mgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych.
|
|
- Milena Bielecka
- 6 lat temu
- Przeglądów:
Transkrypt
1 mgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych.
2 Plan prezentacji Wstęp Concept drift i typy zmian Algorytmy przyrostowego uczenia się ze strumieni danych z concept drift FLORA AQ11-PM-WAH FACIL Podsumowanie 2
3 Wstęp Schemat tworzenia klasyfikatorów Dane uczące Klasyfikator Algorytm uczący 3
4 Wstęp Strumienie danych 4
5 Concept drift - definicja Concept drift oznacza, że właściwości klasy decyzyjnej, którą model próbuje przewidzieć, zmieniają się wraz z upływem czasu w nieprzewidziany sposób. Stwarza to problemy ponieważ trafność klasyfikacji maleje wraz z upływem czasu. 5
6 Concept drift Każdy przykład uczący Xt jest generowany przez źródło St. Jeśli wszystkie przykłady uczące są generowane przez to samo źródło, to mówimy, że pojęcia jest stabilne. Jeśli dla dwóch dowolnych punktów i oraz j Si Sj, to mówimy, że wystąpiło zjawisko concept drift. Szum nie jest traktowany jako zmiana. 6
7 Rodzaje zmian 7
8 Algorytmy przyrostowe Algorytm przyrostowy przetwarzanie etykietowanych danych po przykładzie. Algorytmy przyrostowe powstały znacznie wcześniej niż pojęcie concept drift. Najbardziej znanym algorytmem dostosowanym do przetwarzania zmiennych środowisk jest FLORA zaproponowana przez Widmera i Kubata w
9 FLORA Okno czasowe z zapamiętanymi przykładami uczącymi Przykłady są dodawane do okna gdy się pojawią. Najstarsze przykłady są usuwane z okna. Najprostszy przypadek okno o stałym rozmiarze. Stare przykłady są usuwane, gdy pojawią się nowe. 9
10 FLORA wiedza nieuporządkowany zbiór reguł z każdą hipotezą związane są 3 zbiory ADES, NDES, PDES ADES Accepted DEScriptors, zawiera tylko przykłady pozytywne NDES Negative DEScriptors, zawiera tylko przykłady negatywne PDES- Potential DEScriptors, zbyt ogólne, przykłady pozytywne i negatywne 10
11 FLORA Z każdym opisem pojęcia związane są liczniki przykładów z okna wspierających daną regułę. Liczniki są uaktualniane z każdym pojawieniem się nowego lub usunięciem starego przykładu uczącego z okna. Reguły przenoszone są między zbiorami ADES, NDES i PDES w zależności od wartości liczników. 11
12 FLORA Pojawienie się nowego przykładu pozytywnego może skutkować NDES przeniesienie reguły do PDES PDES zwiększenie licznika ADES Jeśli zostanie dopasowany do reguły zwiększany jest licznik związany z regułą. Jeśli reguła może zostać uogólniona, bez naruszania przykładów z innych zbiorów, to jest uogólniana. Opis przykładu jest dodawany jako nowa reguła. 12
13 FLORA 13
14 FLORA Rodzaje algorytmu FLORA FLORA stały rozmiar okna czasowego Dobór rozmiaru okna jest nietrywialny. Zbyt małe okno może nie mieć wystarczającej liczby przykładów do opisu stałych pojęć. Zbyt szerokie okno zwolni odpowiedź klasyfikatora na zmiany. 14
15 FLORA Rodzaje algorytmu FLORA FLORA2 dynamiczne dostosowywanie rozmiaru okna czasowego Dopasowywanie rozmiaru okna do zmian. Rozmiar okna jest zmniejszany o 20% w przypadku wystąpienia concept drift. Jeśli hipotezy są bardzo stabilne to rozmiar jest zmniejszany o 1. Jeśli wydaje się, że hipotezy są wystarczające to rozmiar się nie zmienia. W przypadku niewystarczającej wiedzy rozmiar jest zwiększany o 1. 15
16 FLORA 2 16
17 FLORA Zbiór testowy pojęcia STAGGER: 17
18 FLORA 2 Wyniki algorytmu FLORA 2 dla danych STAGGER: 18
19 FLORA 2 Rozmiar okna dla zbioru STAGGER: 19
20 FLORA Rodzaje algorytmu FLORA FLORA3 rozpoznawanie powracających opisów pojęć Pod koniec każdego cyklu uczenia sprawdzany aktualny stan wiedzy pod kątem wykorzystania poprzednich opisów pojęć. Opisy stałych pojęć są zapisywane w celu możliwego wykorzystania w przyszłości. Zapis oraz testowanie starych hipotez jest ściśle powiązane z WAH. 20
21 FLORA 3 3 kroki rozważania poprzednich opisów: Znalezienie najlepszego kandydata ocena na podstawie przykładów pokrytych z aktualnego okna Aktualizacja najlepszego kandydata obliczanie liczników dla reguł Porównywania najlepszego kandydata z aktualnymi opisami pojęć Poprzednie opisy są rozważane tylko w przypadku wystąpienia concept drift. 21
22 FLORA 3 Wyniki algorytmu FLORA 3 dla danych STAGGER: 22
23 FLORA Rodzaje algorytmu FLORA FLORA4 uodpornienie na szum Porzucenie ścisłego warunku spójności na rzecz bardziej łagodnego. Z każdą regułą związane są przedziały ufności, które określają kiedy regułę należy przenieść między zbiorami. Nie istnieje migracja pomiędzy zbiorami PDES i NDES. 23
24 FLORA 4 Efektem tej strategii jest dopuszczenie pokrywania przykładów negatywnych przez reguły ze zbiorów ADES i NDES. Zbiór PDES traktowany jest jako magazyn reguł, które są niewiarygodne, gdyż pokrywają za mało przykładów lub za dużo przykładów negatywnych. Miary trafności predykcji dla hipotez obliczane są zawsze dla aktualnego okna czasowego. 24
25 FLORA 4 Wyniki algorytmu FLORA 4 dla danych STAGGER : 25
26 FLORA 4 Wyniki algorytmu FLORA 4 dla danych STAGGER z 10% szumu: 26
27 FLORA 4 Wyniki algorytmu FLORA 4 dla danych STAGGER z 20% szumu: 27
28 FLORA 4 Wyniki algorytmu FLORA 4 dla danych STAGGER z 40% szumu: 28
29 AQ11-PM+WAH Ogólne działanie algorytmu AQ Algorytm wybiera przykład z klasy pozytywnej Uogólnia jego opis tak, aby nie pokryć przykładów z klasy negatywnej i formuje regułę. Przykłady pokryte przez regułę są usuwane i proces generowania kolejnych reguł jest powtarzany. Algorytm w taki sam sposób generuje reguły dla klasy negatywnej. 29
30 AQ11-PM+WAH Algorytm AQ11 jest rozszerzeniem AQ na algorytm uczenia przyrostowego reguł bez pamięci przykładów. AQ11 wykorzystuje zdolność AQ do generowania reguł pokrywających rozdzielne zbiory. Przykłady uczące są najbardziej specyficznymi regułami. 30
31 AQ11-PM+WAH Generalizując regułę dla przykładów pozytywnych AQ11 tworzy zbiór składający się z reguły i niepokrytych przykładów pozytywnych. Następnie AQ11 wykorzystuje algorytm AQ do wygenerowania pokrycia przeciwko przykładom negatywnym. AQ11 jest wrażliwy na kolejność przychodzących przykładów. 31
32 AQ11-PM+WAH AQ11-PM posiada częściową pamięć przykładów. AQ11-PM wykorzystuje wygenerowane reguły do selekcji przykładów granicznych i je zapamiętuje. Kiedy pojawiają się nowe przykłady algorytm łączy je z tymi przechowywanymi w pamięci i generuje nowy zbiór za pomocą AQ11. 32
33 AQ11-PM+WAH Algorytm AQ11-PM posiada ukryty mechanizm zapominania. W celu śledzenia zmian w środowisku niezbędny może być jawny mechanizm zapominania. Algorytm AQ11-PM połączono z heurystyką WAH zaproponowaną przez Widmera i Kubata. 33
34 AQ11-PM+WAH 34
35 FACIL Fast and Adaptive Classifier by Incremental Learning Podstawą podejścia jest fakt, że reguły mogą być niespójne. Z regułami związany jest próg minimalnej czystości definiowany przez użytkownika. 35
36 FACIL Kiedy próg zostanie osiągnięty, przykłady związane z regułą zostają wykorzystane do wygenerowania nowych spójnych reguł. Podejście zbliżone do AQ11. Różni się tym, że dla jednego pokrytego przykładu negatywnego zapamiętywane są dwa przykłady pozytywne. Zapamiętywane przykłady niekoniecznie są graniczne. 36
37 FACIL Każda reguła opisana jest m atrybutowym zbiorem przedziałów zawierających dolną i górną granicę. Reguły przechowywane są w oddzielnych zbiorach w zależności od etykiety klasy decyzyjnej. Model jest uaktualniany z każdym przybyciem nowego przykładu uczącego. 37
38 FACIL Z każdym nowym przykładem związane są 3 możliwe sytuacje: Dopasowanie do reguł pozytywnych faworyzowane są reguły wymagające najmniejszych zmian na minimalnym zbiorze atrybutów. Dopasowanie do reguł negatywnych obliczanie nowej czystości reguły. Brak dopasowanych reguł generalizacja opisu przykładu, tak aby nie pokryć przykładów negatywnych. 38
39 FACIL Algorytm FACIL wyposażony został mechanizm zapominania. Ukryty mechanizm zapominania przykłady, które są już nieprzydatne do opisu granicy reguły są usuwane. Jawny mechanizm zapominania przykłady, które są starsze niż próg zdefiniowany przez użytkownika są usuwane. 39
40 Podsumowanie Krótkie wprowadzenie do strumieni danych Definicja concept drift oraz typy zmian. Regułowe algorytmy przyrostowe w zmiennych środowiskach. 40
41 Pytania 41
42 42
RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk
Wprowadzenie RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk Magdalena Deckert Politechnika Poznańska, Instytut Informatyki Seminarium ISWD, 21.05.2013 M. Deckert Przyrostowy
mgr inż. Magdalena Deckert Poznań, r. Uczenie się klasyfikatorów przy zmieniającej się definicji klas.
mgr inż. Magdalena Deckert Poznań, 01.06.2010r. Uczenie się klasyfikatorów przy zmieniającej się definicji klas. Plan prezentacji Wstęp Concept drift Typy zmian Podział algorytmów stosowanych w uczeniu
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
WYKŁAD 6. Reguły decyzyjne
Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł
Odkrywanie wiedzy w danych
Inżynieria Wiedzy i Systemy Ekspertowe Odkrywanie wiedzy w danych dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Data Mining W pewnym teleturnieju
Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji
Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Michał Witczak Data Mining 20 maja 2012 r. 1. Wstęp Dostarczone zostały nam 4 pliki, z których dwa stanowiły zbiory uczące
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować
Systemy eksperowe. Agnieszka Nowak Brzezińska Wykład I
Systemy eksperowe Agnieszka Nowak Brzezińska Wykład I Zakres materiału: Metody wnioskowania w regułowych bazach wiedzy PC-Shell jako narzędzie do budowy szkieletowych systemów ekspertowych (Sprawozdanie
Algorytmy metaheurystyczne Wykład 11. Piotr Syga
Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,
B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;
Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.
Dariusz Brzeziński. Politechnika Poznańska
Dariusz Brzeziński Politechnika Poznańska Klasyfikacja strumieni danych Algorytm AUE Adaptacja klasyfikatorów blokowych do przetwarzania przyrostowego Algorytm OAUE Dlasze prace badawcze Blokowa i przyrostowa
Spis treści. Konwencje zastosowane w książce...5. Dodawanie stylów do dokumentów HTML oraz XHTML...6. Struktura reguł...9. Pierwszeństwo stylów...
Spis treści Konwencje zastosowane w książce...5 Dodawanie stylów do dokumentów HTML oraz XHTML...6 Struktura reguł...9 Pierwszeństwo stylów... 10 Klasyfikacja elementów... 13 Sposoby wyświetlania elementów...
ALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Zapisywanie algorytmów w języku programowania
Temat C5 Zapisywanie algorytmów w języku programowania Cele edukacyjne Zrozumienie, na czym polega programowanie. Poznanie sposobu zapisu algorytmu w postaci programu komputerowego. Zrozumienie, na czym
Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 2. Wojciech Waloszek. Teresa Zawadzka.
Eksploracja danych KLASYFIKACJA I REGRESJA cz. 2 Wojciech Waloszek wowal@eti.pg.gda.pl Teresa Zawadzka tegra@eti.pg.gda.pl Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
ODPOWIEDNIKI PRZETARGOWE - INSTRUKCJA
ODPOWIEDNIKI PRZETARGOWE - INSTRUKCJA Spis treści 1. Wstęp... 2 2. Kiedy użyć odpowiedników?... 2 3. Definowanie odowiedników przetargowych w module 22-Kartoteki... 2 3.1. Dodawanie nowego powiązania towar
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Laboratorium 11. Regresja SVM.
Laboratorium 11 Regresja SVM. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk Dalej>. 3. Z
Automatyczne wyodrębnianie reguł
Automatyczne wyodrębnianie reguł Jedną z form reprezentacji wiedzy jest jej zapis w postaci zestawu reguł. Ta forma ma szereg korzyści: daje się łatwo interpretować, można zrozumieć sposób działania zbudowanego
Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji
Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Jacek Szcześniak Jerzy Błaszczyński Roman Słowiński Poznań, 5.XI.2013r. Konspekt Wstęp Wprowadzenie Metody typu wrapper Nowe metody
Wprowadzenie do klasyfikacji
Wprowadzenie do klasyfikacji ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator
Normalizacja baz danych
Normalizacja baz danych Definicja 1 1 Normalizacja to proces organizowania danych w bazie danych. Obejmuje to tworzenie tabel i ustanawianie relacji między tymi tabelami zgodnie z regułami zaprojektowanymi
Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI
1 Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI 1. Obliczenia w arkuszu kalkulacyjnym Rozwiązywanie problemów z wykorzystaniem aplikacji komputerowych obliczenia w arkuszu kalkulacyjnym wykonuje
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Testowanie modeli predykcyjnych
Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności
ZeroR. Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F
ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 5 T 7 T 5 T 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator ZeroR będzie zawsze odpowiadał T niezależnie
Metody Kompilacji Wykład 3
Metody Kompilacji Wykład 3 odbywa się poprzez dołączenie zasad(reguł) lub fragmentów kodu do produkcji w gramatyce. Włodzimierz Bielecki WI ZUT 2 Na przykład, dla produkcji expr -> expr 1 + term możemy
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Microsoft Office 2016 Krok po kroku
Joan Lambert Curtis Frye Microsoft Office 2016 Krok po kroku Przekład: Leszek Biolik, Krzysztof Kapustka, Marek Włodarz APN Promise, Warszawa 2016 Spis treści Wprowadzenie.........................................................ix
Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori.
Analiza danych Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ REGUŁY DECYZYJNE Metoda reprezentacji wiedzy (modelowania
5. Model sezonowości i autoregresji zmiennej prognozowanej
5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =
Wymagania edukacyjne z informatyki dla uczniów klas VI SP nr 53 w Krakowie w roku szkolnym 2019/2020
Prowadzący: Elwira Kukiełka Ewa Pawlak-Głuc 1 Opracowano na podstawie: 1. Podstawa programowa(dz.u. z 017r. poz. ) Rozporządzenie Ministra Edukacji Narodowej z dnia 1 lutego 017 r. w sprawie podstawy programowej
komputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW
Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,
Wybrane zagadnienia uczenia maszynowego. Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec
Wybrane zagadnienia uczenia maszynowego Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec Przygotowane na podstawie T. Mitchell, Machine Learning S.J. Russel, P. Norvig, Artificial Intelligence
Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl
Analiza metod wykrywania przekazów steganograficznych Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Plan prezentacji Wprowadzenie Cel pracy Tezy pracy Koncepcja systemu Typy i wyniki testów Optymalizacja
wiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1
8. Drzewa decyzyjne, bagging, boosting i lasy losowe
Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane
Opis nowych funkcji w programie Symfonia Handel w wersji 2010
Symfonia Handel 1 / 5 Opis nowych funkcji w programie Symfonia Handel w wersji 2010 Główne korzyści z wersji 2010: Optymalizacja kosztów magazynowania i obsługi dostaw poprzez efektywniejsze zarządzanie
Projekt Sieci neuronowe
Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków
Jazda autonomiczna Delphi zgodna z zasadami sztucznej inteligencji
Jazda autonomiczna Delphi zgodna z zasadami sztucznej inteligencji data aktualizacji: 2017.10.11 Delphi Kraków Rozwój jazdy autonomicznej zmienia krajobraz technologii transportu w sposób tak dynamiczny,
Monitoring procesów z wykorzystaniem systemu ADONIS. Krok po kroku
z wykorzystaniem systemu ADONIS Krok po kroku BOC Information Technologies Consulting Sp. z o.o. e-mail: boc@boc-pl.com Tel.: (+48 22) 628 00 15, 696 69 26 Fax: (+48 22) 621 66 88 BOC Management Office
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 4. UCZENIE SIĘ INDUKCYJNE Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WSTĘP Wiedza pozyskana przez ucznia ma charakter odwzorowania
WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY PRZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH
WSOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY RZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH 1. Definicje Zbiory, które nie są zbiorami definiowalnymi, są nazywane zbiorami przybliżonymi. Zbiory definiowalne
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
TP1 - TABELE PRZESTAWNE od A do Z
TP1 - TABELE PRZESTAWNE od A do Z Program szkolenia 1. Tabele programu Excel 1.1. Wstawianie tabeli 1.2. Style tabeli 1.3. Właściwości tabeli 1.4. Narzędzia tabel 1.4.1. Usuń duplikaty 1.4.2. Konwertuj
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY WALIDACJA KRZYŻOWA dla ZAAWANSOWANEGO KLASYFIKATORA KNN ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Lekcja 5: Sieć Kohonena i sieć ART
Lekcja 5: Sieć Kohonena i sieć ART S. Hoa Nguyen 1 Materiał Sieci Kohonena (Sieć samo-organizująca) Rysunek 1: Sieć Kohonena Charakterystyka sieci: Jednowarstwowa jednokierunkowa sieć. Na ogół neurony
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
9. Praktyczna ocena jakości klasyfikacji
Algorytmy rozpoznawania obrazów 9. Praktyczna ocena jakości klasyfikacji dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Zbiór uczacy i zbiór testowy 1. Zbiór uczacy służy do konstrukcji (treningu)
Laboratorium 4. Naiwny klasyfikator Bayesa.
Laboratorium 4 Naiwny klasyfikator Bayesa. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk
Testowanie hipotez statystycznych
Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów
MODELOWANIE PRZEPŁYWU DANYCH
MODELOWANIE PRZEPŁYWU DANYCH 1. Diagram przepływu danych (DFD) 2. Weryfikacja modelu strukturalnego za pomocą DFD Modelowanie SI - GHJ 1 Definicja i struktura DFD Model części organizacji rozważany z punktu
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
Metody probabilistyczne klasyfikatory bayesowskie
Konwersatorium Matematyczne Metody Ekonomii narzędzia matematyczne w eksploracji danych First Prev Next Last Go Back Full Screen Close Quit Metody probabilistyczne klasyfikatory bayesowskie Wykład 8 Marcin
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Instrukcja do ćwiczenia P4 Analiza semantyczna i generowanie kodu Język: Ada
Instrukcja do ćwiczenia P4 Analiza semantyczna i generowanie kodu Język: Ada Spis treści 1 Wprowadzenie 1 2 Dane i kod 2 3 Wyrażenia 2 3.1 Operacje arytmetyczne i logiczne.................. 2 3.2 Podstawowe
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
Drzewa decyzyjne i lasy losowe
Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM
Wybrane zadania przygotowujące do egzaminu z ISO- cz. 2. dr Piotr Wąsiewicz
Wybrane zadania przygotowujące do egzaminu z ISO- cz. 2 dr Piotr Wąsiewicz. Ze zbioru treningowego podanego w tabeli poniżej wykreować metodą zstępującej konstrukcji drzewo decyzyjne(jak najmniej rozbudowane-
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
Ewelina Dziura Krzysztof Maryański
Ewelina Dziura Krzysztof Maryański 1. Wstęp - eksploracja danych 2. Proces Eksploracji danych 3. Reguły asocjacyjne budowa, zastosowanie, pozyskiwanie 4. Algorytm Apriori i jego modyfikacje 5. Przykład
Szpieg 2.0 Instrukcja użytkownika
Szpieg 2.0 Instrukcja użytkownika Spis treści: Wstęp: 1. Informacje o programie 2. Wymagania techniczne Ustawienia: 3. Połączenie z bazą danych 4. Konfiguracja email 5. Administracja Funkcje programu:
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych. Data Mining Wykład 2
Data Mining Wykład 2 Odkrywanie asocjacji Plan wykładu Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych Geneza problemu Geneza problemu odkrywania reguł
Programowanie współbieżne Wykład 2. Iwona Kochańska
Programowanie współbieżne Wykład 2 Iwona Kochańska Miary skalowalności algorytmu równoległego Przyspieszenie Stały rozmiar danych N T(1) - czas obliczeń dla najlepszego algorytmu sekwencyjnego T(p) - czas
Planowanie drogi robota, algorytm A*
Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy
Systemy ekspertowe. Krzysztof Patan
Systemy ekspertowe Krzysztof Patan Wprowadzenie System ekspertowy Program komputerowy, który wykonuje złożone zadania o dużych wymaganiach intelektualnych i robi to tak dobrze jak człowiek będący ekspertem
Księgarnia PWN: Kevin Kenan - Kryptografia w bazach danych. Spis treści. Podziękowania O autorze Wprowadzenie... 15
Księgarnia PWN: Kevin Kenan - Kryptografia w bazach danych Spis treści Podziękowania... 11 O autorze... 13 Wprowadzenie... 15 CZĘŚĆ I. Bezpieczeństwo baz danych... 19 Rozdział 1. Problematyka bezpieczeństwa
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 PLAN: Wykład 5 - Metody doboru współczynnika uczenia - Problem inicjalizacji wag - Problem doboru architektury
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Myśl w języku Python! : nauka programowania / Allen B. Downey. Gliwice, cop Spis treści
Myśl w języku Python! : nauka programowania / Allen B. Downey. Gliwice, cop. 2017 Spis treści Przedmowa 11 1. Jak w programie 21 Czym jest program? 21 Uruchamianie interpretera języka Python 22 Pierwszy
Ocena pozycji szachowych w oparciu o wzorce
Ocena pozycji szachowych w oparciu o wzorce Stanisław Kaźmierczak s.kazmierczak@mini.pw.edu.pl 2 Agenda Motywacja Statystyki Metoda statyczna sortowania ruchów Metoda następstwa wzorców Metoda podobieństwa
Rozkład materiału do zajęć z informatyki. realizowanych według podręcznika
Rozkład materiału do zajęć z informatyki realizowanych według podręcznika E. Gurbiel, G. Hardt-Olejniczak, E. Kołczyk, H. Krupicka, M.M. Sysło Informatyka, nowe wydanie z 007 roku Poniżej przedstawiamy
6. Zagadnienie parkowania ciężarówki.
6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
Wymagania edukacyjne na poszczególne oceny. z przedmiotu Informatyki. w klasie VI
Wymagania edukacyjne na poszczególne oceny z przedmiotu Informatyki w klasie VI Ocenę niedostateczna nie zna regulamin pracowni nie potrafi wymienić 3 dowolnych punktów regulaminu nie dba o porządek na
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
Reguły asocjacyjne. 1. Uruchom system weka i wybierz aplikację Knowledge Flow.
Reguły asocjacyjne Niniejsze ćwiczenie demonstruje działanie implementacji algorytmu apriori w systemie WEKA. Ćwiczenie ma na celu zaznajomienie studenta z działaniem systemu WEKA oraz znaczeniem podstawowych
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska
Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska e-mail: bartosz.krawczyk@pwr.wroc.pl Czym jest klasyfikacja
Data Mining podstawy analizy danych Część druga
Data Mining podstawy analizy danych Część druga W części pierwszej dokonaliśmy procesu analizy danych treningowych w oparciu o algorytm drzewa decyzyjnego. Proces analizy danych treningowych może być realizowany
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Analiza ściany oporowej
Przewodnik Inżyniera Nr 3 Aktualizacja: 02/2016 Analiza ściany oporowej Program powiązany: Plik powiązany: Ściana oporowa Demo_manual_03.gtz Niniejszy rozdział przedstawia przykład obliczania istniejącej
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
dr inż. Jarosław Forenc
Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2010/2011 Wykład nr 7 (24.01.2011) dr inż. Jarosław Forenc Rok akademicki
Nowe funkcje w programie Symfonia Mała Księgowość
Symfonia Mała Księgowość 1 / 6 Symfonia Mała Księgowość Spis treści: Korzyści z zakupu nowej wersji 2 Symfonia Mała Księgowość w wersji 2011.1b 2 Nowe formularze deklaracji podatkowych 2 Eksport deklaracji
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja