O C. zasada. Schem. 1. Ogólny schemat reakcji aldolowej.

Podobne dokumenty
BADANIE KINETYKI DIMERYZACJI ACETONU PRZY POMOCY CHROMATOGRAFII GAZOWEJ SYNTEZA ALKOHOLU DIACETONOWEGO (4-HYDROKSY-4-METYLOPENTAN-2-ONU)

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Schem. 1. Ogólny schemat reakcji odwodnienia enolu.

BADANIE KINETYKI DIMERYZACJI ACETONU PRZY POMOCY CHROMATOGRAFII GAZOWEJ SYNTEZA ALKOHOLU DIACETONOWEGO (4-HYDROKSY-4-METYLOPENTAN-2-ONU)

KINETYKA INWERSJI SACHAROZY

SYNTEZA TLENKU MEZYTYLU (4-METYLOPENT-3-EN-2-ONU)

Zidentyfikuj związki A i B. w tym celu podaj ich wzory półstrukturalne Podaj nazwy grup związków organicznych, do których one należą.

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT.

Repetytorium z wybranych zagadnień z chemii

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wpływ stężenia kwasu na szybkość hydrolizy estru

Odwracalność przemiany chemicznej

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

Reakcje związków karbonylowych zudziałem atomu węgla alfa (C- )

Reakcje związków karbonylowych. Maria Burgieł R R C O. C O + Nu E C

Węglowodory poziom podstawowy

1 ekwiwalent 1 ekwiwalent

1 ekwiwalent 1,45 ekwiwalenta 0,6 ekwiwalenta

Inżynieria Środowiska

Rozdział 6. Odpowiedzi i rozwiązania zadań. Chemia organiczna. Zdzisław Głowacki. Zakres podstawowy i rozszerzony

Wskaż grupy reakcji, do których można zaliczyć proces opisany w informacji wstępnej. A. I i III B. I i IV C. II i III D. II i IV

1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego:

1 ekwiwalent 6 ekwiwalentów 0,62 ekwiwalentu

II Podkarpacki Konkurs Chemiczny 2009/10. ETAP II r. Godz Zadanie 1 (10 pkt.)

REAKCJE JONÓW ENOLANOWYCH

CHROMATOGRAFIA II 18. ANALIZA ILOŚCIOWA METODĄ KALIBRACJI

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto

VIII Podkarpacki Konkurs Chemiczny 2015/2016

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Ilościowa analiza mieszaniny alkoholi techniką GC/FID

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU.

WYMAGANIA EDUKACYJNE

a) 1 mol b) 0,5 mola c) 1,7 mola d) potrzebna jest znajomość objętości zbiornika, aby można było przeprowadzić obliczenia

1 ekwiwalent 4 ekwiwalenty 5 ekwiwalentów

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

HYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco:

imię i nazwisko, nazwa szkoły, miejscowość Zadania I etapu Konkursu Chemicznego Trzech Wydziałów PŁ V edycja

Jakościowa i ilościowa analiza mieszaniny alkoholi techniką chromatografii gazowej

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Za poprawną metodę Za poprawne obliczenia wraz z podaniem zmiany ph

chemia wykład 3 Przemiany fazowe

OCENA CZYSTOŚCI WODY NA PODSTAWIE POMIARÓW PRZEWODNICTWA. OZNACZANIE STĘŻENIA WODOROTLENKU SODU METODĄ MIARECZKOWANIA KONDUKTOMETRYCZNEGO

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH DESTYLACJA

Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015

Test diagnostyczny. Dorota Lewandowska, Lidia Wasyłyszyn, Anna Warchoł. Część A (0 5) Standard I

I KSZTAŁCENIA PRAKTYCZNEGO. Imię i nazwisko Szkoła Klasa Nauczyciel Uzyskane punkty

EFEKT SOLNY BRÖNSTEDA

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

KATALITYCZNE ODWODORNIENIE HEPTANU

Kryteria oceniania z chemii kl VII

2. Podczas spalania 2 objętości pewnego gazu z 4 objętościami H 2 otrzymano 1 objętość N 2 i 4 objętości H 2O. Jaki gaz uległ spalaniu?

1 Kinetyka reakcji chemicznych

Oranż β-naftolu; C 16 H 10 N 2 Na 2 O 4 S, M = 372,32 g/mol; proszek lub

Zadanie 1. (1 pkt) Zapach mięty pochodzi od mentolu, alkoholu o uproszczonym wzorze:

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje rejonowe

Zad: 5 Oblicz stężenie niezdysocjowanego kwasu octowego w wodnym roztworze o stężeniu 0,1 mol/dm 3, jeśli ph tego roztworu wynosi 3.

Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych

MECHANIZMY REAKCJI CHEMICZNYCH. REAKCJE CHARAKTERYSTYCZNE GRUP FUNKCYJNYCH ZWIĄZKÓW ORGANICZNYCH

dla której jest spełniony warunek równowagi: [H + ] [X ] / [HX] = K

Inżynieria Biomedyczna

prof. dr hab. Małgorzata Jóźwiak

Chemia - laboratorium

Wykład z Chemii Ogólnej i Nieorganicznej

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Ćwiczenie 26 KATALITYCZNE ODWODNIENIE HEPTANOLU

UJ - Collegium Medicum, KChO, Pracownia chemii organicznej S. Kondensacja. Symbol Nazwa otrzymywanego preparatu strona

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Izoterma rozpuszczalności w układzie trójskładnikowym

Jakościowe i ilościowe oznaczanie alkoholi techniką chromatografii gazowej

Zadanie 1. [ 3 pkt.] Uzupełnij zdania, wpisując brakującą informację z odpowiednimi jednostkami.

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych

I. Substancje i ich przemiany

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab

Estry. 1. Cele lekcji. 2. Metoda i forma pracy. 3. Środki dydaktyczne. a) Wiadomości. b) Umiejętności

Roztwory buforowe (bufory) (opracowanie: dr Katarzyna Makyła-Juzak)

Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej

Wyznaczanie stałej szybkości reakcji wymiany jonowej

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II

Destylacja z parą wodną

Kondensacja. Symbol Nazwa otrzymywanego preparatu strona. Kondensacja część teoretyczna 2. K1 2,4-dinitrofenylohydrazon acetaldehydu 4

KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR

Pochodne węglowodorów, w cząsteczkach których jeden atom H jest zastąpiony grupą hydroksylową (- OH ).

WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego

KETAL ETYLENOWY ACETYLOOCTANU ETYLU

XXI KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2013/2014

PRÓBNY II ETAP OLIMPIADY CHEMICZNEJ. Gimnazjum i Liceum Akademickie w Toruniu. Toruń,

Zadanie: 2 (4 pkt) Napisz, uzgodnij i opisz równania reakcji, które zaszły w probówkach:

Laboratorium 5. Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna

Mechanizm działania buforów *

Czynniki wpływające na szybkość reakcji

Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną CZĘŚĆ DOŚWIADCZALNA. Tabela wyników pomiaru

1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

Obliczenia stechiometryczne, bilansowanie równań reakcji redoks

Inżynieria procesów przetwórstwa węgla, zima 15/16

Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020

1 ekwiwalent 2 ekwiwalenty 2 krople

Transkrypt:

ALKL DIACETNWY BADANIE KINETYKI DIMERYZACJI ACETNU PRZY PMCY CRMATGRAFII GAZWEJ ZADANIE 7A Reakcja tworzenia wiązania węgiel-węgiel w reakcji kondensacji aldolowej 1 [1-3] jest jedną z najważniejszych w przyrodzie i, co za tym idzie, również w syntezie organicznej. Kondensacja aldolowa zachodzi w łagodnych warunkach, również w środowisku wodnym. gólny schemat kondensacji aldolowej jest przedstawiony na Schemacie 1. 2 C + C zasada C C Schem. 1. gólny schemat reakcji aldolowej. Pomimo pozornej prostoty przedstawiona reakcja pozwala otrzymać, w zależności od doboru substratów, od jednego do czterech produktów. Ulegają jej związki karbonylowe (aldehydy i ketony). W reakcji powstaje (na ogół) przynajmniej jedno nowe centrum stereogenne, a więc uwzględniając stereoizomerię maksymalna możliwa liczba produktów jeszcze rośnie. Przy udziale odpowiednich enzymów aldolaz, co na ogół ma miejsce w organizmach żywych, możliwe jest uzyskanie produktów w postaci czystych enancjomerów lub diastereoizomerów. Rozważania z powyższego akapitu można zilustrować na podstawie reakcji dwóch aldehydów: octowego i propionowego (etanalu i propanalu). Schemat reakcji z narysowanymi wzorami szkieletowymi wszystkich produktów przedstawia Schemat 2. Nowo powstające wiązania węgiel-węgiel są pogrubione, a powstające centra stereogenne zaznaczone gwiazdkami. Zarówno aldehyd octowy (oznaczony na Schemacie 2 jako substrat A), jak i aldehyd propionowy (substrat B), posiadają atomy wodoru przy atomie węgla sąsiednim do karbonylowego, czyli atomie węgla α. becność przynajmniej jednego atomu wodoru α w cząsteczce przynajmniej jednego substratu jest niezbędna do przebiegu kondensacji aldolowej. 1 Nazwa kondensacja jest używana ze względów historycznych. W reakcjach kondensacji wydzielają się cząsteczki produktu ubocznego (np. wody), co w tym przypadku nie ma miejsca. 2 Reakcja aldolowa może być również katalizowana przez kwasy. UDA-PKL.04.01.02-00-097/09-00

A zasada + + 1 2 + B + + 3 4 Schem. 2. Możliwe produkty kondensacji aldolowej aldehydów octowego i propionowego. Jak już wspomniano wcześniej, jeżeli oba substraty posiadają atomy wodoru α mogą powstać cztery różne produkty. Dwa z nich (w omawianym przypadku 1 i 2) to produkty samokondensacji, odpowiednio: aldehydu octowego i aldehydu propionowego, natomiast 3 i 4 stanowią produkty krzyżowej (mieszanej) kondensacji aldolowej. Kiedy tylko jeden z substratów posiada atomy wodoru α, mogą powstać maksymalnie dwa produkty (jeden produkt samokondensacji i jeden produkt krzyżowej kondensacji aldolowej). Kiedy żaden z substratów nie posiada atomów wodoru α reakcja nie zachodzi. (W przypadku aldehydów w obecności stężonej zasady zachodzi inna reakcja reakcja Canizzaro). Cały czas pamiętać należy, że w opisywanych reakcjach na ogół powstają nowe centra stereogenne (jak widać w przypadku produktów 2 i 4 nawet więcej niż jedno), co powoduje, że produkty (w przypadku reakcji optycznie nieczynnych substratów w achiralnym środowisku) występują w postaci mieszanin racemicznych enancjomerów lub diastereoizomerów. Przejdźmy teraz do opisu mechanizmu reakcji kondensacji aldolowej, nadal na przykładzie mieszaniny aldehydu octowego i propionowego poddanej działaniu roztworu zasady (na przykład rozcieńczonego roztworu zasady sodowej). Mechanizm ten jest przedstawiony na Schemacie 3. W pierwszym etapie reakcji jon wodorotlenowy pochodzący z dysocjacji zasady sodowej odrywa jeden z protonów przy atomie węgla α związku karbonylowego. Może się to stać zarówno w przypadku cząsteczek aldehydu octowego, jak i propionowego. Powstają odpowiednie karboaniony (jony enolanowe) A i B, stabilizowane przez rezonans. Ta stabilizacja jest przyczyną dla której związki karbonylowe są zdolne do oddaniu protonu α, a więc zachowywania się jak słabe kwasy (C-kwasy). Trzeba sobie zdawać sprawę, że są to kwasy bardzo słabe, a więc jedynie bardzo niewielki procent cząsteczek związków karbonylowych obecnych w roztworze ulega temu procesowi. UDA-PKL.04.01.02-00-097/09-00

A' B' A A lub lub B B 1' 2' lub lub 3' 4' + - 2 + 2 - + - 2 + 2 - A B 1 lub 3 2 lub 4 Schem. 3. Mechanizm reakcji aldolowej katalizowanej zasadą (poprzez jon enolanowy). Wobec tego, że większość cząsteczek aldehydów obecnych w roztworze nadal pozostaje w postaci obojętnych cząsteczek związków karbonylowych, mogą one ulegać atakowi nukleofilowemu powstałych wcześniej jonów enolanowych. W efekcie powstają cząsteczki produktów w postaci jonów alkoksylowych 1-4. Są to zasady silniejsze od jonów enolanowych, bowiem nie są stabilizowane przez rezonans. drywają one protony od cząsteczek obecnych w roztworze (na przykład cząsteczek wody), tworząc obojętne cząsteczki produktów 1-4 i odtwarzając jony wodorotlenowe, będące katalizatorem reakcji. Wszystkie etapy kondensacji aldolowej są odwracalne. W przypadku aldehydów równowaga reakcji jest przesunięta na stronę produktów. W przypadku ketonów, które są mniej reaktywne, jedynie mała część substratów ulega przemianie do produktów kondensacji. W przypadku acetonu w stanie równowagi reakcji jedynie około 1 % cząsteczek występuje w postaci dimeru. W jaki sposób można przesunąć tę równowagę? W zestawie doświadczalnym w prezentowanym ćwiczeniu reakcja zachodzi wyłącznie w aparacie Soxhleta, podczas kontaktu acetonu z Ca() 2 znajdującym się w gilzie. Jest to przykład reakcji dwufazowej (heterogenicznej) w układzie ciecz-ciało stałe. Jak już powiedziano wcześniej, w stanie równowagi jedynie mała część acetonu ulega przekształceniu do dimeru (alkoholu diacetonowego). W trakcie opróżniania aparatu Soxhleta przez przelew do kolby spływa mieszanina acetonu i alkoholu diacetonowego. UDA-PKL.04.01.02-00-097/09-00

Podczas ogrzewania z kolby paruje jednak tylko aceton (różnica t. wrz. substratu i produktu wynosi ok. 100 C). Tak więc przy każdym kolejnym napełnieniu aparatu Soxhleta tylko substrat ma kontakt z katalizatorem, a kolejne porcje produktu gromadzą się w kolbie. W efekcie równowagę reakcji można po odpowiednio długim czasie przesunąć niemal całkowicie na prawo. Innym stosowanym katalizatorem w reakcjach opisywanego typu jest Ba() 2. Jako silniejsza zasada nadaje się do tego celu nawet lepiej niż Ca() 2. Wodorotlenek baru jest jednak silnie trujący i dużo droższy niż wodorotlenek wapnia (wapno gaszone). Reakcja aldolowa nie zawsze kończy się na etapie β-hydroksyaldehydu lub β-hydroksyketonu (aldolu). Możliwa jest ich dehydratacja, która prowadzi do związków α,β-nienasyconych. Są one ważnymi substratami w syntezie organicznej, na przykład w reakcjach addycji sprzężonej (Michaela). W przypadku alkoholu diacetonowego dehydratacja zachodzi w pewnym stopniu pod wpływem ogrzewania kolby przyłączonej do aparatu Soxhleta. Powstaje w ten sposób mała ilość tlenku mezytylu (4- metylopent-3-en-2-onu), co jest przedstawione na Schemacie 4., - 2 Schem. 4. Równanie reakcji dehydratacji alkoholu diacetonowego do tlenku mezytylu. Eksperymenty fizykochemiczne określenie rzędu reakcji aldolowej acetonu Istnieje wiele metod określania stopnia postępu reakcji. W preparatyce organicznej najczęściej używa się do tego celu chromatografii cienkowarstwowej (TLC). Chociaż szybka, tania i niekłopotliwa, jest to jednak metoda tylko jakościowa. Jako metoda ilościowa, pozwalająca otrzymać dane potrzebne na przykład do wyliczenia rzędu reakcji może służyć chromatografia gazowa. W chromatografie gazowym mała ilość (rzędu 1 μl) ciekłej mieszaniny odparowuje w komorze nastrzykowej i jest wprowadzana na kolumnę w strumieniu gazu nośnego (helu). Na kolumnie kapilarnej pokrytej fazą ciekłą o bardzo dużej lepkości następuje podział badanej próbki na składniki. UDA-PKL.04.01.02-00-097/09-00

Kolejne składniki próbki docierają do analizatora, którym może być na przykład płomieniowy detektor indukcyjny (FID). Poszczególne składniki próbki spalając się w płomieniu wodorowym tworzą niskotemperaturową plazmę o pewnym przewodnictwie elektrycznym. Sygnał na chromatogramie odpowiada przewodnictwu tej plazmy w danym momencie. Sygnał ten nie jest proporcjonalny ani do masy, ani do liczby moli substancji w danej frakcji docierającej do analizatora. Można więc tylko porównywać zmianę sygnału pochodzącego od tej samej substancji wraz z upływem czasu. Może to być alkohol diacetonowy. Na podstawie przyrostu jego stężenia w kolbie można w przybliżeniu określić rząd reakcji dimeryzacji acetonu [4-5]. Wychodząc z ogólnego równania kinetycznego (1) dc n kc (1) dt gdzie dc oznacza przyrost stężenia c produktu w czasie dt, k oznacza stałą szybkości reakcji, a n rząd reakcji, otrzymany po scałkowaniu dla najprostszych przypadków n = 0, 1, 2: c 2 c 1 = k(t 2 t 1 ) dla n = 0 (2a) ln c 2 ln c 1 = k(t 2 t 1 ) dla n = 1 (2b) c 1 1 c 1 2 = k(t 2 t 1 ) dla n = 2 (2c) gdzie c 1 i c 2 oznaczają stężenia produktu w chwili t 1 i t 2. Wykorzystując równania (2a-c) można, pod pewnymi warunkami, wyznaczyć rząd reakcji, rysując zależności c(t), ln c (t) i c 1 (t). Jeśli zależność c(t) jest liniowa, reakcja jest rzędu 0 (zerowego); jeżeli zależność ln c (t) okaże się liniowa reakcja jest rzędu pierwszego; a w przypadku liniowej zależności c 1 (t) rzędu drugiego. Założenia i uwagi: 1. Na ogół rząd reakcji określa się na podstawie ubytku substratu. W naszym przypadku jest to niemożliwe z dwóch względów: UDA-PKL.04.01.02-00-097/09-00

a. reakcja zachodzi tylko w gilzie aparatu Soxhleta, gdzie przez cały czas trafia czysty aceton to, ile acetonu znajduje się jeszcze w dolnej kolbie i jakie jest jego stężenie, nie ma znaczenia dla przebiegu reakcji; b. stężenie acetonu w dolnej kolbie przez długi czas jest zbyt duże dla dokonania pomiaru wielkość sygnału przekracza zakres rejestracji aparatu. 2. Zaniedbujemy różnice w gęstościach substratu i produktu oraz zmianę objętości całej mieszaniny, wywołaną przebiegiem reakcji, co wpływa na stężenie produktu. Część doświadczalna 2 Ca() 2 (kat.), Schemat 5. Schemat reakcji aldolowej acetonu. 1) Alkohol diacetonowy (4-hydroksy-4-metylopentan-2-on) Przed rozpoczęciem wykonywania ćwiczenia student powinien się zapoznać z rozdziałami Ekstrakcja i Destylacja [6]. Schemat układu reakcyjnego przedstawia Rys. 1 [7,8]. dczynniki: Ca() P 2 30 g aceton D 250 cm 3 UWAGA: Wodorotlenek wapnia jest związkiem żrącym, należy pracować w rękawicach ochronnych. D P - dostępne pod dygestorium; - pobrać z przygotowalni Gilzę należy wypełnić 30 g suchego Ca() 3 2 i zatkać kłębkiem waty szklanej. Wypełnioną gilzę należy ostrożnie umieścić w aparacie Soxhleta (należy uniknąć przedostania się Ca() 2 do kolby reakcyjnej). Kolbę dwuszyjną o pojemności 500 cm 3 napełnia się 250 cm 3 czystego acetonu i ogrzewa do wrzenia z taką intensywnością, aby aceton z chłodnicy spływał małym strumieniem do aparatu Soxhleta. Należy zanotować, z jaką częstotliwością następuje opróżnianie aparatu Soxhleta. grzewanie kontynuuje się przez 11 h 4. 3 Można wziąć większą ilość Ca() 2 gilza mieści około 60 g. W każdym przypadku należy zanotować użytą do reakcji ilość. 4 W razie potrzeby ogrzewanie można przerwać w dowolnym momencie i kontynuować po dowolnym czasie. Krótszy czas ogrzewania powoduje spadek wydajności alkoholu diacetonowego. UDA-PKL.04.01.02-00-097/09-00

woda gniazdo ze ściemniaczem gilza z Ca() 2 aceton odpływ pary acetonu mieszanina reakcyjna płaszcz grzejny Rys. 1. Schemat układu ekstrakcyjnego z użyciem aparatu Soxhleta Po zakończeniu ogrzewania otrzymuje się ok. 170 cm 3 jasnożółtej mieszaniny reakcyjnej (cześć acetonu znajduje się w Ca() 2 wypełniającym gilzę). Po rozebraniu zestawu reakcyjnego gilzę należy ostrożnie wyjąć z aparatu Sohxleta po wysuszeniu może ona być przechowywana przez czas nieograniczony i użyta ponownie do reakcji dowolną liczbę razy. Mieszanina reakcyjna zawiera niezmieniony aceton, alkohol diacetonowy oraz nieco tlenku mezytylu (pent-3-en-2- onu) i wody. Poddaje się ją oczyszczeniu przez dwukrotną destylację. Pierwszą destylację (frakcyjną) przeprowadza się pod normalnym ciśnieniem, z użyciem kolumny Vigreux. Zestaw należy zaizolować poprzez owinięcie folią aluminiową. Zawartość można destylować wprost z kolby reakcyjnej, ogrzewając ją na łaźni olejowej (kolbę należy okryć tkaniną z włókna szklanego). Destylacja rozpoczyna się, gdy temperatura łaźni osiągnie ok. 100 C. Temperaturę łaźni należy stopniowo podnosić. Destylację uznaje się za zakończoną, gdy temperatura na szczycie kolumny osiągnie 61 C temperatura łaźni olejowej wynosi wtedy ok. 135 C. W zakresie 57-61 C oddestylowuje ok. 70 cm 3 niezmienionego acetonu 5. Pozostałość po pierwszej destylacji należy po ochłodzeniu do temp. pokojowej przenieść do mniejszej kolby i destylować pod zmniejszonym ciśnieniem (10 mmg) z użyciem pompki wodnej z łaźni olejowej o temperaturze 70 C. UWAGA: W temperaturze 26 C - 27 C raptownie destyluje niewielka ilość wody w razie gwałtownego kipienia zawartości należy ostrożnie podnieść nieco na chwilę ciśnienie w układzie destylacyjnym. Aż do temperatury 65 C destyluje mieszanina wody, tlenku mezytylu i alkoholu diacetonowego. Gdy temperatura osiągnie tę wartość, należy ostrożnie wpuścić powietrze do układu i zmienić odbieralnik na nowy, po czym kontynuować destylację. W zakresie 66 C - 70 C zbiera się czysty alkohol diacetonowy (ok. 55 g). Jego czystość należy zbadać, określając współczynnik załamania światła i porównać jego wartość z danymi tablicowymi. 5 Krótszy czas reakcji powoduje odzyskanie większej ilości nieprzereagowanego acetonu. UDA-PKL.04.01.02-00-097/09-00

Eksperymenty fizykochemiczne określenie rzędu reakcji samokondensacji acetonu 1. Pobieranie próbek Z dolnej kolby układu reakcyjnego należy przez boczną szyję pobierać strzykawką porcje mieszaniny reakcyjnej o objętościach 0,5 cm 3 po upływie 30, 60, 90, 120 i 240 min od rozpoczęcia reakcji (od momentu, w którym Ca() 2 w gilzie będzie po raz pierwszy całkowicie zanurzony w acetonie). Próbki należy umieścić w czystych, szczelnie zamykanych fiolkach. Próbki pobrane po 120 i 240 min należy rozcieńczyć w fiolce w stosunku 1:4, dodając w każdym przypadku 2 cm 3 czystego acetonu. 2. Wykonywanie chromatografii gazowej Z poszczególnych fiolek należy pod kontrolą asystenta pobrać strzykawką po 1 μl zawartości i przeprowadzić chromatografię gazową, wykorzystując program aceton : 80 C (1 min), 15 C/min 160 C, 160 C (1 min). Dla czasu retencji R t = 1,94 min pojawia się sygnał pochodzący od acetonu (znacznie wykraczający ponad skalę), dla R t = 2,74 min interesujący nas sygnał pochodzący od alkoholu diacetonowego, zaś dla R t = 3,01 min sygnał pochodzący od tlenku mezytylu. Przy nierównomiernym nastrzyknięciu próbki sygnały mogą być podwojone. 3. pracowanie wyników W poniższej tabeli należy zanotować powierzchnie sygnałów p [μv s], pochodzących od alkoholu diacetonowego (po uwzględnieniu rozcieńczenia pięciokrotnego rozcieńczenia próbek pobranych po 120 min i 240 min) i wyliczyć wartości ln p i 1/p. Współczynniki 10 3 i 10 3 zostały użyte, aby uniknąć bardzo małych i bardzo dużych liczb. Czas reakcji [min] 30 60 90 120 240 Powierzchnia p sygnału alkoholu diacetonowego ln (10 3 p [μv s]) 10 3 1/ (10 3 p [μv s]) [μv s] 10 3 trzymane wartości należy umieścić na poniższych wykresach i w każdym wypadku wyliczyć współczynnik korelacji regresji liniowej r. Dla liczby pomiarów n = 5 możemy podejrzewać zależność liniową y(x) tylko dla r 0,99. UDA-PKL.04.01.02-00-097/09-00

p [ V s] / 1000 Zależność pola powierzchni p sygnału pochodzącego od alkoholu diacetonowego od czasu reakcji t. 6000 5000 4000 3000 2000 ln {p [ V s] / 1000} Zależność ln pola powierzchni p sygnału pochodzącego od alkoholu diacetonowego od czasu reakcji t. 9 8,5 8 7,5 7 1000 0 0 100 200 300 t [min] r = 6,5 6 0 100 200 300 t [min] r = 1,8 Zależność odwrotności pola powierzchni p sygnału pochodzącego od alkoholu diacetonowego od czasu reakcji t. 1000 / {p [ V s] / 1000} 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0 0 100 200 300 t [min] r = Zastanówmy się teraz, co właściwie oznacza otrzymany wynik? Czy wynikający z wykresów rząd reakcji określa rząd reakcji sumarycznej (rząd zewnętrzny), czy rząd wewnętrzny którejś z reakcji elementarnych? Analizując Schemat 3 można dojść do wniosku, że omawiana reakcja składa się z trzech etapów: UDA-PKL.04.01.02-00-097/09-00

1. Deprotonacji substratu 2. Ataku nukleofilowego jonu enolanowego na karbonylowy atom węgla innej cząsteczki acetonu 3. Protonacji produktu Etapy 1 i 3 to ustalanie się równowag kwasowo-zasadowych, polegających na przekazywaniu protonów pomiędzy cząsteczkami. Są one szybkie w porównaniu z etapem 2. Najwolniejszy etap 2 determinuje szybkość całej reakcji. W etapie 2 reaguje jon enolanowy z cząsteczką acetonu. Stężenie acetonu jest stałe (do gilzy cały czas dociera czysty aceton) i bardzo duże w porównaniu ze stężeniem jonów enolanowych. Nasz problem, polegający na określeniu rzędu reakcji, sprowadziliśmy do rozpatrzenia etapu 2. reakcji, odbywającego się w warunkach metody izolacyjnej stwalda, w której stężenie jednego z reagentów (w naszym przypadku acetonu) jest praktycznie niezmienione w czasie reakcji (w pojedynczym cyklu napełnienia i opróżnienia gilzy jedynie bardzo niewielka część acetonu przereagowuje). kreślony rząd reakcji to rząd wewnętrzny względny (względem jonów enolanowych). stateczne pytanie brzmi więc: Jak zależy stężenie jonów enolanowych od czasu? Jony enolanowe powstają w kontakcie acetonu z wodorotlenkiem wapnia gilzie (etap 1 reakcji). Jest to reakcja heterogeniczna (na granicy faz ciało stałe/ciecz). Nawet w momencie opróżnienia zbiornika aparatu Soxhleta gilza z Ca() 2 pozostaje zwilżona acetonem. Ponieważ cały czas dopływa świeży aceton, w gilzie ustala się stan równowagi dynamicznej, w którym stężenie jonów enolanowych jest stałe. Jeśli stężenie obu substratów w etapie określającym szybkość reakcji (etap 2) jest stałe, musi mieć ona rząd taki, jak właśnie wyliczony. Taki rząd reakcji jest możliwy tylko w przypadku reakcji heterogenicznych. Etap ten, jako najwolniejszy, określa prędkość całej reakcji i bez powyższych rozważań mogłoby się wydawać, że jest to rząd całej reakcji, co byłoby niezrozumiałe. Ponieważ z pomiarów powierzchni sygnałów na chromatogramie jesteśmy w stanie odczytać jedynie względne stężenia alkoholu diacetonowego w próbce, nie jesteśmy w stanie wyznaczyć bezwzględnej wartości stałej k. Można ją oszacować jedynie na podstawie wydajności otrzymanego produktu. Pytania: 1. Dlaczego reakcje heterogeniczne są na ogół wolniejsze niż reakcje homogeniczne? UDA-PKL.04.01.02-00-097/09-00

2. Jakie inne katalizatory (homogeniczne lub heterogeniczne) można zastosować w reakcjach kondensacji aldolowej? 3. Jaka reguła pozwala przesunąć równowagę reakcji dimeryzacji acetonu na prawą stronę? Jaki konkretny przykład tej reguły ma zastosowanie w omawianym przypadku? 4. Zapisz struktury rezonansowe anionów A i B. 5. Zapisz wzory możliwych produktów reakcji aldolowej butan-2-onu i aldehydu benzoesowego oraz wzory związków powstałych w wyniku dehydratacji produktów reakcji. Literatura 1. J. McMurry Chemia rganiczna (wydanie trzecie), Wydawnictwo Naukowe PWN, Warszawa 2005, tom 4: rozdz. 22.1-2, 5-6; 23.1-7,11,14 + podsumowanie i zadania (str. 822-824, 828-833, 854-864, 871-874, 878-891). 2. L. G. Wade, Jr. rganic Chemistry 5 th Ed., Prentice all, Upper Saddle River, 2003: rozdz. 22.1-2, 7-11, 18 + podsumowanie i zadania (str. 1003-1007, 1017-1027, 1042-1045, 1049-1056). 3. J. March Chemia organiczna. Reakcje, mechanizmy, budowa, Wydawnictwa Naukowo- Techniczne, Warszawa, 1975: str. 603-611 (opis reakcji 6.39-6.42). 4. K. Pigoń, Z. Ruziewicz Chemia fizyczna (wydanie szóste), Wydawnictwo Naukowe PWN, Warszawa 2007, tom 1: rozdz. 7.1-7.2.1, 7.3 (str. 468-474, 481-493). 5. P.W. Atkins Chemia fizyczna, Wydawnictwo Naukowe PWN, Warszawa 2001: rozdz. 25.1a, 2-3, 6 (str. 735-737, 738-746, 752-753). 6. A. Czarny, B. Kawałek, A. Kolasa, P. Milart, B. Rys, J. Wilamowski Ćwiczenia laboratoryjne z chemii organicznej, Wydawnictwo Adamantan, Warszawa, 2008 (on-line: www.skryptoszafa.pl). 7. (a) J. B. Conant, N. Tuttle rg. Synth. Coll. Vol. 1, 199 (1941); Vol. 1, 4 (1921). (b) P. L. Kyriakides J. Am. Chem. Soc. 36, 530 (1914). 8. A. I. Vogel Preparatyka organiczna (wydanie trzecie), Wydawnictwa Naukowo-Techniczne, Warszawa, 2006: rozdz. 5.18.2 i przepis 5.213 (str. 765-767 i 769). UWAGI I ZAGSPDARWANIE DPADÓW Ciekłe pozostałości po destylacji należy umieścić w pojemniku na odpady. Gilzę razem z Ca() 2 należy wysuszyć i oddać do przygotowalni. UDA-PKL.04.01.02-00-097/09-00