Automatyka Treść wykładów: Literatura. Wstęp. dr inż. Szymon Surma pok. 202, tel.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Automatyka Treść wykładów: Literatura. Wstęp. dr inż. Szymon Surma pok. 202, tel."

Transkrypt

1 25--6 Treść wykładów: Automatyka dr inż. Szymon Surma pok. 22, tel Podstawy automatyki. Wstęp, 2. Różnice między sygnałem analogowym a cyfrowym, 3. Podstawowe elementy logiczne (suma, iloczyn, negacja), 4. Algera Bool a, 5. Prawa de Morgana, 6., 2. Układy kominacyjne, 3. Układy sekwencyjne synchronicze, 4. Układy sekwencyjne asynchroniczne, 5. Kolokwium zaliczeniowe. Wstęp Warunek zaliczenia przedmiotu: o Kolokwium zaliczeniowe w postaci testu wyoru lu zadania, o Ocena końcowa jest oceną z kolokwium, Konsultacje w miarę wolnego czasu (macie pytania, przychodzicie my staramy się odpowiedzieć), Literatura J. Mikulski: Podstawy automatyki - liniowe układy regulacji WPŚ, Gliwice 2. H. Kamionka-Mikuła, H. Małysiak, B. Pochopień: Synteza i analiza układów cyfrowych Wyd. J. Skalmierski, Gliwice 26 J. Kalisz: Podstawy elektroniki cyfrowej, WKŁ, Warszawa 22 Sygnał analogowy a cyfrowy Sygnał analogowy a cyfrowy

2 25--6 Sygnał cyfrowy interpretowany przez ramkę Podstawowe ramki logiczne OR (suma) AND (iloczyn) Podstawowe ramki logiczne Podstawowe ramki logiczne BUF (ufor) NOT, INV (negacja) NOR (zanegowana suma) NAND (zanegowany iloczyn) X Y X Y Podstawowe ramki logiczne Algera Bool a XOR XNOR Powszechnie stosowane układy cyfrowe (logiczne) pracują w oparciu o tzw. logikę dwuwartościową. Wartości zmiennych (sygnałów) mogą przyjmować dwie wartości: prawda oraz fałsz. W praktyce oznacza się je cyframi inarnymi, odpowiednio: i. Algerę dwuwartościowych sygnałów logicznych nazywa się algerą Boole'a. 2

3 25--6 Algera Bool a Algera Bool a Dla dowolnych zmiennych a,, c algery Boole'a zachodzą następujące własności: A A2 ) a = a a = a A3 A4 a ( c) = (a ) c a ( c) = (a ) c 2) A5 A6 = = Algerą Boole'a nazywa się szóstkę: ( {,},,,,, ) gdzie: {,} - jest ziorem możliwych wartości; - jest operatorem sumy logicznej; - jest operatorem iloczynu logicznego; - jest operatorem negacji logicznej (spotyka się także symole: ~ lu );, - są tzw. niezmiennikami operacji sumy i iloczynu. A7 a = A A9 a =a A a = A a a = A2 a a = A3 a a=a A4 A5 (a ) c = a c c A7 𝑎 𝑏=𝑎 𝑏 a =a a a=a A6 a c = (a c) (a ) A 𝑎 𝑏 =𝑎 𝑏 3) 4) A9 𝑎=𝑎 - prawa przemienności, 2 - prawa łączności 3 - prawa rozdzielności, 4 - prawa de Morgana Algera Bool a Talice prawdy dla praw de Morgana Dla dowolnych zmiennych a,, c algery Boole'a zachodzą następujące własności: A A2 ) a+= +a a = a A3 A4 2) a + ( + c) = (a + ) + c a ( c) = (a ) c A5 A6 = = A7 𝑎 𝑏 = 𝑎 𝑏 𝑎 𝑎 𝑎 𝑎 𝑏 𝑎 𝑏 a+= A A9 a+=a A a = A a + a = A2 a a = 𝑎 𝑎 𝑎 𝑎 𝑏 𝑎 𝑏 A3 a+a=a A4 a a =a A5 (a + ) c = a c + c A6 a + c = (a + c) (a + ) 3) 𝑎 𝑏=𝑎 + 𝑏 4) A7 𝑎 + 𝑏=𝑎 𝑏 a =a A A9 𝑎=𝑎 - prawa przemienności, 2 - prawa łączności 3 - prawa rozdzielności, 4 - prawa de Morgana 𝑎 𝑏 = 𝑎 𝑏 Wyrażenia logiczne Wyrażenia logiczne Zmienną logiczną nazywamy zmienną przyjmującą tylko jedną z dwóch możliwych wartości ( lu ). W teorii układów logicznych wykorzystuje się także dwa standardowe zapisy wyrażeń logicznych. Są to: Wyrażeniem logicznym nazywamy połączenie przy pomocy operatorów logicznych i nawiasów szeregu zmiennych logicznych. KPS - Kanoniczna Postać Sumacyjna, ędąca sumą prostych iloczynów zmiennych logicznych lu ich negacji. W każdym z iloczynów składających się na zapis wyrażenia muszą yć uwzględnione wszystkie argumenty wyrażenia. np.: 𝑎𝑏𝑐 + 𝑎𝑏 𝑐 + 𝑎𝑏 𝑐 Przykłady wyrażeń logicznych: a, x, cd+a(c+), Wyrażenia logiczne mogą yć zapisane dowolnie. xx2(x3+x4) KPI - Kanoniczna Postać Iloczynowa, ędąca iloczynem prostych sum zmiennych logicznych lu ich negacji. Każda z sum, ędących czynnikami KPI, musi uwzględniać wszystkie argumenty wyrażenia, np.: 𝑎+ 𝑏+𝑐+𝑑 𝑎+𝑏+ 𝑐+𝑑 3

4 25--6 Funkcje logiczne Funkcje logiczne przykład Metody opisu funkcji logicznych. Opis słowny. Jawnym tekstem podaje się ilość i znaczenie zmiennych logicznych (argumentów funkcji) i określa jakie wartości przyjmuje dana funkcja dla poszczególnych słów wejściowych. 2. Talica prawdy. Jest to taela, zawierająca wszystkie kominacje A i zmiennych wejściowych i odpowiadające im wartości funkcji logicznych. 3. Wyrażenie. Typowo matematyczny, zwięzły zapis funkcji wykorzystujący symole zmiennych i operatory logiczne. 4. Zapis dziesiętny. Syntetyczny zapis operujący ujętymi w nawiasy kwadratowe numerami słów wejściowych reprezentujących kominacje A i wartości argumentów funkcji. Zapis dziesiętny umożliwia także wskazanie, dla których słów wejściowych wartość funkcji jest nieokreślona (f(a i)=x) - symole tych słów podaje się w nawiasach zwykłych. Opis słowny Funkcja F ma 3 zmienne wejściowe a,, c; dla a= i =c F=, dla a=c= F=, Dla pozostałych kominacji a,, c funkcja jest nieoznaczona. Talica prawdy Wyrażenie a c F F = a c + a c Zapis dziesiętny Zapis dziesiętny warunki działania (kominacje dla których funkcja przyjmuje wartość jeden) F = 4,7 (,3,5,6) ac Zapis dziesiętny warunki niedziałania (kominacje dla których funkcja przyjmuje wartość zero) F =,2 (,3,5,6) ac Funkcje logiczne przykład Kody zerojedynkowe Zapis dziesiętny umożliwia minimalizację funkcji alo podanie wprost odpowiednich wyrażeń logicznych. W tym drugim przypadku otrzymuje się: postać KPS wychodząc z zapisu z postać KPI wychodząc z zapisu z. F = 4 : : a c 7 : : a c 4,7 (,3,5,6) ac F KPS = a c + a c F = : : a + + c 2 : : a + + c F KPI = a + + c,2 (,3,5,6) ac a + + c Naturalny kod inarny (BIN) BIN DEC DEC BIN Kody zerojedynkowe Kody zerojedynkowe Binarny kod dziesiętny (BCD) Kod Grey a BCD DEC DEC BCD

5 25--6 F = acd e + acd e + acd e + acd e + acd e + acd e + acd e + acd e F = cd e a + a + cd e a + a + cd e a + a + cd e a + a a + a = F = cd e + cd e + cd e + cd e F = cd e + e + cd e + e F = cd + cd F = d c + c a + a = a + a = F = acd e + acd e + acd e + acd e + acd e + a + acd e + acd e acd e 29 acd e 3 acd e 2 acd e 2 a 25 a 9 a 24 a BIN DEC a F = d Siatka Karnaugha c d a 3 2 Siatka Karnaugha a KPS => Jedynki F = acd e + acd e + acd e + acd e + acd e + acd e + acd e + acd e acd e 29 acd e 3 acd e 2 acd e 2 a 25 a 9 a 24 a a Licza pól w grupie jest potęgą liczy 2, tj., 2, 4,, 6, 32, 64, są symetryczne względem siatki, Licza grup: o Jak najmniej, o Jak największych, o + eliminacja hazardu (ukł. asynchroniczne) 5

6 25--6 a a a a a a a a !!!!!! a a a a a a a a a a

7 25--6 d a a o d o a d F = d Iloczyn o KPI => Zera F = a + + c + d + e a + + c + d + e a + + c + d + e a + + c + d + e a + + c + d + e a + + c + d + e (a + + c + d + e )(a + + c + d + e ) a + + c + d + e 2 a + + c + d + e a + + c + d + e 3 a + + c + d + e 9 a + + c + d + e 6 a + + c + d + e 22 (a + + c + d + e ) 7 (a + + c + d + e ) 23 a d a a o d o F = + d Suma o 7

8 25--6 Dziękuję za uwagę

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości:

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości: Treść wykładów: Automatyka dr inż. Szymon Surma szymon.surma@polsl.pl pok. 202, tel. +48 32 603 4136 1. Podstawy automatyki 1. Wstęp, 2. Różnice między sygnałem analogowym a cyfrowym, 3. Podstawowe elementy

Bardziej szczegółowo

PODSTAWY DZIAŁANIA UKŁADÓW CYFROWYCH

PODSTAWY DZIAŁANIA UKŁADÓW CYFROWYCH PODSTAWY DZIAŁANIA UKŁADÓW CYFROWYCH Podstawy działania układów cyfrowych Obecnie telekomunikacja i elektronika zostały zdominowane przez układy cyfrowe i przez cyfrowy sposób przetwarzania sygnałów. Cyfrowe

Bardziej szczegółowo

Elektronika i techniki mikroprocesorowe

Elektronika i techniki mikroprocesorowe Elektronika i techniki mikroprocesorowe Technika cyfrowa Podstawowy techniki cyfrowej Katedra Energoelektroniki, Napędu Elektrycznego i Robotyki Wydział Elektryczny, ul. Krzywoustego 2 trochę historii

Bardziej szczegółowo

Elementy cyfrowe i układy logiczne

Elementy cyfrowe i układy logiczne Elementy cyfrowe i układy logiczne Wykład Legenda Zezwolenie Dekoder, koder Demultiplekser, multiplekser 2 Operacja zezwolenia Przykład: zamodelować podsystem elektroniczny samochodu do sterowania urządzeniami:

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie

Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie 1. Wprowadzenie W wielu zagadnieniach dotyczących sterowania procesami technologicznymi niezbędne jest wyznaczenie

Bardziej szczegółowo

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi

Bardziej szczegółowo

Zarządzanie projektami. wykład 1 dr inż. Agata Klaus-Rosińska

Zarządzanie projektami. wykład 1 dr inż. Agata Klaus-Rosińska Zarządzanie projektami wykład 1 dr inż. Agata Klaus-Rosińska 1 DEFINICJA PROJEKTU Zbiór działań podejmowanych dla zrealizowania określonego celu i uzyskania konkretnego, wymiernego rezultatu produkt projektu

Bardziej szczegółowo

Automatyka. Etymologicznie automatyka pochodzi od grec.

Automatyka. Etymologicznie automatyka pochodzi od grec. Automatyka Etymologicznie automatyka pochodzi od grec. : samoczynny. Automatyka to: dyscyplina naukowa zajmująca się podstawami teoretycznymi, dział techniki zajmujący się praktyczną realizacją urządzeń

Bardziej szczegółowo

Wiedza niepewna i wnioskowanie (c.d.)

Wiedza niepewna i wnioskowanie (c.d.) Wiedza niepewna i wnioskowanie (c.d.) Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wnioskowanie przybliżone Wnioskowanie w logice tradycyjnej (dwuwartościowej) polega na stwierdzeniu

Bardziej szczegółowo

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder

Automatyka. Treść wykładów: Multiplekser. Układ kombinacyjny. Demultiplekser. Koder Treść wykładów: utomatyka dr inż. Szymon Surma szymon.surma@polsl.pl http://zawt.polsl.pl/studia pok., tel. +48 6 46. Podstawy automatyki. Układy kombinacyjne,. Charakterystyka,. Multiplekser, demultiplekser,.

Bardziej szczegółowo

dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle" POKL

dr inż. Rafał Klaus Zajęcia finansowane z projektu Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle POKL Technika cyfrowa w architekturze komputerów materiał do wykładu 2/3 dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 29/2 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2015/2016 Etap II rejonowy

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2015/2016 Etap II rejonowy Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 05/06 Etap II rejonowy W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę rozwiązania

Bardziej szczegółowo

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały:

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały: Dr inż Jan Chudzikiewicz Pokój 7/65 Tel 683-77-67 E-mail: jchudzikiewicz@watedupl Materiały: http://wwwitawatedupl/~jchudzikiewicz/ Warunki zaliczenie: Otrzymanie pozytywnej oceny z kolokwium zaliczeniowego

Bardziej szczegółowo

2.Prawo zachowania masy

2.Prawo zachowania masy 2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+

'()(*+,-./01(23/*4*567/8/23/*98:)2(!./+)012+3$%-4#4$5012#-4#4-6017%*,4.!#$!#%&!!!#$%&#'()%*+,-+ '()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu

Bardziej szczegółowo

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6 KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest

Bardziej szczegółowo

I. LOGICZNE STRUKTURY DRZEWIASTE

I. LOGICZNE STRUKTURY DRZEWIASTE I LOGICZNE STRUKTURY DRZEWIASTE Analizując dany problem uzyskuje się zadanie projektowe w postaci pewnego zbioru danych Metoda morfologiczna, która została opracowana w latach 1938-1948 przez amerykańskiego

Bardziej szczegółowo

Technika cyfrowa Synteza układów kombinacyjnych

Technika cyfrowa Synteza układów kombinacyjnych Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1

Bardziej szczegółowo

OPINIA TECHNICZNA NR 33777/4/10-10501 Koparka gąsienicowa CAT 320 B WYCENA WARTOŚCI

OPINIA TECHNICZNA NR 33777/4/10-10501 Koparka gąsienicowa CAT 320 B WYCENA WARTOŚCI Wycena nr 33777/4/10-10501 Koparka gąsienicowa CAT 320 B DEKRA POLSKA Sp. z o.o. Tel. 0 664 421 361 e-mail: bogdan.boguszewski@dekra.pl OPINIA TECHNICZNA NR 33777/4/10-10501 Koparka gąsienicowa CAT 320

Bardziej szczegółowo

UCHWAŁA NR VIII/43/2015 r. RADY MIASTA SULEJÓWEK z dnia 26 marca 2015 r.

UCHWAŁA NR VIII/43/2015 r. RADY MIASTA SULEJÓWEK z dnia 26 marca 2015 r. UCHWAŁA NR VIII/43/2015 r. RADY MIASTA SULEJÓWEK z dnia 26 marca 2015 r. w sprawie określenia regulaminu otwartego konkursu ofert na realizację zadania publicznego z zakresu wychowania przedszkolnego oraz

Bardziej szczegółowo

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest

Bardziej szczegółowo

Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr

Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr I. Wyrażenia wymierne: funkcja wymierna - Dziedzina wyrażenia wymiernego. - Skarcenie

Bardziej szczegółowo

Harmonogramowanie projektów Zarządzanie czasem

Harmonogramowanie projektów Zarządzanie czasem Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Podstawy programowania sterowników GeFanuc

Podstawy programowania sterowników GeFanuc Podstawy programowania sterowników GeFanuc Waldemar Samociuk Zakład Teorii Maszyn i Automatyki Katedra Podstaw Techniki Felin p.110 http://ztmia.ar.lublin.pl/sips waldemar.samociuk@up.lublin,pl Podstawy

Bardziej szczegółowo

ASD - ćwiczenia III. Dowodzenie poprawności programów iteracyjnych. Nieformalnie o poprawności programów:

ASD - ćwiczenia III. Dowodzenie poprawności programów iteracyjnych. Nieformalnie o poprawności programów: ASD - ćwiczenia III Dowodzenie poprawności programów iteracyjnych Nieformalnie o poprawności programów: poprawność częściowa jeżeli program zakończy działanie dla danych wejściowych spełniających założony

Bardziej szczegółowo

analiza drzewa zdarzeń

analiza drzewa zdarzeń Ocena ilościowa ryzyka: Zajęcia 7 analiza drzewa zdarzeń dr inż. Piotr T. Mitkowski piotr.mitkowski@put.poznan.pl Materiały dydaktyczne, prawa zastrzeżone Piotr Mitkowski 1 Plan zajęć Analiza drzewa zdarzeń

Bardziej szczegółowo

Zintegrowane Systemy Zarządzania Biblioteką SOWA1 i SOWA2 SKONTRUM

Zintegrowane Systemy Zarządzania Biblioteką SOWA1 i SOWA2 SKONTRUM Zintegrowane Systemy Zarządzania Biblioteką SOWA1 i SOWA2 SKONTRUM PROGRAM INWENTARYZACJI Poznań 2011 Spis treści 1. WSTĘP...4 2. SPIS INWENTARZA (EWIDENCJA)...5 3. STAŁE UBYTKI...7 4. INTERPRETACJA ZAŁĄCZNIKÓW

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II

Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II 1.Uzupełnienie treści ujętych w działach klasy I. 1.Rozwiązywanie prostych równań i nierówności z wartością bezwzględną

Bardziej szczegółowo

Regulamin Rozgrywania Mistrzostw Polski oraz innych Turniejów Tańca w Show

Regulamin Rozgrywania Mistrzostw Polski oraz innych Turniejów Tańca w Show Regulamin Rozgrywania Mistrzostw Polski oraz innych Turniejów Tańca w Show Warunek: uczestnikami mogą być amatorzy pow.15 lat 1. Style taneczne turniejów tańca w show. 1. 1. Turnieje tańca w show przeprowadzane

Bardziej szczegółowo

Jak usprawnić procesy controllingowe w Firmie? Jak nadać im szerszy kontekst? Nowe zastosowania naszych rozwiązań na przykładach.

Jak usprawnić procesy controllingowe w Firmie? Jak nadać im szerszy kontekst? Nowe zastosowania naszych rozwiązań na przykładach. Jak usprawnić procesy controllingowe w Firmie? Jak nadać im szerszy kontekst? Nowe zastosowania naszych rozwiązań na przykładach. 1 PROJEKTY KOSZTOWE 2 PROJEKTY PRZYCHODOWE 3 PODZIAŁ PROJEKTÓW ZE WZGLĘDU

Bardziej szczegółowo

STA T T A YSTYKA Korelacja

STA T T A YSTYKA Korelacja STATYSTYKA Korelacja Pojęcie korelacji Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Charakteryzując korelację dwóch cech podajemy dwa czynniki: kierunek oraz

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

Test całoroczny z matematyki. Wersja A

Test całoroczny z matematyki. Wersja A Test całoroczny z matematyki klasa IV Wersja A Na kartce masz zapisanych 20 zadań. Opuść więc te, których rozwiązanie okaże się zbyt trudne dla Ciebie. Wrócisz do niego później. W niektórych zadaniach

Bardziej szczegółowo

KARTA PRZEDMIOTU. w języku polskim Statystyka opisowa Nazwa przedmiotu USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW. dr Agnieszka Krzętowska

KARTA PRZEDMIOTU. w języku polskim Statystyka opisowa Nazwa przedmiotu USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW. dr Agnieszka Krzętowska KARTA PRZEDMIOTU Kod przedmiotu E/O/SOP w języku polskim Statystyka opisowa Nazwa przedmiotu w języku angielskim Statistics USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma studiów Poziom

Bardziej szczegółowo

KRYTERIA OCENIANIA WYPOWIEDZI PISEMNYCH KRÓTKA I DŁUŻSZA FORMA UŻYTKOWA

KRYTERIA OCENIANIA WYPOWIEDZI PISEMNYCH KRÓTKA I DŁUŻSZA FORMA UŻYTKOWA KRYTERIA OCENIANIA WYPOWIEDZI PISEMNYCH KRÓTKA I DŁUŻSZA FORMA UŻYTKOWA 1. Krótka forma użytkowa 1.1. Kryteria oceniania 1.2. Uściślenie kryteriów oceniania Treść Poprawność językowa 2. Dłuższa forma użytkowa

Bardziej szczegółowo

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie: WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D

Bardziej szczegółowo

ANALOGOWE UKŁADY SCALONE

ANALOGOWE UKŁADY SCALONE ANALOGOWE UKŁADY SCALONE Ćwiczenie to ma na celu zapoznanie z przedstawicielami najważniejszych typów analogowych układów scalonych. Będą to: wzmacniacz operacyjny µa 741, obecnie chyba najbardziej rozpowszechniony

Bardziej szczegółowo

MATEMATYKA 9. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 FUNKCJE WYKŁADNICZE, LOGARYTMY

MATEMATYKA 9. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 FUNKCJE WYKŁADNICZE, LOGARYTMY INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 9 FUNKCJE WYKŁADNICZE, LOGARYTMY Dla dowolnej liczby a > 0, liczby

Bardziej szczegółowo

Systemy mikroprocesorowe - projekt

Systemy mikroprocesorowe - projekt Politechnika Wrocławska Systemy mikroprocesorowe - projekt Modbus master (Linux, Qt) Prowadzący: dr inż. Marek Wnuk Opracował: Artur Papuda Elektronika, ARR IV rok 1. Wstępne założenia projektu Moje zadanie

Bardziej szczegółowo

Multiplekser, dekoder, demultiplekser, koder.

Multiplekser, dekoder, demultiplekser, koder. Opis ćwiczenia Multiplekser, dekoder, demultiplekser, koder. korzystując n-wejściową bramkę logiczną OR oraz n dwuwejściowych bramek N moŝna zbudować układ (rysunki: oraz 2), w którym poprzez podanie odpowiedniej

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

Badania skuteczności działania filtrów piaskowych o przepływie pionowym z dodatkiem węgla aktywowanego w przydomowych oczyszczalniach ścieków

Badania skuteczności działania filtrów piaskowych o przepływie pionowym z dodatkiem węgla aktywowanego w przydomowych oczyszczalniach ścieków Uniwersytet Rolniczy im. Hugona Kołł łłątaja w Krakowie, Wydział Inżynierii Środowiska i Geodezji Katedra Inżynierii Sanitarnej i Gospodarki Wodnej K r z y s z t o f C h m i e l o w s k i Badania skuteczności

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013. Forma studiów: Niestacjonarne Kod kierunku: 11.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013. Forma studiów: Niestacjonarne Kod kierunku: 11. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Instytut Techniczny Karta przedmiotu obowiązuje studentów rozpoczynających studia w roku akademickim 01/013 Kierunek studiów: Informatyka Profil: Ogólnoakademicki

Bardziej szczegółowo

Rozkład materiału klasa 1BW

Rozkład materiału klasa 1BW Rozkład materiału klasa BW wg podręcznika Matematyka kl. wyd. Nowa Era 2h x 38 tyg. = 76h lekcyjnych LICZBYRZECZYWISTE (7 godz.). Zapoznanie z programem nauczania, wymaganiami edukacyjnymi, zasadami BHP

Bardziej szczegółowo

Logika I. Wykład 2. Działania na zbiorach

Logika I. Wykład 2. Działania na zbiorach Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 2. Działania na zbiorach 1 Suma zbiorów Niech A i B będą dowolnymi zbiorami. Definicja 2.1. (suma zbiorów) Suma zbiorów

Bardziej szczegółowo

Część 2. Funkcje logiczne układy kombinacyjne

Część 2. Funkcje logiczne układy kombinacyjne Część 2 Funkcje logiczne układy kombinacyjne Zapis funkcji logicznych układ funkcjonalnie pełny Arytmetyka Bool a najważniejsze aksjomaty i tożsamości Minimalizacja funkcji logicznych Układy kombinacyjne

Bardziej szczegółowo

Program kształcenia dla określonego kierunku i poziomu kształcenia oraz profilu lub profili I. POSTANOWIENIA OGÓLNE II. PROGRAM KSZTAŁCENIA

Program kształcenia dla określonego kierunku i poziomu kształcenia oraz profilu lub profili I. POSTANOWIENIA OGÓLNE II. PROGRAM KSZTAŁCENIA Załącznik Nr 1 do Uchwały Nr 152/2012/2013 Senatu UKW z dnia 25 września 2013 r. Wytyczne dla rad podstawowych jednostek organizacyjnych w zakresie dokumentacji programów kształcenia dla studiów pierwszego

Bardziej szczegółowo

Regulamin wynajmu lokali użytkowych. Międzyzakładowej Górniczej Spółdzielni Mieszkaniowej w Jaworznie tekst jednolity

Regulamin wynajmu lokali użytkowych. Międzyzakładowej Górniczej Spółdzielni Mieszkaniowej w Jaworznie tekst jednolity Regulamin wynajmu lokali użytkowych Międzyzakładowej Górniczej Spółdzielni Mieszkaniowej w Jaworznie tekst jednolity Podstawa prawna: 48 i 92 ust.1 pkt 1.1 Statutu Sp-ni. I. Postanowienia ogólne. 1. Lokale

Bardziej szczegółowo

Kategoria środka technicznego

Kategoria środka technicznego ZRSMiU (P) Automobilklub Nowy Świat Sp. z o.o. o/ Poznań 61-625 Poznań, ul. Naramowicka 68 tel. (061) 826 57 69, faks (061) 826 57 69 Rzeczoznawca: Zbigniew Rychter UWAGA: Ze względu na przeznaczenie dokumentu

Bardziej szczegółowo

ZAŁĄCZNIK NR 1. Zakres wiedzy i umiejętności oraz wykaz proponowanej bibliografii

ZAŁĄCZNIK NR 1. Zakres wiedzy i umiejętności oraz wykaz proponowanej bibliografii ZAŁĄCZNIK NR 1 Zakres wiedzy i umiejętności oraz wykaz proponowanej bibliografii I. Obszary umiejętności sprawdzane na kaŝdym etapie Konkursu 1. Wykorzystanie i tworzenie informacji. Uczeń: 1) interpretuje

Bardziej szczegółowo

Szkolenie wstępne InstruktaŜ stanowiskowy ELEKTRYK. opracowanie: Henryk Batarowski pod red. Bogdana Rączkowskiego

Szkolenie wstępne InstruktaŜ stanowiskowy ELEKTRYK. opracowanie: Henryk Batarowski pod red. Bogdana Rączkowskiego Szkolenie wstępne InstruktaŜ stanowiskowy ELEKTRYK opracowanie: Henryk Batarowski pod red. Bogdana Rączkowskiego Zgodnie z rozporządzeniem Ministra Gospodarki i Pracy z dnia 27 lipca 2004 r. w sprawie

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik górnictwa podziemnego 311[15] Zadanie egzaminacyjne 1

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik górnictwa podziemnego 311[15] Zadanie egzaminacyjne 1 Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik górnictwa podziemnego 311[15] Zadanie egzaminacyjne 1 Uwaga! Zdający rozwiązywał jedno z dwóch zadań. 1 2 3 4 5 6 Zadanie egzaminacyjne

Bardziej szczegółowo

Organizator badania biegłości ma wdrożony system zarządzania wg normy PN-EN ISO/IEC 17025:2005.

Organizator badania biegłości ma wdrożony system zarządzania wg normy PN-EN ISO/IEC 17025:2005. 1. Nazwa i adres organizatora badania biegłości Pracownia Aerozoli ul. św. Teresy od Dzieciątka Jezus 8 91-348 Łódź 1/6 Organizator badania biegłości ma wdrożony system zarządzania wg normy PN-EN ISO/IEC

Bardziej szczegółowo

Zagadnienia transportowe

Zagadnienia transportowe Mieczysław Połoński Zakład Technologii i Organizacji Robót Inżynieryjnych Wydział Inżynierii i Kształtowania Środowiska SGGW Zagadnienia transportowe Z m punktów odprawy ma być wysłany jednorodny produkt

Bardziej szczegółowo

TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna)

TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) SCENARIUSZ ZAJĘĆ Z MATEMATYKI DLA KLASY III GIMNAZJUM AUTOR : HANNA MARCINKOWSKA TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) Szkoła z klasą 2.0 Zastosowanie technologii informacyjnej

Bardziej szczegółowo

EKONOMETRIA II SYLABUS A. Informacje ogólne

EKONOMETRIA II SYLABUS A. Informacje ogólne EKONOMETRIA II SYLABUS A. Informacje ogólne Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów /semestr Wymagania wstępne (tzw. sekwencyjny system zajęć

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

Załącznik Nr 2 do Zarządzenia nr 1/2014 Dyrektora PUP w Strzyżowie z dnia 15.01.2014r.

Załącznik Nr 2 do Zarządzenia nr 1/2014 Dyrektora PUP w Strzyżowie z dnia 15.01.2014r. Załącznik Nr 2 do Zarządzenia nr 1/2014 Dyrektora PUP w Strzyżowie z dnia 15.01.2014r. REGULAMIN ORGANIZACJI SZKOLEŃ DLA OSÓB BEZROBOTNYCH POSZUKUJĄCYCH PRACY NIEPEŁNOSPRAWNYCH I INNYCH UPRAWNIONYCH OSÓB

Bardziej szczegółowo

Kategoria środka technicznego

Kategoria środka technicznego DEKRA Polska - Centrala tel. (022) 577 36 13, faks (022) 577 36 36 Rzeczoznawca: Grzegorz Charko UWAGA: Ze względu na przeznaczenie dokumentu usunięto w nim wszelkie informacje dotyczące wartości pojazdu,

Bardziej szczegółowo

Projekt edukacyjny z informatyki

Projekt edukacyjny z informatyki Zespół Szkół w Ostrowie Projekt edukacyjny z informatyki Marek Zawadzki 2011-11-01 PROJEKT EDUKACYJNY Z INFORMATYKI Temat: Moja szkoła kalendarz oraz prezentacja lub plakat lub ulotka informacyjna. Opiekun:

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA. z Matematyki. Krysztof Jerzy

PRZEDMIOTOWY SYSTEM OCENIANIA. z Matematyki. Krysztof Jerzy PRZEDMIOTOWY SYSTEM OCENIANIA z Matematyki Krysztof Jerzy 1 Matematyka jest jednym z głównych przedmiotów nauczania w szkole, między innymi, dlatego, że służy stymulowaniu rozwoju intelektualnego uczniów.

Bardziej szczegółowo

(86) Data i numer zgłoszenia międzynarodowego: 06.03.2002, PCT/DE02/000790 (87) Data i numer publikacji zgłoszenia międzynarodowego:

(86) Data i numer zgłoszenia międzynarodowego: 06.03.2002, PCT/DE02/000790 (87) Data i numer publikacji zgłoszenia międzynarodowego: RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 206300 (21) Numer zgłoszenia: 356960 (22) Data zgłoszenia: 06.03.2002 (86) Data i numer zgłoszenia międzynarodowego:

Bardziej szczegółowo

Podstawa prawna: Ustawa z dnia 15 lutego 1992 r. o podatku dochodowym od osób prawnych (t. j. Dz. U. z 2000r. Nr 54, poz. 654 ze zm.

Podstawa prawna: Ustawa z dnia 15 lutego 1992 r. o podatku dochodowym od osób prawnych (t. j. Dz. U. z 2000r. Nr 54, poz. 654 ze zm. Rozliczenie podatników podatku dochodowego od osób prawnych uzyskujących przychody ze źródeł, z których dochód jest wolny od podatku oraz z innych źródeł Podstawa prawna: Ustawa z dnia 15 lutego 1992 r.

Bardziej szczegółowo

Regulamin programu lojalnościowego Bezpieczna Adrenalina w Szkole

Regulamin programu lojalnościowego Bezpieczna Adrenalina w Szkole Regulamin programu lojalnościowego Bezpieczna Adrenalina w Szkole 1. Postanowienia wstępne 1. Program lojalnościowy jest prowadzony pod nazwą Bezpieczna Adrenalina w Szkole. 2. Program lojalnościowy Bezpieczna

Bardziej szczegółowo

Jakie są te obowiązki wg MSR 41 i MSR 1, a jakie są w tym względzie wymagania ustawy o rachunkowości?

Jakie są te obowiązki wg MSR 41 i MSR 1, a jakie są w tym względzie wymagania ustawy o rachunkowości? Jakie są te obowiązki wg MSR 41 i MSR 1, a jakie są w tym względzie wymagania ustawy o rachunkowości? Obowiązki sprawozdawcze według ustawy o rachunkowości i MSR 41 Przepisy ustawy o rachunkowości w zakresie

Bardziej szczegółowo

Projektowanie bazy danych

Projektowanie bazy danych Projektowanie bazy danych Pierwszą fazą tworzenia projektu bazy danych jest postawienie definicji celu, założeo wstępnych i określenie podstawowych funkcji aplikacji. Każda baza danych jest projektowana

Bardziej szczegółowo

KONKURSY MATEMATYCZNE. Treść zadań

KONKURSY MATEMATYCZNE. Treść zadań KONKURSY MATEMATYCZNE Treść zadań Wskazówka: w każdym zadaniu należy wskazać JEDNĄ dobrą odpowiedź. Zadanie 1 Wlewamy 1000 litrów wody do rurki w najwyższym punkcie systemu rurek jak na rysunku. Zakładamy,

Bardziej szczegółowo

INSTRUKCJA WYPEŁNIANIA SPRAWOZDANIA CZĘŚCIOWEGO LUB KOŃCOWEGO

INSTRUKCJA WYPEŁNIANIA SPRAWOZDANIA CZĘŚCIOWEGO LUB KOŃCOWEGO INSTRUKCJA WYPEŁNIANIA SPRAWOZDANIA CZĘŚCIOWEGO LUB KOŃCOWEGO z realizacji zadania publicznego realizowanego na mocy Ustawy o działalności pożytku publicznego i o wolontariacie (Dz. U. Nr 96, poz. 873

Bardziej szczegółowo

Temat 2. Synteza układów kombinacyjnych z bramek logicznych

Temat 2. Synteza układów kombinacyjnych z bramek logicznych Temat 2. Synteza układów kombinacyjnych z bramek logicznych Spis treści do tematu 2 2.. Wprowadzenie 2.2. Metoda tablic Karnaugha - przykład pełnego projektu. 2.3. Metoda Quine a-mcluskey a(q-m) 2.4. Literatura

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Rozdzia 5. Uog lniona metoda najmniejszych kwadrat w : ::::::::::::: Podstawy uog lnionej metody najmniejszych kwadrat w :::::: Zastos

Rozdzia 5. Uog lniona metoda najmniejszych kwadrat w : ::::::::::::: Podstawy uog lnionej metody najmniejszych kwadrat w :::::: Zastos Spis tre ci PRZEDMOWA :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 11 CZ I. Wprowadzenie do modelowania ekonometrycznego ::::::::::: 13 Rozdzia 1. Modelowanie ekonometryczne ::::::::::::::::::::::::::::::

Bardziej szczegółowo

1. Podstawy budowania wyra e regularnych (Regex)

1. Podstawy budowania wyra e regularnych (Regex) Dla wi kszo ci prostych gramatyk mo na w atwy sposób napisa wyra enie regularne które b dzie s u y o do sprawdzania poprawno ci zda z t gramatyk. Celem niniejszego laboratorium b dzie zapoznanie si z wyra

Bardziej szczegółowo

STEROWNIKI NANO-PLC NA PRZYKŁADZIE STEROWNIKA LOGO!

STEROWNIKI NANO-PLC NA PRZYKŁADZIE STEROWNIKA LOGO! STEROWNIKI NANO-PLC NA PRZYKŁADZIE STEROWNIKA LOGO! SPIS TREŚCI STEROWNIKI NANO-PLC BUDOWA STEROWNIKA NANO-PLC PARAMETRY LOGO! OPROGRAMOWANIE NARZĘDZIOWE ZESTAW FUNKCJI W LOGO! PRZYKŁADY PROGRAMÓW STEROWNIKI

Bardziej szczegółowo

KRYTERIA WYBORU INSTYTUCJI SZKOLENIOWEJ OBOWIĄZUJĄCE W POWIATOWYM URZĘDZIE PRACY W USTRZYKACH DOLNYCH 1 I. POSTANOWIENIA OGÓLNE

KRYTERIA WYBORU INSTYTUCJI SZKOLENIOWEJ OBOWIĄZUJĄCE W POWIATOWYM URZĘDZIE PRACY W USTRZYKACH DOLNYCH 1 I. POSTANOWIENIA OGÓLNE Załącznik do Zarządzenia Nr 8/2014 Dyrektora Powiatowego Urzędu Pracy w Ustrzykach Dolnych z dnia 05 czerwca 2014 r. KRYTERIA WYBORU INSTYTUCJI SZKOLENIOWEJ OBOWIĄZUJĄCE W POWIATOWYM URZĘDZIE PRACY W USTRZYKACH

Bardziej szczegółowo

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017 i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI Kryteria ocen 1. Wymagania edukacyjne na poszczególne oceny: Ocenę celującą otrzymuje uczeń, który: Posiadł wiedzę i umiejętności obejmujące pełny

Bardziej szczegółowo

Statystyka matematyczna 2015/2016

Statystyka matematyczna 2015/2016 Statystyka matematyczna 2015/2016 nazwa przedmiotu SYLABUS B. Informacje szczegółowe Elementy składowe Opis sylabusu Nazwa przedmiotu Statystyka matematyczna Kod przedmiotu 0600-FS2-2SM Nazwa jednostki

Bardziej szczegółowo

Uchwała nr 1/2013 Rady Rodziców Szkoły Podstawowej nr 59 w Poznaniu z dnia 30 września 2013 roku w sprawie Regulaminu Rady Rodziców

Uchwała nr 1/2013 Rady Rodziców Szkoły Podstawowej nr 59 w Poznaniu z dnia 30 września 2013 roku w sprawie Regulaminu Rady Rodziców Uchwała nr 1/2013 Rady Rodziców Szkoły Podstawowej nr 59 w Poznaniu z dnia 30 września 2013 roku w sprawie Regulaminu Rady Rodziców 1. Na podstawie art.53 ust.4 ustawy z dnia 7 września 1991 r. o systemie

Bardziej szczegółowo

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład)

Układy logiczne. Wstęp doinformatyki. Funkcje boolowskie (1854) Funkcje boolowskie. Operacje logiczne. Funkcja boolowska (przykład) Wstęp doinformatyki Układy logiczne komputerów kombinacyjne sekwencyjne Układy logiczne Układy kombinacyjne Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 synchroniczne asynchroniczne Wstęp

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 4 BADANIE BRAMEK LOGICZNYCH A. Cel ćwiczenia. - Poznanie zasad logiki binarnej. Prawa algebry Boole

Bardziej szczegółowo

3S TeleCloud - Aplikacje Instrukcja użytkowania usługi 3S KONTAKTY

3S TeleCloud - Aplikacje Instrukcja użytkowania usługi 3S KONTAKTY \ 3S TeleCloud - Aplikacje Instrukcja użytkowania usługi 3S KONTAKTY SPIS TREŚCI 1. LOGOWANIE DO APLIKACJI... 3 2. WYGLĄD OKNA... 4 4. MOJE KONTAKTY... 5 4.1. KONTKATY PUBLICZNE... 6 4.1.1. EDYCJA KONTAKTU...

Bardziej szczegółowo

Wykład 2. Budowa komputera. W teorii i w praktyce

Wykład 2. Budowa komputera. W teorii i w praktyce Wykład 2 Budowa komputera W teorii i w praktyce Generacje komputerów 0 oparte o przekaźniki i elementy mechaniczne (np. Z3), 1 budowane na lampach elektronowych (np. XYZ), 2 budowane na tranzystorach (np.

Bardziej szczegółowo

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik ochrony fizycznej osób i mienia 515[01]

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik ochrony fizycznej osób i mienia 515[01] Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik ochrony fizycznej osób i mienia 515[01] 1 2 3 4 5 6 Efektem rozwiązania zadania egzaminacyjnego przez zdającego była praca 7 egzaminacyjna,

Bardziej szczegółowo

ZAPRASZA DO SKŁADNIA OFERT

ZAPRASZA DO SKŁADNIA OFERT Tytuł projektu: Przygotowanie Planu Rozwoju Eksportu przez Godzikowice, dnia 18.11.2015 r. Zapytanie ofertowe z siedzibą przy ul. Stalowej 7-9 w Godzikowicach (kod pocztowy ), Tel. 71 313 95 18, NIP: 9121654900,

Bardziej szczegółowo

Warszawa, dnia 11 marca 2016 r. Poz. 327 ROZPORZĄDZENIE. z dnia 7 marca 2016 r.

Warszawa, dnia 11 marca 2016 r. Poz. 327 ROZPORZĄDZENIE. z dnia 7 marca 2016 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 11 marca 2016 r. Poz. 327 ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY I Budownictwa 1) z dnia 7 marca 2016 r. w sprawie numeru ewidencyjnego ośrodka szkolenia

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: ZZP-2-203-MK-n Punkty ECTS: 2. Poziom studiów: Studia II stopnia Forma i tryb studiów: Niestacjonarne

Rok akademicki: 2013/2014 Kod: ZZP-2-203-MK-n Punkty ECTS: 2. Poziom studiów: Studia II stopnia Forma i tryb studiów: Niestacjonarne Nazwa modułu: Marketing międzynarodowy Rok akademicki: 2013/2014 Kod: ZZP-2-203-MK-n Punkty ECTS: 2 Wydział: Zarządzania Kierunek: Zarządzanie Specjalność: Marketing Poziom studiów: Studia II stopnia Forma

Bardziej szczegółowo

JĘZYK ROSYJSKI POZIOM ROZSZERZONY

JĘZYK ROSYJSKI POZIOM ROZSZERZONY EGZAMIN MATURALNY W ROKU SZKOLNYM 2013/2014 JĘZYK ROSYJSKI POZIOM ROZSZERZONY ROZWIĄZANIA ZAAŃ I SCHEMAT PUNKTOWANIA MAJ 2014 ZAANIA OTWARTE Zadanie 1. Przetwarzanie tekstu (0,5 pkt) 1.1. туристов 1.2.

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA DOTYCZĄCA POSTĘPOWANIA CZĄSTKOWEGO O UDZIELENIE ZAMÓWIENIA PUBLICZNEGO

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA DOTYCZĄCA POSTĘPOWANIA CZĄSTKOWEGO O UDZIELENIE ZAMÓWIENIA PUBLICZNEGO ODDZIAŁ TERENOWY W SZCZECINIE FILIA W KOSZALINIE SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA DOTYCZĄCA POSTĘPOWANIA CZĄSTKOWEGO O UDZIELENIE ZAMÓWIENIA PUBLICZNEGO na: " Zawarcie umów cząstkowych na usługi

Bardziej szczegółowo

Wykład nr 1 Techniki Mikroprocesorowe. dr inż. Artur Cichowski

Wykład nr 1 Techniki Mikroprocesorowe. dr inż. Artur Cichowski Wykład nr 1 Techniki Mikroprocesorowe dr inż. Artur Cichowski ix jy i j {0,1} {0,1} Dla układów kombinacyjnych stan dowolnego wyjścia y i w danej chwili czasu zależy wyłącznie od aktualnej kombinacji stanów

Bardziej szczegółowo

Regulamin programu "Kredyt Hipoteczny Banku BPH. Obowiązuje od dnia: 26.11.2014 r.

Regulamin programu Kredyt Hipoteczny Banku BPH. Obowiązuje od dnia: 26.11.2014 r. Regulamin programu "Kredyt Hipoteczny Banku BPH Obowiązuje od dnia: 26.11.2014 r. 1 Rozdział I Postanowienia ogólne 1 Zakres Przedmiotowy Niniejszy Regulamin określa zasady ustalania warunków cenowych

Bardziej szczegółowo