OpenGL i wprowadzenie do programowania gier
|
|
- Szczepan Lisowski
- 9 lat temu
- Przeglądów:
Transkrypt
1 OpenGL i wprowadzenie do programowania gier
2 Wojciech Sterna Bartosz Chodorowski OpenGL i wprowadzenie do programowania gier
3 Autorstwo rozdziałów: 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 Wojciech Sterna 4, 15, 16 Bartosz Chodorowski Redakcja: Teresa Karasińska Korekta merytoryczna: Bartłomiej Prędki Projekt okładki: Marcin Ziółkowski Skład: PanDawer ( Copyright 2008 by Wojciech Sterna & Bartosz Chodorowski Wydawnictwo NAKOM ul. Wielka Poznań tel./fax tel e mail:wydawnictwo@nakom.com.pl ISBN Druk cyfrowy i oprawa: SOWA druk na życzenie tel
4 Spis treści Podziękowania Wstęp ROZDZIAŁ 1. Wstęp do programowania gier Świat gier Czym jest OpenGL Elementy gry Rendering Dźwięk i muzyka Urządzenia wejścia Sieć Mechanika Sztuczna inteligencja Matematyka i fi zyka Podstawowe pojęcia Kolory i RGB Podwójne buforowanie Typy danych w OpenGL-u Podsumowanie Rozdział 2. Podstawy WinAPI i szkielet aplikacji OpenGL WinAPI Jak działają aplikacje Windows Funkcja WinMain i najprostsza aplikacja Windows Rejestrowanie klasy okna, tworzenie i wyświetlanie Pętla przetwarzania komunikatów Funkcja przetwarzania komunikatów Pełen kod źródłowy aplikacji Windows Kontrolki Zegary Funkcje GDI Wątki OpenGL Standardowa aplikacja WinAPI raz jeszcze Format pikseli Funkcje WGL Tryb pełnoekranowy Kompletujemy szkielet Pełen kod aplikacji OpenGL Podsumowanie Rozdział 3. Matematyka Trygonometria Trójkąt prostokątny a funkcje trygonometryczne Wykresy funkcji trygonometrycznych Funkcje odwrotne do trygonometrycznych arcusy Liczenie kątów Kartezjański i biegunowy układ współrzędnych Związki między funkcjami trygonometrycznymi dowolnego kąta Wzory redukcyjne Miara łukowa kąta radian Praktyczne wykorzystanie funkcji trygonometrycznych Ruch falisty... 66
5 Ruch po okręgu Poruszanie à la GTA Zadania Wektory Zapis wektorów Otrzymywanie wektorów Dodawanie wektorów Odejmowanie wektorów Mnożenie wektora przez skalar Normalizacja wektora Iloczyn skalarny wektorów Iloczyn wektorowy wektorów Wektor normalny powierzchni Wektory równoległe Wektory prostopadłe Wzory na otrzymanie konkretnych wektorów Wektor odbity Wektor prędkości po kolizji Zadania Macierze Zapis macierzy Dodawanie i odejmowanie macierzy Mnożenie macierzy Macierz tożsamościowa Macierz transponowana Transformacje Macierz translacji (przemieszczenia) Macierz skalowania Macierz rotacji (obrotu) Słów kilka o porządkach kolumnowym i wierszowym Składanie przekształceń Zadania Podsumowanie Rozdział 4. Fizyka Mechanika klasyczna Ruch i jego rodzaje Ruch jednostajny prostoliniowy Ruch jednostajnie przyspieszony Siły Asteroidy przykładowa gra Opór Siła grawitacji Fizyka sprężyny Ruch obrotowy, mechanika bryły sztywnej Ruch po okręgu Bryła sztywna Fizyka liny Błąd w przykładzie lina Podsumowanie Rozdział 5. Renderowanie w 3D Prymitywy Punkty Rozmiar Antialiasing Linie
6 Łamane i łamane zamknięte Wzorcowe Szerokość Antialiasing Wielokąty Wypełnianie wzorem Cieniowanie Tryby wypełniania Widoczność Ukrywanie krawędzi Reguły konstruowania Trójkąty Listy trójkątów Paski trójkątów Wachlarze trójkątów Czworokąty Paski czworokątów Kwadryki Tworzenie i zwalnianie Funkcje związane z kwadrykami Dyski Cylindry Sfery Uwagi odnośnie optymalizacji kwadryk Podsumowanie Rozdział 6. Manipulowanie przestrzenią Układ współrzędnych Rzutowanie Rzutowanie perspektywiczne Rzutowanie ortogonalne Kamera Macierz projekcji (rzutowania) i modelowania Przekształcenia Translacja Skalowanie Rotacja Aplikacja układ słoneczny Stosy macierzy Funkcje macierzowe OpenGL Pobieranie stanu macierzy Mnożenie macierzy Ładowanie macierzy Inny opis położenia i orientacji obiektu Ręczne przekształcanie wierzchołków Podsumowanie Rozdział 7. Materiały i oświetlenie W teorii Otoczenie Rozproszenie Odbicie (połysk) Obliczanie natężenia oświetlenia Wektory normalne Materiały Otoczenie Rozproszenie
7 Otoczenie i rozproszenie Odbicie Emisja Śledzenie materiału Oświetlenie Otoczenie Rozproszenie Odbicie Pozycja Refl ektor Tłumienie Konfi guracja modelu oświetlenia Aplikacja pomieszczenie Ręczne obliczanie oświetlenia per-vertex Model płaski Model płynny Podsumowanie Rozdział 8. Bitmapy i teksturowanie Bitmapy Struktura bitmapy i ładowanie z pliku Funkcje bitmapowe Przemieszczanie rastra Wykreślanie pikseli Odczytywanie pikseli Kopiowanie pikseli Skalowanie obrazu Rysowanie prawdziwej bitmapy Teksturowanie Funkcje operujące na teksturach Tworzenie, zwalnianie i wybieranie obiektów tekstur Tworzenie obrazów tekstur Filtrowanie tekstur Współrzędne tekstur Środowisko tekstur Aplikacja oteksturowany sześcian Macierz tekstury Teksturowanie kwadryk Podsumowanie Rozdział 9. Optymalizacja Listy wyświetlania Funkcje operujące na listach wyświetlania Tworzenie i usuwanie list Umieszczanie poleceń na listach Wykonywanie list Przykład wykorzystania Tablice wierzchołków Funkcje operujące na tablicach wierzchołków Włączanie i wyłączanie tablic Przypisywanie danych do tablic Renderowanie z użyciem tablic Przykład wykorzystania Podsumowanie Rozdział 10. Wbudowane mechanizmy OpenGL Tekst
8 10.2. Mgła Bufor głębi Blending Przezroczystość Mapy świetlne Wielokrotne mapy świetlne Testowanie alfa Cięcie Nożyczki Płaszczyzny tnące Bufor szablonu Mapowanie współrzędnych Obiekt na okno Okno na obiekt Podsumowanie Rozdział 11. Modele 3D W teorii Format opisu sceny *.ase programu 3ds max Implementacja Słów kilka o animacji Podsumowanie Rozdział 12. Sposoby wykrywania kolizji Czworokąt Okrąg Równanie prostej Punkt w wielokącie Poruszanie po nierównym terenie Interpolacja Równanie płaszczyzny Podsumowanie Rozdział 13. Przykładowy świat małe podsumowanie Kamera Teren Woda Mgła Obiekty Deszcz FPS Co jeszcze można poprawić Podsumowanie Rozdział 14. Dźwięk przestrzenny OpenAL Inicjalizacja i fi nalizacja Obiekty Bufory Tworzenie i usuwanie Ładowanie plików *.wav Źródła Tworzenie i usuwanie Funkcje operujące na źródłach Parametry Słuchacz Parametry Modele dystansu
9 14.4. Przykładowa aplikacja Kamera Funkcje pomocnicze Program główny Podsumowanie Rozdział 15. Sieć Podstawy programowania sieciowego Czego potrzebujemy, by zaimplementować sieć? TCP czy UDP? Implementacja sieci za pomocą surowych gniazd i WinSock Struktury danych Funkcje do manipulacji adresami IP Konieczne funkcje Przykłady programów sieciowych opartych na TCP Przykłady programów sieciowych opartych na UDP Słów kilka o grach czasu rzeczywistego Pong przykładowa gra sieciowa Podsumowanie Rozdział 16. SDL Inicjowanie obrazu Główna pętla programu i przechwytywanie zdarzeń Obsługa klawiatury Obsługa myszki Przechwytywanie czasu Wątki SDL i OpenGL szkielet aplikacji SDL_net sieć w SDL Typy Funkcje Podsumowanie Dodatek A. Konfi guracja SDL Windows Visual C Code Blocks 1.0rc Linux Makra i kompilacja warunkowa Dodatek B. Rozwiązania zadań z rozdziału Funkcje trygonometryczne Wektory Macierze Dodatek C. Tablica wartości funkcji trygonometrycznych Zakończenie Linki
Grafika Komputerowa Wykład 4. Synteza grafiki 3D. mgr inż. Michał Chwesiuk 1/30
Wykład 4 mgr inż. 1/30 Synteza grafiki polega na stworzeniu obrazu w oparciu o jego opis. Synteza obrazu w grafice komputerowej polega na wykorzystaniu algorytmów komputerowych do uzyskania obrazu cyfrowego
Spis treści. Wstęp... 11
Księgarnia PWN: Jacek Matulewski, Tomasz Dziubak, Marcin Sylwestrzak, Radosław Płoszajczak - Grafika. Fizyka. Metody numeryczne Wstęp... 11 Część I. Grafika trójwymiarowa w OpenGL... 13 Rozdział 1. Inicjacja
Grafika, fizyka, metody numeryczne : symulacje fizyczne z wizualizacją 3D / Jacek Matulewski [et al.]. Warszawa, Spis treści.
Grafika, fizyka, metody numeryczne : symulacje fizyczne z wizualizacją 3D / Jacek Matulewski [et al.]. Warszawa, 2010 Spis treści Wstęp 11 Część I. Grafika trójwymiarowa w OpenGL 13 Rozdział 1. Inicjacja
Grafika Komputerowa Wykład 5. Potok Renderowania Oświetlenie. mgr inż. Michał Chwesiuk 1/38
Wykład 5 Potok Renderowania Oświetlenie mgr inż. 1/38 Podejście śledzenia promieni (ang. ray tracing) stosuje się w grafice realistycznej. Śledzone są promienie przechodzące przez piksele obrazu wynikowego
Transformacje. dr Radosław Matusik. radmat
www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja m.in. przestrzeni modelu, świata, kamery oraz projekcji, a także omówienie sposobów oświetlania i cieniowania obiektów. Pierwsze
Plan wykładu. Akcelerator 3D Potok graficzny
Plan wykładu Akcelerator 3D Potok graficzny Akcelerator 3D W 1996 r. opracowana została specjalna karta rozszerzeń o nazwie marketingowej Voodoo, którą z racji wspomagania procesu generowania grafiki 3D
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU GRAFICZNE MODELOWANIE
1. Prymitywy graficzne
1. Prymitywy graficzne Prymitywy graficzne są elementarnymi obiektami jakie potrafi bezpośrednio rysować, określony system graficzny (DirectX, OpenGL itp.) są to: punkty, listy linii, serie linii, listy
2 Przygotował: mgr inż. Maciej Lasota
Laboratorium nr 2 1/6 Grafika Komputerowa 3D Instrukcja laboratoryjna Temat: Manipulowanie przestrzenią 2 Przygotował: mgr inż. Maciej Lasota 1) Manipulowanie przestrzenią Istnieją dwa typy układów współrzędnych:
Dowiedz się, jak tworzyć zapierające dech w piersiach gry 3D i efektowne, trójwymiarowe wizualizacje!
Dowiedz się, jak tworzyć zapierające dech w piersiach gry 3D i efektowne, trójwymiarowe wizualizacje! Jak sprawnie tworzyć podstawowe obiekty, oświetlać je i cieniować? Jak napisać własne programy, korzystając
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15
GRAFIKA CZASU RZECZYWISTEGO Podstawy syntezy grafiki 3D i transformacji geometrycznych
GRAFIKA CZASU RZECZYWISTEGO Podstawy syntezy grafiki 3D i transformacji geometrycznych Grafika komputerowa i wizualizacja, Bioinformatyka S1, II Rok Synteza grafiki 3D Pod pojęciem syntezy grafiki rozumiemy
Szczegółowy rozkład materiału dla klasy 3b poziom rozszerzny cz. 1 - liceum
Szczegółowy rozkład materiału dla klasy b poziom rozszerzny cz. - liceum WYDAWNICTWO PAZDRO GODZINY Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna. Potęga o wykładniku
Bartosz Bazyluk SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok
SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok Synteza grafiki 3D Pod pojęciem syntezy grafiki rozumiemy stworzenie grafiki
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
Rozkład materiału: matematyka na poziomie rozszerzonym
Rozkład materiału: matematyka na poziomie rozszerzonym KLASA I 105h Liczby (30h) 1. Zapis dziesiętny liczby rzeczywistej 2. Wzory skróconego mnoŝenia 3. Nierówności pierwszego stopnia 4. Przedziały liczbowe
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Grafika Komputerowa Wykład 6. Teksturowanie. mgr inż. Michał Chwesiuk 1/23
Wykład 6 mgr inż. 1/23 jest to technika w grafice komputerowej, której celem jest zwiększenie szczegółowości renderowanych powierzchni za pomocą tekstur. jest to pewna funkcja (najczęściej w formie bitmapy)
83 Przekształcanie wykresów funkcji (cd.) 3
Zakres podstawowy Zakres rozszerzony dział temat godz. dział temat godz,. KLASA 1 (3 godziny tygodniowo) - 90 godzin KLASA 1 (5 godzin tygodniowo) - 150 godzin I Zbiory Zbiory i działania na zbiorach 2
Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 KOMPUTEROWA
1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 Nazwa przedmiotu: Kierunek: Specjalność: Tryb studiów: GRAFIKA KOMPUTEROWA INFORMATYKA Kod/nr GK PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH
Modelowanie i wstęp do druku 3D Wykład 1. Robert Banasiak
Modelowanie i wstęp do druku 3D Wykład 1 Robert Banasiak Od modelu 3D do wydruku 3D Typowa droga...czasem wyboista... Pomysł!! Modeler 3D Przygotowanie modelu do druku Konfiguracja Programu do drukowania
MATeMAtyka klasa II poziom rozszerzony
MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład
0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do
0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi
GRK 2. dr Wojciech Palubicki
GRK dr Wojciech Palubicki Macierz wektor produkt jako Transformacja T: R n R m T Ԧx = A Ԧx Przemieszczanie wierzchołków - Transformacje Skalowanie Rotacja Translacja -y -y Macierz rotacji M wobec punktu
Grafika komputerowa i wizualizacja
Grafika komputerowa i wizualizacja Radosław Mantiuk ( rmantiuk@wi.zut.edu.pl, p. 315 WI2) http://rmantiuk.zut.edu.pl Katedra Systemów Multimedialnych Wydział Informatyki, Zachodniopomorski Uniwersytet
MATeMAtyka zakres rozszerzony
MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne
Księgarnia PWN: Andrzej Jaskulski - AutoCAD 2010/LT Podstawy projektowania parametrycznego i nieparametrycznego
Księgarnia PWN: Andrzej Jaskulski - AutoCAD 2010/LT2010+. Podstawy projektowania parametrycznego i nieparametrycznego Spis treści 1. Koncepcja i zawartość podręcznika...11 1.1. Zawartość programowa...11
Wstęp... 19 1. Podstawy... 23. 2. Pierwszy program... 29. 3. Definiowanie sceny 3D... 35. 4. Przekształcenia geometryczne... 47
Spis treści 3 Wstęp... 19 1. Podstawy... 23 1.1. Składnia...24 1.2. Typy danych...25 1.3. Układ współrzędnych...25 1.4. Barwy...26 1.5. Bufor ramki...26 1.6. Okno renderingu...26 1.7. Maszyna stanów...27
MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.
MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu
klasa I Dział Główne wymagania edukacyjne Forma kontroli
semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania
Symulacje komputerowe
Fizyka w modelowaniu i symulacjach komputerowych Jacek Matulewski (e-mail: jacek@fizyka.umk.pl) http://www.fizyka.umk.pl/~jacek/dydaktyka/modsym/ Symulacje komputerowe Dynamika bryły sztywnej Wersja: 8
MATeMAtyka zakres podstawowy
MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Obraz realistyczny Pojęcie obrazu realistycznego jest rozumiane w różny sposób Nie zawsze obraz realistyczny
Grafika 3D na przykładzie XNA 3.1
Jacek Matulewski, Tomasz Dziubak Grafika 3D na przykładzie XNA 3.1 ITA-106 Wersja 1.02 (XNA 3.1, PS 2.0) Toruo, listopad 2010 2010 Jacek Matulewski, Tomasz Dziubak. Autor udziela prawa do bezpłatnego kopiowania
Transformacje obiektów 3D
Synteza i obróbka obrazu Transformacje obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Lokalny układ współrzędnych Tworząc model obiektu, zapisujemy
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek
Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję
Systemy wirtualnej rzeczywistości. Podstawy grafiki 3D
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Systemy wirtualnej rzeczywistości Laboratorium Podstawy grafiki 3D Wstęp: W drugiej części przedstawione zostaną podstawowe mechanizmy
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry
Julia 4D - raytracing
i przykładowa implementacja w asemblerze Politechnika Śląska Instytut Informatyki 27 sierpnia 2009 A teraz... 1 Fraktale Julia Przykłady Wstęp teoretyczny Rendering za pomocą śledzenia promieni 2 Implementacja
Wykład 4. Rendering (1) Informacje podstawowe
Wykład 4. Rendering (1) Informacje podstawowe Z punktu widzenia dzisiejszego programowania gier: Direct3D jest najczęściej wykorzystywanym przez profesjonalnych deweloperów gier API graficznym na platformie
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Zagadnienia Jak rozumiemy fotorealizm w grafice komputerowej Historyczny rozwój kart graficznych Przekształcenia
Mechanika Teoretyczna Kinematyka
POLITECHNIKA RZESZOWSKA Wydział Budownictwa i Inżynierii Środowiska Katedra Mechaniki Konstrukcji Materiały pomocnicze do zajęć z przedmiotu: Mechanika Teoretyczna Kinematyka dr inż. Teresa Filip tfilip@prz.edu.pl
PRZYDATNE WZORY SYMBOLE PUNKTY I LINIE
WZORY PRZYDATNE WZORY SYMBOLE α - często używane do przedstawiania kąta Δ - oznacza "zmiana w" ε - współczynnik restytucji f(t) - funkcja f w odniesieniu do t μ - współczynnik tarcia ω - tu przedstawia
GLKit. Wykład 10. Programowanie aplikacji mobilnych na urządzenia Apple (IOS i ObjectiveC) #import "Fraction.h" #import <stdio.h>
#import "Fraction.h" #import @implementation Fraction -(Fraction*) initwithnumerator: (int) n denominator: (int) d { self = [super init]; } if ( self ) { [self setnumerator: n anddenominator:
Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328
Drogi Czytelniku 9 Oznaczenia matematyczne 11 Podstawowe wzory 15 Rozdział I. Zbiory. Działania na zbiorach 21 1. Zbiór liczb naturalnych 22 1.1. Działania w zbiorze liczb naturalnych 22 1.2. Prawa działań
ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)
ZAKRES PODSTAWOWY Proponowany rozkład materiału kl. I (00 h). Liczby rzeczywiste. Liczby naturalne. Liczby całkowite. Liczby wymierne. Liczby niewymierne 4. Rozwinięcie dziesiętne liczby rzeczywistej 5.
Mobilne Aplikacje Multimedialne
Mobilne Aplikacje Multimedialne Rozszerzona rzeczywistość (AR, Augmented Reality) w Systemie Android Cz.1 Krzysztof Bruniecki Podstawy Algebra liniowa, operacje na wektorach, macierzach, iloczyn skalarny
Rozkład materiału KLASA I
I. Liczby (31 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy i rozszerzony (Na czerwono zaznaczono treści z zakresu rozszerzonego) KLASA I 1. Zapis dziesiętny liczby
Dział Rozdział Liczba h
MATEMATYKA ZR Ramowy rozkład materiału w kolejnych tomach podręczników 1. Działania na liczbach Tom I część 1 1.1. Ćwiczenia w działaniach na ułamkach 1.. Obliczenia procentowe 1.3. Potęga o wykładniku
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy (według podręczników z serii MATeMAtyka) Temat Klasa I (60 h) Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne
GRK 4. dr Wojciech Palubicki
GRK 4 dr Wojciech Palubicki Uproszczony Potok Graficzny (Rendering) Model Matrix View Matrix Projection Matrix Viewport Transform Object Space World Space View Space Clip Space Screen Space Projection
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
Badanie ruchu złożenia
Badanie ruchu złożenia W wersji Standard programu SolidWorks mamy do dyspozycji dwie aplikacje: Podstawowy ruch symulacja ruchu z użyciem grawitacji, sprężyn, napędów oraz kontaktu między komponentami.
Ćwiczenia nr 4. TEMATYKA: Rzutowanie
TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej
Trójwymiarowa grafika komputerowa rzutowanie
Trójwymiarowa grafika komputerowa rzutowanie Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Rzutowanie w przestrzeni 3D etapy procesu rzutowania określenie rodzaju rzutu określenie
Spis treści CZĘŚĆ I. NIEPARAMETRYCZNE PROJEKTOWANIE 2D...31
Spis treści 1. Koncepcja i zawartość podręcznika...13 1.1. Zawartość programowa...13 1.2. Zakładany efekt i metodyka szkolenia...14 1.3. Przeznaczenie...14 1.4. Autor...14 1.4.1. Blog...15 1.4.2. Kanał
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Powierzchnia obiektu 3D jest renderowana jako czarna jeżeli nie jest oświetlana żadnym światłem (wyjątkiem są obiekty samoświecące) Oświetlenie
Śledzenie promieni w grafice komputerowej
Dariusz Sawicki Śledzenie promieni w grafice komputerowej Warszawa 2011 Spis treści Rozdział 1. Wprowadzenie....... 6 1.1. Śledzenie promieni a grafika realistyczna... 6 1.2. Krótka historia śledzenia
1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.
1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.
Podstawy Informatyki Wykład V
Nie wytaczaj armaty by zabić komara Podstawy Informatyki Wykład V Grafika rastrowa Paint Copyright by Arkadiusz Rzucidło 1 Wprowadzenie - grafika rastrowa Grafika komputerowa tworzenie i przetwarzanie
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY
1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne
Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych
ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy
Planimetria 1 12 godz.
Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć
Temat: Transformacje 3D
Instrukcja laboratoryjna 11 Grafika komputerowa 3D Temat: Transformacje 3D Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny Bardzo często programując
Zatem standardowe rysowanie prymitywów wygląda następująco:
Instrukcja laboratoryjna 10 Grafika komputerowa 3D Temat: Prymitywy Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny Prymitywy proste figury geometryczne,
Synteza i obróbka obrazu. Tekstury. Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych
Synteza i obróbka obrazu Tekstury Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Tekstura Tekstura (texture) obraz rastrowy (mapa bitowa, bitmap) nakładany na
Lista działów i tematów
Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie
Zadanie polega na zbudowaniu i wyświetleniu przykładowej animowanej sceny przedstawiającej robota spawalniczego typu PUMA.
Zadanie PUMA Zadanie polega na zbudowaniu i wyświetleniu przykładowej animowanej sceny przedstawiającej robota spawalniczego typu PUMA. Cały projekt składa się z następujących elementów: 1. Animacja ramion
Ustawienia materiałów i tekstur w programie KD Max. MTPARTNER S.C.
Ustawienia materiałów i tekstur w programie KD Max. 1. Dwa tryby własności materiału Materiał możemy ustawić w dwóch trybach: czysty kolor tekstura 2 2. Podstawowe parametry materiału 2.1 Większość właściwości
Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22.
Omnibus matematyczny 1. Cele lekcji a) Wiadomości Uczeń: zna pojęcia matematyczne z zakresu szkoły podstawowej i gimnazjum. b) Umiejętności Uczeń: potrafi podać odpowiednie pojęcie matematyczne na podstawie
Przykłady oprogramowania wykorzystujacego Qt
Przykłady oprogramowania wykorzystujacego Qt Bogdan Kreczmer ZPCiR ICT PWR pokój 307 budynek C3 kreczmer@ict.pwr.wroc.pl Copyright c 2003 Bogdan Kreczmer Niniejszy dokument zawiera materiały do wykładu
RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski
RENDERING W CZASIE RZECZYWISTYM Michał Radziszewski Plan wykładu Programy geometrii wprowadzenie Miejsce w potoku graficznym Wejścia i wyjścia programów geometrii Wierzchołki, prymitywy, ich nowe rodzaje
Oświetlenie obiektów 3D
Synteza i obróbka obrazu Oświetlenie obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Rasteryzacja Spłaszczony po rzutowaniu obraz siatek wielokątowych
Programowanie gier komputerowych Tomasz Martyn Wykład 6. Materiały informacje podstawowe
Programowanie gier komputerowych Tomasz Martyn Wykład 6. Materiały informacje podstawowe Czym są tekstury? Tekstury są tablicowymi strukturami danych o wymiarze od 1 do 3, których elementami są tzw. teksele.
Programowanie gier 3D w HTML5. Andrzej P.Urbański Politechnika Poznańska
Programowanie gier 3D w HTML5 Andrzej P.Urbański Politechnika Poznańska Moje marzenie Od dawna jest znany pakiet Open GL napisany w C++ i bardzo ułatwiający tworzenie gier 3D Zaproponowałem kiedyś jako
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie
Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Zagadnienia Jak rozumiemy fotorealizm w grafice komputerowej Historyczny rozwój kart graficznych Przekształcenia
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie
3 Przygotował: mgr inż. Maciej Lasota
Laboratorium nr 3 1/5 Grafika Komputerowa 3D Instrukcja laboratoryjna Temat: Rysowanie prymitywów 3 Przygotował: mgr inż. Maciej Lasota 1) Rysowanie prymitywów Podstawową rodziną funkcji wykorzystywanych
Spis treści. Przedmowa... 7
Spis treści SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac przygotowanych... 22 1.4. Przyrost funkcji i wariacja funkcji...
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
1 Wstęp teoretyczny. Temat: Manipulowanie przestrzenią. Grafika komputerowa 3D. Instrukcja laboratoryjna Układ współrzędnych
Instrukcja laboratoryjna 9 Grafika komputerowa 3D Temat: Manipulowanie przestrzenią Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1 Układ
Spis treści. Przedmowa do wydania piątego
Zadania z matematyki wyższej. Cz. 1, [Logika, równania liniowe, wektory, proste i płaszczyzny, ciągi, szeregi, rachunek różniczkowy, funkcje uwikłane, krzywe i powierzchnie] / Roman Leitner, Wojciech Matuszewski,
4. Oprogramowanie OCR do rozpoznawania znaków 39
Spis treêci Wstęp 9 1. Podstawowe pojęcia dotyczące tekstu 13 1.1. Wprowadzenie 13 1.2. Pismo 14 1.2.1. Podstawowe pojęcia 14 1.2.2. Grupy krojów pisma 14 1.2.3. Krój pisma 15 1.2.4. Rodzina kroju pisma
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum
LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 563/3/2014
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 56//0 5 tygodni godzin = 75 godzin Lp. Tematyka zajęć I. Kombinatoryka i rachunek prawdopodobieństwa. Reguła
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)
Plan wynikowy z matematyki kl.i LO
Literka.pl Plan wynikowy z matematyki kl.i LO Data dodania: 2006-09-23 09:27:55 Przedstawiam Państwu plan wynikowy z matematyki dla klasy pierwszej LO wg programu programu DKOS 4015-12/02 na rok szkolny
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania
1. Czym jest rendering? a. Komputerowa analiza modelu danej sceny i utworzenie na jej podstawie obrazu 2D. b. Funkcja umożliwiająca kopiowanie obrazu
1. Czym jest rendering? a. Komputerowa analiza modelu danej sceny i utworzenie na jej podstawie obrazu 2D. b. Funkcja umożliwiająca kopiowanie obrazu pomiędzy warstwami. c. Sposób tworzenia modeli 2D d.
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30
Zał. nr do ZW WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka Nazwa w języku angielskim Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów
ECDL/ICDL CAD 2D Moduł S8 Sylabus - wersja 1.5
ECDL/ICDL CAD 2D Moduł S8 Sylabus - wersja 1.5 Przeznaczenie Sylabusa Dokument ten zawiera szczegółowy Sylabus dla modułu ECDL/ICDL CAD 2D. Sylabus opisuje zakres wiedzy i umiejętności, jakie musi opanować
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 9 tygodni 6 godzin = 7 godziny Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna.
Zaawansowany kurs języka Python
PyGame 18 grudnia 2015 Plan wykładu 1 Wprowadzenie Parametry wyświetlania Powierzchnie 2 Klawiatura Mysz Dżojstik 3 Odtwarzanie plików dźwiękowych Odtwarzanie muzyki Samodzielne tworzenie dźwięków 4 3D: