i napięć źródeł. a) b) e(t) E(s) = L[e(t)] c) d) j(t) J(s) = L[j(t)]
Impedancje i admitancje operatorowe układów SLS Rozpatrzmy pojedynczą gałąź obwodu elektrycznego złożoną z szeregowego połączenia elementów R, L, C z niezerowymi warunkami początkowymi i źródła autonomicznego napięciowego e(t). W postaci czasowej napięcie u(t) na gałęzi określa wzór: di(t) u(t) = R i(t) + L + i(t)dt + u + e(t), dt C oraz: u C( + ) = u, i( + ) = i. t
Po transformacji Laplace a równania z uwzględnieniem warunków początkowych uzyskujemy wzór: u U(s) = R I(s) + sl I(s) Li + I(s) + + E(s) = sc s u = R + sl + I(s) Li + + E(s) = sc s u = Z(s) I(s) Li + + E(s). s Występujące we wzorze wielkości U(s), I(s), E(s) stanowią transformaty Laplace a przebiegów czasowych u(t), i(t), e(t). Wielkość Z(s): = + + Z(s) R sl sc,
nazywamy impedancją operatorową gałęzi szeregowej RLC nazywanej także gałęzią szeregową normalną. Jeżeli źródło napięcia e(t) w gałęzi szeregowej nie występuje, a warunki początkowe są zerowe, to dwójnik pasywny jest opisany impedancją Z(s) oraz równaniem: U(s) = Z(s)I(s), lub też: I(s) = Y(s)U(s), gdzie: Y(s) admitancja operatorowa gałęzi RLC: Y(s) = Z(s).
W obwodach, zawierających gałęzie szeregowe RLC z zerowymi warunkami początkowymi bez źródeł autonomicznych lub też dowolne dwójniki pasywne, występują podobne jak dla metody symbolicznej zasady tworzenia impedancji i admitancji zastępczych. Dla połączenia szeregowego dowolnych (niekoniecznie złożonych z gałęzi szeregowych) dwójników pasywnych zachodzą zależności: U(s) = U(s) + U(s) 2 +...U(s), n Z(s)I(s) = Z(s)I(s) + Z(s)I(s) 2 2 +...Z(s)I(s), n n Z(s) = Z(s) + Z(s) 2 +...Z(s). n Podobnie dla połączenia równoległego: I(s) = I(s) + I(s) 2 +...I(s), n Y(s)U(s) = Y(s)U(s) + Y(s)U(s) 2 2 +...Y(s)U(s), n n Y(s) = Y(s) + Y(s) 2 +...Y(s). n
a) I(s) Z (s) Z 2 (s) Z n (s) I(s) Z(s) U (s) U 2 (s) U n (s) U(s) b) U(s) I(s) I (s) I 2 (s) I n (s) I(s) U(s) Y (s) Y 2 (s) Y n (s) U(s) Y(s)
Przykład a) sl b) Z (s),y (s) sc R R sc Z 2 (s),y 2 (s) sl sl 2 Impedancja zastępcza Z (s) układu przedstawionego na rys. a) stanowi sumę impedancji operatorowej cewki L i impedancji dwójnika będącego równoległym połączeniem rezystora i kondensatora. Stąd:
2 RCLs + sl + R Z(s) = sl + sc + = sl + =. R + RCs sc + R + RCs Y(s) = = Z(s) RCLs + sl + R. 2 Admitancja zastępcza Y 2 (s) układu przedstawionego na rys. b) jest sumą admitancji dwóch dwójników. Pierwszy z nich stanowi połączenie szeregowe elementów R, L, drugi natomiast połączenie szeregowe elementów L 2, C. Zatem: s (L + L 2)C + scr + Y(s) 2 = + =, 2 R + sl sl + (R + sl)(slc 2 + ) 2 sc (R + sl)(slc 2 + ) Z 2(s) = =. 2 Y(s) s(l + L )C + scr + 2 2 2 2
Przykład Dla obwodu z rys. należy wyznaczyć przebieg czasowy prądu po zamknięciu wyłącznika w, w chwili t =. w i(t) R L C t = i(+) u(+) e(t) Równanie różniczkowe obwodu ma postać: di(t) e(t) = Ri(t) + L + i(t)dt + u dt C t, dla t,
przy warunkach: u C( + ) = u, i( + ) = i. W wyniku obustronnej transformacji Laplace a równania uzyskujemy wzór: u E(s) = RI(s) + sli(s) Li + + I(s) sc s i stąd: u u E(s) = R + sl + I(s) Li + = Z(s)I(s) Li + sc s s. Transformatę Laplace a prądu w obwodzie określa zatem wzór: E(s) Li u I(s) = + Z(s) Z(s) sz(s).
W tym momencie należałoby obliczyć transformatę odwrotną prądu I(s), co jednak wymaga konkretnego wzoru na napięcie e(t) źródła. W zależności od tego napięcia (stałe, sinusoidalne, okresowe itp.) stosuje się różne metody obliczenia transformaty odwrotnej ( = i(t) I(s) ) L.
Przykład Dla obwodu z powyższego przykładu należy wyznaczyć przebieg prądu i(t). Obwodowi z powyższego rys. odpowiada schemat wynikły z opisu elementów obwodu w dziedzinie transformat. I(s) R sl Li sc u s E(s) u R (s) u L (s) u C (s)
Na podstawie II prawa Kirchhoffa w dziedzinie operatorowej i równań elementów mamy: E(s) = U R(s) + U(s) L + U C(s), U (s) = RI(s), R U(s) L = sli(s) Li, u U = + C(s) I(s) sc s, stąd: u E(s) = RI(s) + sli(s) Li + I(s) + = sc s u = Z(s)I(s) Li +. s
Transformatę Laplace a prądu w obwodzie określa zatem wzór: E(s) Li u I(s) = + Z(s) Z(s) sz(s). Także i tutaj należałoby obliczyć transformatę odwrotną prądu I(s), co jednak wymaga konkretnego wzoru na napięcie e(t) źródła. Najłatwiejszym przypadkiem będzie napięcie stałe, a przypadkiem szczególnie istotnym napięcie sinusoidalnie zmienne.