DLACZEGO JEST TAK MAŁO SYNONIMÓW?
|
|
- Edward Urban
- 7 lat temu
- Przeglądów:
Transkrypt
1 DLACZEGO JEST TAK MAŁO SYNONIMÓW? Homonimy i synonimy w grze w nazywanie Dorota Lipowska Zakład Logiki Stosowanej Instytut Językoznawstwa UAM
2 Modelowanie komputerowe staje się coraz ważniejszym narzędziem badania ewolucji języka. Podstawowe założenie: język to złożony system adaptacyjny, powstający na bazie lokalnych interakcji między jego użytkownikami, stopniowo komplikujący się w trakcie rozwoju zgodnego z zasadami ewolucji i samo-organizacji. S. Pinker i P. Bloom (1990) Natural language and natural selection 3
3 Korzyść słuchacza: zdobywa informacje. Dlaczego opłaca się mówić? Dlaczego (stosunkowo) rzadko kłamiemy? dobór krewniaczy wzajemny altruizm zdobywanie pozycji seks manipulowanie 4
4 James R. Hurford (2003) Why synonymy is rare: Fitness is in the speaker model: trzy genotypy agentów konkurujące przez wiele pokoleń, aż do zdominowania populacji przez jeden z nich algorytm genetyczny preferował 1. albo sukces komunikacyjny 2. albo sukces interpretacyjny 5
5 1. powstaje język podobny do naturalnego: synonimy są rzadkie, występują natomiast homonimy 2. sytuacja odwrotna nie występująca w językach naturalnych homonimy są rzadkie, występują zaś synonimy Humans evolved to be well adapted as senders of messages; accurate reception of messages was less important We may be primarily speakers, and secondarily listeners. 6
6 Clark: wrodzona tendencja człowieka do szukania i tworzenia nowych znaczeń raczej niż akceptowania tego samego znaczenia dla różnych form. _ Markman: dzieci zakładają, że znaczenia żadnych dwóch słów nie nakładają się. _ Wexler formalne zasady akwizycji języka: Zasada Jednoznaczności ci powstrzymuje dziecko przed przyswajaniem więcej niż jednej formy dla danego znaczenia. _ 7
7 Homonimy są w języku naturalnym znacznie częstsze niż synonimy, choć synonimia nie wpływa na efektywność komunikacji, podczas gdy homonimia może ją pogarszać! Ta asymetria wydaje nam się ważną cechą, typową dla języków naturalnych, która może być wykorzystana jako test dla różnych komputerowych modeli rozwoju języka. 8
8 Gra w nazywanie dwóch agentów n obiektów Homonimia i synonimia homonimia z upływem czasu nie znika ( dynamiczna pułapka ) rola synonimii wyraźnie maleje (cecha przemijająca) Asymetria między homonimią a synonimią może e być więc c wytłumaczona w ramach dość prostego modelu gry w nazywanie, bez odwoływania się do argumentu ewolucyjnego Hurforda (słuchacz czerpie większe korzyści z konwersacji niż mówca). 9
9 Luc Steels (1995) model naming game: grupa komunikujących się ze sobą agentów próbuje ustalić wspólne słownictwo dla pewnej liczby obiektów (zwykle 1). Tylko wymiana kulturowa (w ramach jednej generacji). Stan lingwistycznej zgodności (linguistic coherence). Iterated Learning Model interakcje międzypokoleniowe. 10
10 Dwa agenty: mówca i słuchacz (na zmianę) Mówca wybiera obiekt, następnie reprezentujące go słowo i komunikuje je słuchaczowi. Słuchacz odgaduje znaczenie słowa. Sprawdzenie sukces lub porażka determinują modyfikacje słownika 11
11 Każdy agent z każdym z n obiektów wiąże pewien zestaw odpowiadających mu słów (maksymalnie l). Każdemu słowu przypisana jest waga w. Słowa to liczby całkowite z przedziału 1,r (parametr r określa wielkość dostępnej przestrzeni werbalnej). 12
12 Mówca losowo wybiera obiekt z odpowiadającej mu listy słów wybiera komunikowane słowo x (losowanie ruletkowe względem wagi słów) Słuchacz dla każdej listy (k=1,n) oblicza miarę jej podobieństwa do usłyszanego słowa x: w sk(x) = 1 i w ε+x -x ε i i i zapewnia skończoność miary s k i 13
13 traktując obliczone miary jako wagi, wybiera w losowaniu ruletkowym listę (obiekt) Modyfikacja list jeśli lista słuchacza ma ten sam numer co mówcy (sukces), to obaj agenci zwiększają wagi komunikowanego słowa (jeśli słuchacz nie ma go na danej liście, to dodaje je z wagą jednostkową) w przeciwnym przypadku (porażka) mówca zmniejsza wagę słowa, a słuchacz (na liście o numerze wybranym przez mówcę) zwiększa jego wagę lub w przypadku jego braku dodaje je reinforcement learning approach 14
14 Wpływ szumu z prawdopodobieństwem p komunikowane jest słowo x c = x+η -a η a (a - amplituda szumu, η - liczba losowa) z prawdopodobieństwem 1-p komunikowane jest słowo x. 15
15 n=4, l=3, k=2 Mówca Słuchacz SUKCES 16
16 Mówca Słuchacz PORAŻKA 17
17 Mówca Słuchacz SUKCES W OBECNOŚCI SZUMU 18
18 parametr n l r ε p, a opis i wartości liczba obiektów (100 n 1000) maksymalna liczba słów odpowiadających obiektowi (5 l 20) słowa to liczby naturalne nie przekraczające r (500 r 10000) zapewnia skończoność miary podobieństwa ( ) parametry opisujące szum (0 p 0.05, 0 a 10) ε 19
19 OBLICZENIA NUMERYCZNE Konfiguracja początkowa: każdy agent ma na każdej liście jedno słowo wybrane losowo i o wadze jednostkowej. Jednostka czasu 2n prób komunikacji. Agenci korelują swoje listy, osiągając dość duży sukces komunikacyjny. 20
20 Stosunek liczby sukcesów do liczby wszystkich prób komunikacji (w funkcji czasu) dla n=500, l=10, r=1000 _ 21
21 Liczba różnych najcięższych słów (w funkcji czasu) dla n=500, l=10, r=1000 _ 22
22 Stosunek liczby wypowiedzi przy użyciu słów drugich co do wagi do liczby wszystkich prób komunikacji (w funkcji czasu) dla n=500, l=10, r=1000 _ 23
23 r= Dystrybucja słów o największej wadze (oś pozioma) i drugich co do wagi (oś pionowa) dla obu agentów ( i +) dla n=500, t=1000, r=1000 _ r= 24
24 HOMONIMIA i SYNONIMIA Homonim słowo, które może być kojarzone z więcej niż jednym obiektem Synonim słowo przypisane obiektowi, z którym skojarzone jest więcej niż jedno słowo Elementy probabilistyczne modelu 25
25 HOMONIM słowo, które ze stosunkowo dużym prawdopodobieństwem może oznaczać różne obiekty. Taka sytuacja występuje zwykle, gdy słowo wybrane przez mówcę występuje na więcej niż jednej liście słuchacza jako najcięższe. Miarą homonimii języka jest więc liczba różnych najcięższych słów: im jest mniejsza, tym częstsze są homonimy. 26
26 SYNONIMY słowa, które z dość dużym prawdopodobieństwem mogą odnosić się do tego samego obiektu. Taka sytuacja występuje zwykle, gdy oba agenty na tej samej liście mają te same (lub bardzo zbliżone) najcięższe słowa oraz słowa drugie co do wagi
27 Liczba różnych słów o największej wadze dla n=500, l=10, ε=10-5 w funkcji czasu ( -wartości dla słów wybranych losowo) _ 28
28 Stosunek liczby sukcesów do liczby wszystkich prób komunikacji (w funkcji czasu) przy użyciu słów najcięższych i drugich co do wagi _ 29
29 Homonimia chociaż rzadka jednak nie znika (stała cecha języka). Po okresie początkowym częstotliwość wypowiedzi homonimicznych utrzymuje się na stałym poziomie. Częstotliwość wypowiedzi synonimicznych maleje z czasem. 30
30 Przewidywania modelu dla języków naturalnych (synonimia w nich będzie zjawiskiem rzadkim) są zgodne z obserwacjami. Objaśnienie tego zjawiska zaproponowane przez Hurforda: wywołuje je asymetria między korzyściami ewolucyjnymi mówcy i słuchacza. Nasz model znacznie prostszy, bez efektów ewolucyjnych, rozwój języka w ramach jednej generacji (tylko mechanizmy kulturowe). 31
31 SZUM a DYSTRYBUCJA z prawdopodobieństwem p komunikowane jest słowo x c = x+η -a η a (a - amplituda szumu, η -liczba losowa) Już przy p=0 następuje redystrybucja słów najcięższych redukująca homonimię. Szum istotnie wpływa na dalszy wzrost tej redystrybucji słów. 32
32 N(d) średnia liczba odległości d między sąsiednimi słowami najcięższymi (n=500, r=1000, l=10, ε=10-5 ) _ 33
33 r= r= Dystrybucja słów o największej wadze (oś pozioma) i drugich co do wagi (oś pionowa) dla obu agentów ( i +) dla n=500, t=1000, r=1000 _ 34
34 Prawdopodobnie szum odegrał ważną rolę w procesie ewolucji języka: Wpłynął korzystnie na redystrybucję słów w obrębie dostępnej przestrzeni werbalnej. Zredukował liczbę homonimów. Zredukował liczbę synonimów. 35
35 W przyszłości Model w wersji wieloagentowej? Model z ewolucją agentów? Model z interakcją danego języka z innymi? 36
36 DZIĘKUJĘ
37 38
WSPÓLNOTA KOMUNIKACYJNA AGENTÓW
WSPÓLNOTA KOMUNIKACYJNA AGENTÓW Modelowanie ewolucji języka DOROTA LIPOWSKA Zakład Logiki Stosowanej Instytut Językoznawstwa UAM symulacje komputerowe a problem powstania i ewolucji języka symulacje wieloagentowe
Powstawanie i samoorganizacja języka pomiędzy agentami
Powstawanie i samoorganizacja języka pomiędzy agentami Damian Łoziński Wydział Matematyki, Informatyki i Mechaniki UW 13 października 2009 amian Łoziński (Wydział Matematyki, Informatyki Powstawanie i
Gra w nazywanie jako model ewolucji języka
Gra w nazywanie jako model ewolucji języka Dorota Lipowska Zakład Logiki Stosowanej Instytut Językoznawstwa UAM Trochę historii Teorie religijne zarówno w kulturach mono- jak i politeistycznych Teorie
Czy znaczna niestabilność postrzegania atrakcyjności twarzy podważa adaptacjonistyczną interpretację tego zjawiska?
Czy znaczna niestabilność postrzegania atrakcyjności twarzy podważa adaptacjonistyczną interpretację tego zjawiska? Krzysztof Kościński Zakład Ekologii Populacyjnej Człowieka, UAM Charles Darwin, 1871,
Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów
Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych
Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 10 listopada 2016 Proseminarium licencjackie
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Algorytmy i struktury danych. Wykład 4 Tablice nieporządkowane i uporządkowane
Algorytmy i struktury danych Wykład 4 Tablice nieporządkowane i uporządkowane Tablice uporządkowane Szukanie binarne Szukanie interpolacyjne Tablice uporządkowane Szukanie binarne O(log N) Szukanie interpolacyjne
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
Algorytmy genetyczne jako metoda wyszukiwania wzorców. Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż.
Algorytmy genetyczne jako metoda wyszukiwania wzorców Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż. Marcin Borkowski Krótko i na temat: Cel pracy Opis modyfikacji AG Zastosowania
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Algorytmy metaheurystyczne Wykład 6. Piotr Syga
Algorytmy metaheurystyczne Wykład 6 Piotr Syga 10.04.2017 Wprowadzenie Inspiracje Wprowadzenie ACS idea 1 Zaczynamy z pustym rozwiązaniem początkowym 2 Dzielimy problem na komponenty (przedmiot do zabrania,
Pobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
Algorytmy genetyczne w interpolacji wielomianowej
Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego
Asocjacyjna reprezentacja danych i wnioskowanie
Asocjacyjna reprezentacja danych i wnioskowanie Wykorzystane technologie JetBrains PyCharm 504 Python 35 Struktura drzewa GRAPH PARAM PARAM ID1 ID2 ID_N params params params param_name_1: param_value_1
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils
GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0
Rachunek prawdopodobieństwa- wykład 2
Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet
Modelowanie wieloskalowe. Automaty Komórkowe - podstawy
Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
11. Gry Macierzowe - Strategie Czyste i Mieszane
11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
OpenAI Gym. Adam Szczepaniak, Kamil Walkowiak
OpenAI Gym Adam Szczepaniak, Kamil Walkowiak Plan prezentacji Programowanie agentowe Uczenie przez wzmacnianie i problemy związane z rozwojem algorytmów Charakterystyka OpenAI Gym Biblioteka gym Podsumowanie
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych mgr inż. Robert Nowotniak Politechnika Łódzka 1 października 2008 Robert Nowotniak 1 października 2008 1 / 18 Plan referatu 1 Informatyka
Ewolucjonizm NEODARWINIZM. Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach
Ewolucjonizm NEODARWINIZM Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach Główne paradygmaty biologii Wspólne początki życia Komórka jako podstawowo jednostka funkcjonalna
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Sztuczna inteligencja : Algorytm KNN
Instytut Informatyki Uniwersytetu Śląskiego 23 kwietnia 2012 1 Algorytm 1 NN 2 Algorytm knn 3 Zadania Klasyfikacja obiektów w oparciu o najbliższe obiekty: Algorytm 1-NN - najbliższego sąsiada. Parametr
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
Wykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Automatyczny dobór parametrów algorytmu genetycznego
Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja
Spis treści. Konwencje zastosowane w książce...5. Dodawanie stylów do dokumentów HTML oraz XHTML...6. Struktura reguł...9. Pierwszeństwo stylów...
Spis treści Konwencje zastosowane w książce...5 Dodawanie stylów do dokumentów HTML oraz XHTML...6 Struktura reguł...9 Pierwszeństwo stylów... 10 Klasyfikacja elementów... 13 Sposoby wyświetlania elementów...
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Efekt Lombarda. Czym jest efekt Lombarda?
Efekt Lombarda Na podstawie raportu Priscilli Lau z roku 2008 na Uniwersytecie w Berkeley wykonanego na podstawie badań w laboratorium Fonologii. Autor prezentacji: Antoni Lis Efekt Lombarda Czym jest
Programowanie genetyczne, gra SNAKE
STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
Paradygmaty programowania
Paradygmaty programowania Jacek Michałowski, Piotr Latanowicz 15 kwietnia 2014 Jacek Michałowski, Piotr Latanowicz () Paradygmaty programowania 15 kwietnia 2014 1 / 12 Zadanie 1 Zadanie 1 Rachunek predykatów
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis
Ekologia wyk. 1. wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych
Ekologia wyk. 1 wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych Ochrona środowiska Ekologia jako dziedzina nauki jest nauką o zależnościach decydujących
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Wykorzystanie algorytmów mrówkowych w dynamicznym problem
Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 14 czerwca 2013 Przedmiot i cele pracy dyplomowej
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
Stronicowanie w systemie pamięci wirtualnej
Pamięć wirtualna Stronicowanie w systemie pamięci wirtualnej Stronicowanie z wymianą stron pomiędzy pamięcią pierwszego i drugiego rzędu. Zalety w porównaniu z prostym stronicowaniem: rozszerzenie przestrzeni
STATYSTYKA MATEMATYCZNA WYKŁAD stycznia 2010
STATYSTYKA MATEMATYCZNA WYKŁAD 14 18 stycznia 2010 Model statystyczny ROZKŁAD DWUMIANOWY ( ) {0, 1,, n}, {P θ, θ (0, 1)}, n ustalone P θ {K = k} = ( ) n θ k (1 θ) n k, k k = 0, 1,, n Geneza: Rozkład Bernoulliego
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
Algorytmy ewolucyjne `
Algorytmy ewolucyjne ` Wstęp Czym są algorytmy ewolucyjne? Rodzaje algorytmów ewolucyjnych Algorytmy genetyczne Strategie ewolucyjne Programowanie genetyczne Zarys historyczny Alan Turing, 1950 Nils Aall
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26
Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych
Programowanie obiektowe - 1.
Programowanie obiektowe - 1 Mariusz.Masewicz@cs.put.poznan.pl Programowanie obiektowe Programowanie obiektowe (ang. object-oriented programming) to metodologia tworzenia programów komputerowych, która
Statystyka podstawowe wzory i definicje
1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią
SYLABUS. WyŜsza Szkoła Prawa i Administracji w Przemyślu Zamiejscowy Wydział Prawa i Administracji w Rzeszowie
1. Kierunek: ADMINISTRACJA, Rok akademicki: 2008/2009 2. Nazwa przedmiotu: Język angielski 3. Rok studiów I semestr: II. Ćwiczenia (liczba godzin): 30 godzin 7. Cele dydaktyczne: Celem programu jest rozwinięcie
Programowanie genetyczne - gra SNAKE
PRACOWNIA Z ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne - gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................
Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego
IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,
Algorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2
Algorytmy i struktury danych Wykład 6 Tablice rozproszone cz. 2 Na poprzednim wykładzie Wiele problemów wymaga dynamicznych zbiorów danych, na których można wykonywać operacje: wstawiania (Insert) szukania
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
OCENIANIE WYPOWIEDZI PISEMNYCH
1 OCENIANIE WYPOWIEDZI PISEMNYCH KRYTERIA OCENIANIA: KRÓTKI TEKST UŻYTKOWY DŁUŻSZY TEKST UŻYTKOWY WYPOWIEDŹ PISEMNA Przedstawiony materiał zawiera szczegółowe uwagi dotyczące oceniania prac pisemnych z
Struktura terminowa rynku obligacji
Krzywa dochodowości pomaga w inwestowaniu w obligacje Struktura terminowa rynku obligacji Wskazuje, które obligacje są atrakcyjne a których unikać Obrazuje aktualną sytuację na rynku długu i zmiany w czasie
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14
Teoria przetwarzania A/C i C/A.
Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych
Wykład 8: Testy istotności
Wykład 8: Testy istotności Hipotezy Statystyki testowe P-wartości Istotność statystyczna Test dla średniej w populacji Dwustronny test a przedział ufności Używanie i nadużywanie testów Testy istotności
1 Genetykapopulacyjna
1 Genetykapopulacyjna Genetyka populacyjna zajmuje się badaniem częstości występowania poszczególnych alleli oraz genotypów w populacji. Bada także zmiany tych częstości spowodowane doborem naturalnym
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe.
Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe. Autor: Mariusz Sasko Promotor: dr Adrian Horzyk Plan prezentacji 1. Wstęp 2. Cele pracy 3. Rozwiązanie 3.1. Robot
CMAES. Zapis algorytmu. Generacja populacji oraz selekcja Populacja q i (t) w kroku t generowana jest w następujący sposób:
CMAES Covariance Matrix Adaptation Evolution Strategy Opracowanie: Lidia Wojciechowska W algorytmie CMAES, podobnie jak w algorytmie EDA, adaptowany jest rozkład prawdopodobieństwa generacji punktów, opisany
LABORATORIUM PODSTAW TELEKOMUNIKACJI
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:
Zapisywanie algorytmów w języku programowania
Temat C5 Zapisywanie algorytmów w języku programowania Cele edukacyjne Zrozumienie, na czym polega programowanie. Poznanie sposobu zapisu algorytmu w postaci programu komputerowego. Zrozumienie, na czym
Kompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
Rachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
Analiza statystyczna trudności tekstu
Analiza statystyczna trudności tekstu Łukasz Dębowski ldebowsk@ipipan.waw.pl Problem badawczy Chcielibyśmy mieć wzór matematyczny,...... który dla dowolnego tekstu...... na podstawie pewnych statystyk......
STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech
TATYTYKA wykład 8 Wnioskowanie Weryfikacja hipotez Wanda Olech Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
Równoważność algorytmów optymalizacji
Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych
Technologie i usługi internetowe cz. 2
Technologie i usługi internetowe cz. 2 Katedra Analizy Nieliniowej, WMiI UŁ Łódź, 15 luty 2014 r. 1 Programowanie obiektowe Programowanie obiektowe (z ang. object-oriented programming), to paradygmat programowania,
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
6. Klasyczny algorytm genetyczny. 1
6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
DOBÓR PRÓBY. Czyli kogo badać?
DOBÓR PRÓBY Czyli kogo badać? DZISIAJ METODĄ PRACY Z TEKSTEM I INNYMI Po co dobieramy próbę? Czym róŝni się próba od populacji? Na czym polega reprezentatywność statystyczna? Podstawowe zasady doboru próby
SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH.
SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH. I. KONTROLI PODLEGAJĄ ZARÓWNO SPRAWNOŚCI PRODUKTYWNE ( MÓWIENIE I PISANIE ), JAK I RECEPTYWNE ( ROZUMIENIE I PISANIE TEKSTU CZYTANEGO I SŁUCHANEGO. 1 a. Mówienie. Ocena
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
Techniki animacji komputerowej
Techniki animacji komputerowej 1 Animacja filmowa Pojęcie animacji pochodzi od ożywiania i ruchu. Animować oznacza dawać czemuś życie. Słowem animacja określa się czasami film animowany jako taki. Animacja
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.
Prawdopodobieństwo. jest ilościową miarą niepewności
Prawdopodobieństwo jest ilościową miarą niepewności Eksperyment - zdarzenie elementarne Eksperymentem nazywamy proces, który prowadzi do jednego z możliwych wyników. Nazywamy je wynikami obserwacji, zdarzeniami
Metody Statystyczne. Metody Statystyczne.
gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja
Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy)
Wykład 4 Próbkowanie i rozkłady próbkowe µ = średnia w populacji, µ=ey, wartość oczekiwana zmiennej Y σ= odchylenie standardowe w populacji, σ =(Var Y) 1/2, pierwiastek kwadratowy wariancji zmiennej Y,
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
DOBÓR PRÓBY. Czyli kogo badać?
DOBÓR PRÓBY Czyli kogo badać? DZISIAJ METODĄ PRACY Z TEKSTEM I INNYMI Po co dobieramy próbę? Czym różni się próba od populacji? Na czym polega reprezentatywność statystyczna? Podstawowe zasady doboru próby
Regresja logistyczna (LOGISTIC)
Zmienna zależna: Wybór opcji zachodniej w polityce zagranicznej (kodowana jako tak, 0 nie) Zmienne niezależne: wiedza o Unii Europejskiej (WIEDZA), zamieszkiwanie w regionie zachodnim (ZACH) lub wschodnim
mgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych.
mgr inż. Magdalena Deckert Poznań, 30.11.2010r. Metody przyrostowego uczenia się ze strumieni danych. Plan prezentacji Wstęp Concept drift i typy zmian Algorytmy przyrostowego uczenia się ze strumieni