Adam Krzemienowski. Wprowadzenie
|
|
- Agnieszka Bielecka
- 7 lat temu
- Przeglądów:
Transkrypt
1 Adam Krzemienowski Politechnika Warszawska Wielowymiarowa warunkowa wartość zagrożona jako miara ryzyka * Wprowadzenie Praca przedstawia nową miarę ryzyka nazwaną wielowymiarową warunkową wartością zagrożoną (Multivariate Conditional Value-at-Risk MCVaR) jako narzędzie wyboru w warunkach ryzyka. Zakłada się, że miara ma służyć do pomiaru ryzyka wielowymiarowego, definiowanego jako wielowymiarowa (wektorowa) zmienna losowa, której elementy (współrzędne) reprezentują realizacje jednowymiarowych zmiennych losowych modelujących rozważane czynniki ryzyka. Przyjmuje się, że jednowymiarowe zmienne losowe są zależne w sensie stochastycznym, a ich struktura zależności jest dana funkcją połączenia (copula function). Ponadto czynniki ryzyka są w pełni substytucyjne, tzn. odpowiednie zmienne losowe są wyrażone w tych samych jednostkach (np. monetarnych). W celu zdefiniowania miary wprowadza się pojęcie kwantyla wielowymiarowego, określonego jako hiperprostopadłościan obejmujący najgorsze realizacje wielowymiarowej zmiennej losowej o łącznym prawdopodobieństwie równym rzędowi kwantyla. Warto zauważyć, że tak zdefiniowanych kwantyli danego rzędu jest nieskończenie wiele. MCVaR jest definiowana jako najgorsza oczekiwana realizacja w ramach kwantyla danego rzędu (tzn. najmniejsza, jeśli większe wartości są preferowane). MCVaR jest skalarną miarą ryzyka wielowymiarowego, pozwalającą na parametryzowanie poziomu awersji do ryzyka od skrajnego pesymizmu po neutralność względem ryzyka poprzez zmianę rzędu kwantyla. Miara jest typem pesymistycznej miary ryzyka i definiuje niemalże ten sam rodzaj ryzyka co popularna i dobrze zbadana warunkowa wartość zagrożona (Conditional Value-at-Risk CVaR) [8]. * Praca wykonana w ramach grantu NCN N N Wielowymiarowa warunkowa wartość zagrożona jako miara ryzyka.
2 54 Adam Krzemienowski Ściślej, dla ryzyka jednowymiarowego miary są tożsame, natomiast dla ryzyka wielowymiarowego różnią się definicją kwantyli definicja CVaR prowadzi do jednoznacznie określonego kwantyla wielowymiarowego danego rzędu, którym jest hiperostrosłup foremny z wierzchołkiem zaczepionym w najgorszej realizacji wielowymiarowej zmiennej losowej. Istotną zaletą MCVaR jest jej model optymalizacyjny, który pozwala na efektywne rozwiązywanie rzeczywistych problemów decyzyjnych w warunkach ryzyka, opierając się na pełnej informacji niesionej przez wielowymiarową zmienną losową. Ze wstępnej analizy wynika, że model optymalizacyjny wielowymiarowej warunkowej wartości zagrożonej jest modelem programowania liniowego z nieskończoną liczbą ograniczeń (wynika to z niejednoznaczności kwantyla wielowymiarowego). Niemniej jednak dualna postać tego modelu może być efektywnie rozwiązywana przy użyciu techniki generacji kolumn opartej na dekompozycji Dantziga-Wolfe a [4], dla której zadanie nadrzędne jest problemem liniowym, a podrzędne nieliniowym, niewypukłym (z uwagi na funkcję połączenia określającą strukturę zależności pomiędzy zmiennymi losowymi). MCVaR, w odróżnieniu od CVaR, pozwala na zastosowanie techniki generacji kolumn, która ma własność dostępu do potencjalnie nieskończonej liczby realizacji wielowymiarowej zmiennej losowej, gdyż są one generowane na bieżąco i nie muszą być przechowywane w pamięci komputera. Umożliwia to wyznaczenie rozwiązania optymalnego problemu wyboru w warunkach ryzyka, opierając się na wszystkich realizacjach wielowymiarowej zmiennej losowej, których liczba może być przeogromna innymi słowy, na pełnej informacji niesionej przez wielowymiarową zmienną losową. Nie jest to możliwe w przypadku CVaR, której najbardziej efektywny obliczeniowo model optymalizacyjny [6] wymaga, aby wszystkie realizacje były przechowywane w pamięci komputera, co przekłada się na niewielką ilość informacji, na podstawie których wyznaczane jest rozwiązanie optymalne problemu. 1. Definicja wielowymiarowej warunkowej wartości zagrożonej Rozważmy n-wymiarowy wektor losowy R = (R 1,, R n ) T, którego każda składowa reprezentuje czynnik ryzyka. Ograniczymy przestrzeń ryzyka do wektorów R L 1 (Ω, F, P) o wartościach rzeczywistych oraz załóżmy, n że czynniki ryzyka są w pełni substytucyjne, tj. wyrażone w tych samych jednostkach. Niech F i będzie dystrybuantą zmiennej losowej R i, i = 1,, n, tj. F Ri (η) = P(R i η). Zmienne losowe R zależą od siebie w sensie stochastycz- i
3 Wielowymiarowa warunkowa wartość zagrożona jako miara ryzyka 55 nym i ich struktura zależności jest dana funkcją połączenia C. W szczególności H (ξ, ζ) = C(F R1 (ξ), F Rn (ζ)), gdzie H jest dystrybuantą łącznego rozkładu wektora losowego R. Dalej, niech F Ri (-1) będzie lewostronnie ciągłą odwrotnością F Ri (funkcją kwantlową), tj. F Ri (-1) (p) = inf{η : F Ri (η) p}. Dla ustalonego poziomu tolerancji β (0,1] definiujemy wielowymiarową warunkową wartość zagrożoną (MCVaR β ) jako: p. w. C(u 1,, u n ) = β. (1) Dla ustalonych poziomów u i (0,1] zdefiniujmy wielowymiarowy kwantyl rozkładu wektora losowego R: Wprowadźmy zbiór wielowymiarowych kwantyli rzędu β: Jeśli nie ma skoku w optymalnym wielowymarowym β-kwantylu, wartość MCVaR równa się minimalnej warunkowej wartości oczekiwanej sumy czynników ryzyka, przy warunku R Q dla wszystkich, tj.: Warto zauważyć, że MCVaR β dąży do dla β 0 i R ograniczonego z dołu oraz równa się, gdy β = 1. W związku z tym miara obejmuje całe spektrum ostrożnych postaw względem ryzyka, począwszy od skrajnej awersji, a skończywszy na neutralności względem ryzyka. 2. Związek miary z warunkową wartością zagrożoną Warunkowa wartość zagrożona CVaR jest miarą ryzyka jednowymiarowego. Dla ustalonego poziomu β (0,1] definiujemy CVaR β jako średnią w ramach β-kwantyla, tj.:
4 56 Adam Krzemienowski CVaR jest miarą koherentną (zob. np. [7]) i liczne badania empiryczne (zob. np. [1; 5; 8]) potwierdziły jej przydatność w różnych zagadnieniach finansowych. Miara ta jest również stosowana do pomiaru ryzyka wielowymiarowego do miary przekazywana jest suma zmiennych losowych reprezentujących czynniki ryzyka, tj.: (2) Warto zauważyć, że chociaż obie miary wyznaczają średnie w ramach kwantyli, w przypadku wielowymiarowym CVaR jest miarą bardziej ostrożną niż MCVaR. Ze wzoru (2) wynika, że CVaR używa półpłaszczyzny jako wielowymiarowego kwantyla i w związku z tym obejmuje wszystkie najgorsze przypadki (najmniejsze wartości) dla zadanego poziomu tolerancji β. Nie jest to prawdą w przypadku miary MCVaR, która obejmuje tylko pewną część najgorszych przypadków w ramach zadanego poziomu tolerancji β, ponieważ zgodnie z definicją (1) używa stożka jako kwantyla. W związku z tym dla dowolnego wektora losowego R i β (0,1] zachodzi: W przypadku jednowymiarowym obie miary się pokrywają, tj. dla dowolnej zmiennej losowej R i β (0,1]: Rysunek 1 przedstawia graficzne porównanie miar CVaR β i MCVaR β dla dwuwymiarowego wektora losowego R ograniczonego z dołu i z góry. (3) (4) Rys. 1. CVaR β i MCVaR β dla dwuwymiarowego wektora losowego
5 Wielowymiarowa warunkowa wartość zagrożona jako miara ryzyka Własności miary Wielowymiarowa warunkowa wartość zagrożona MCVaR β ma następujące własności: (i) MCVaR β jest translacyjnie ekwiwariantna (translation-equivariant), tj.: MCVaR β (R + c) = MCVaR β (R) + 1 T c dla stałego wektora c, (ii) MCVaR β jest dodatnio homogeniczna (positively homogenous), tj.: MCVaR β (λr) = λ MCVaR β (R) gdy λ > 0. (iii) MCVaR β w ogólności nie jest monotoniczna, tj. jeśli: R 1 (ω) R 2 (ω) dla każdego ω Ω to nie zawsze (iv) MCVaR β jest nadaddytywna (superadditive) w następującym sensie: Dowód Własności (i) i (ii) są oczywiste z definicji MCVaR β. Pokażmy kontrprzykład jako dowód (iii). Rozważmy dwa losowe wektory R 1 i R 2 z następującymi rozkładami: i R 1 (ω i ) R 2 (ω i ) P (ω i ) 1 (1;0) T (1;0) T 0,1 2 (0;1) T (0;1) T 0,1 3 (2;2) T (1;1) T 0,8 Zachodzi relacja R 1 (ω) R 2 (ω) dla każdego ω Ω. Obliczmy wartość MCVaR 0,2 (R 1 ): W przypadku MCVaR 0,2 (R 2 ) atomy prawdopodobieństwa zostaną podzielone z uwagi na fakt, że wektory (1;0) T, (0;1) T i (1;1) T leżą na obwodzie stożka (kwantyla). W związku z tym wartość MCVaR 0,2 (R 2 ) może być wyznaczona przez rozwiązanie następującego zadania optymalizacji: p.w. 0,1w 1 + 0,1w 2 + 0,8w 1 w 2 = 0,2 0 w i 1 dla i = 1,2
6 58 Adam Krzemienowski Po rozwiązaniu dostajemy. W związku z tym MCVaR nie jest monotoniczna. W celu udowodnienia własności (iv) użyjemy zależności (3) i (4) oraz faktu, że CVaR jest nadaddytywna (zob. [7]). Wykorzystując powyższe dostajemy: Artzner i in. [2; 3] nazywają miarę ryzyka koherentą, jeżeli jest translacyjnie ekwiwariantna, dodatnio homogeniczna, monotoniczna i nadaddytywna. MCVaR β nie jest koherentna w tym sensie, ponieważ nie jest monotoniczna [9]. Rozważmy następujący przypadek szczególny związany z optymalizacją portfela czynników ryzyka: Jesteśmy zainteresowani wyborem optymalnych proporcji czynników ryzyka R i w sensie miary, skalowanych wagami portfela x i, tj. maksymalizacją MCVaR β (x R), gdzie jest operatorem iloczynu Hadamarda. Dla liniowo przekształconych wektorów losowych MCVaR β zachowuje własność monotoniczności, tj. jeśli: x R(ω) R(ω) dla każdego ω Ω to: MCVaR β (x R) MCVaR β (R) Dowód Założenie twierdzenia zachodzi tylko dla x = (x P, x N ) T, R = (R P, R N ) T, x P 1 i x N 1, gdzie P i N są zbiorami indeksów zdefiniowanymi następująco: P = {p : R p (ω) 0 dla każdego ω Ω}, N = {n : R n (ω) 0 dla każdego ω Ω}. Z definicji MCVaR β wynika, że: dla dowolnych x p 1 i x N 1. W związku z tym MCVaR zachowuje koherentność w problemach, gdzie rozważona jest kombinacja liniowa czynników ryzyka. Podsumowanie Wielowymiarowa warunkowa wartość zagrożona jest skalarną, kwantylową miarą ryzyka modelowanego wielowymiarową zmienną losową. Zakłada się, że czynniki ryzyka są w pełni substytucyjne, tzn. wyrażone w tych samych jednostkach. Wielowymiarowa warunkowa wartość zagrożona jest miarą ekstremal-
7 Wielowymiarowa warunkowa wartość zagrożona jako miara ryzyka 59 ną, umożliwiającą parametryzowanie poziomu awersji do ryzyka, począwszy od skrajnego pesymizmu, po neutralność względem ryzyka poprzez zmianę rzędu kwantyla. Miara w ogólności nie jest miarą koherentną, ale dla problemu wyboru portfela czynników ryzyka zachowuje własność koherentności. Istotną zaletą wielowymiarowej warunkowej wartości zagrożonej jest możliwość wyznaczenia optymalnego portfela czynników ryzyka z wykorzystaniem techniki generacji kolumn w oparciu o pełną informację niesioną przez wielowymiarową zmienną losową. Nie jest to możliwe przy użyciu innych typowych kwantylowych miar ryzyka, jak wartość zagrożona czy warunkowa wartość zagrożona. Literatura Andersson F., Mausser H., Rosen D., Uryasev S., Credit risk optimization with Conditional Value-at-Risk criterion. Mathematical Programming 2001, No. 89. Artzner P., Delbaen F., Eber J.-M., Heath D., Thinking coherently, Risk 1997, No. 10. Artzner P., Delbaen F., Eber J.-M., Heath D., Coherent measures of risk. Mathematical Finance 1999, No. 9. Dantzig G.B., Wolfe P., The decomposition algorithm for linear programs, Econometrica 1961, No. 29(4). Mansini R., Ogryczak W., Speranza M.G., LP solvable models for portfolio optimization: A classification and computational comparison, IMA Journal of Management Mathematics 2003, No. 14. Ogryczak W., Śliwiński T., On solving the dual for portfolio selection by optimizing Conditional Value at Risk, Computational Optimization and Applications 2011, No. 50. Pflug G.Ch., Some remarks on the Value-at-Risk and the Conditional Valueat-Risk, in: Probabilistic Constrained Optimization: Methodology and Applications, ed. S. Uryasev, Kluwer A.P., Dordrecht Rockafellar R.T., Uryasev S., Optimization of Conditional Value-at-Risk. Journal of Risk 2000, No. 2. Rockafellar R.T., Uryasev S., Conditional Value-at-Risk for general distributions. Journal of Banking and Finance 2002, No. 26.
8 60 Adam Krzemienowski THE MULTIVARIATE CONDITIONAL VALUE AT RISK AS A MEASURE OF RISK Summary The Multivariate Conditional Value-at-Risk (MCVaR) is a scalar risk measure for multivariate risks modeled by multivariate random variables. It is assumed that the univariate risk components are perfect substitutes, i.e., they are expressed in the same units. MCVaR is a quantile risk measure that allows one to emphasize the consequences of more pessimistic scenarios. By changing the level of the quantile, the measure permits to parameterize prudent attitudes toward risk ranging from extreme risk aversion to risk neutrality. In terms of definition, MCVaR is slightly different from the popular and well-researched Conditional Value-at-Risk (CVaR). Nevertheless, this small difference allows one to efficiently solve MCVaR portfolio optimization problems based on the full information carried by a multivariate random variable using column generation technique, which is not possible in the case of CVaR.
RYZYKO INWESTYCJI W SPÓŁKI GIEŁDOWE SEKTORA ENERGETYCZNEGO
Alicja Ganczarek-Gamrot Uniwersytet Ekonomiczny w Katowicach RYZYKO INWESTYCJI W SPÓŁKI GIEŁDOWE SEKTORA ENERGETYCZNEGO Wprowadzenie Liberalizacja polskiego rynku energii elektrycznej wpłynęła na rozwój
POMIAR RYZYKA FINANSOWEGO W WARUNKACH NIEPEWNOŚCI. Wprowadzenie
B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 2 2006 Grażyna TRZPIOT* POMIAR RYZYKA FINANSOWEGO W WARUNKACH NIEPEWNOŚCI Zarządzanie losowymi przyszłymi stopami zwrotu jest podstawowym zadaniem finansów
O WYBRANYCH WŁASNOŚCIACH MIAR RYZYKA. 1. Pojęcie ryzyka oraz miar ryzyka
B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 24 Grażyna TRZPIOT* O WYBRANYCH WŁASNOŚCIACH MIAR RYZYKA Powszechnie wykorzystywane do pomiaru ryzyka miary, jakimi są odchylenie standardowe oraz
Teoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Informacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR Wojciech Zieliński Katedra Ekonometrii i Statystyki SGGW Nowoursynowska 159, PL-02-767 Warszawa wojtek.zielinski@statystyka.info
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Wykład 11: Martyngały: definicja, twierdzenia o zbieżności
RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane
Daniel Papla Akademia Ekonomiczna we Wrocławiu
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Akademia Ekonomiczna we Wrocławiu
Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.0 Definicje Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Bolek, Lolek i Tola wstąpili do kasyna. (A) Bolek postawił na czerwone, (B)
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014
Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu
Zmienne losowe dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu rok akademicki 2016/2017 semestr letni Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Analiza wielokryterialna
Analiza wielokryterialna dr hab. inż. Krzysztof Patan, prof. PWSZ Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa w Głogowie k.patan@issi.uz.zgora.pl Wprowadzenie Wielokryterialny wybór wariantu
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę
2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Ekonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
Prawdopodobieństwo i statystyka
Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Wielokryteriowa optymalizacja liniowa
Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Prawdopodobieństwo i statystyka
Wykład V: Zmienne losowe i ich wartości oczekiwane 25 października 2017 Definicja zmiennej losowej Definicja Zmienne losowa to charakterystyka liczbowa wyniku eksperymentu losowego. Zmienne losowa na przestrzeni
2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27
SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Metoda Monte Carlo. Jerzy Mycielski. grudzien Jerzy Mycielski () Metoda Monte Carlo grudzien / 10
Metoda Monte Carlo Jerzy Mycielski grudzien 2012 Jerzy Mycielski () Metoda Monte Carlo grudzien 2012 1 / 10 Przybliżanie całek Powiedzmy, że mamy do policzenia następującą całkę: b f (x) dx = I a Założmy,
Nieskończona jednowymiarowa studnia potencjału
Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,
STOCHASTYCZNE MODELOWANIE RYZYKA W USŁUGACH INFORMATYCZNYCH
Łukasz Wachstiel doktorant Uniwersytet Ekonomiczny w Katowicach lukasz.wachstiel@ue.katowice.pl STOCHASTYCZNE MODELOWANIE RYZYKA W USŁUGACH INFORMATYCZNYCH Wprowadzenie Artykuł przedstawia nowe podejście
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
II. Równania autonomiczne. 1. Podstawowe pojęcia.
II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),
Optymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
KOHERENTNE MIARY RYZYKA UBEZPIECZENIOWEGO
Barbara Zakrzewska-Derylak KOHERENTNE MIARY RYZYKA UBEZPIECZENIOWEGO Wstęp Dla właściwej oceny firm ubezpieczeniowych niezbędna jest wycena stosowanych przez nie taryf. Istnieje więc potrzeba badań nad
II. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008
Przemysław Klusik Instytut Matematyczny, Uniwersytet Wrocławski Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008 (UWr) Zagadnienia Aktuarialne -
Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
Wykład 2 Zmienne losowe i ich rozkłady
Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
8 Całka stochastyczna względem semimartyngałów
M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,
WYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
W3 - Niezawodność elementu nienaprawialnego
W3 - Niezawodność elementu nienaprawialnego Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Niezawodność elementu nienaprawialnego 1. Model niezawodności elementu nienaprawialnego
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
MIARY ZALEŻNOŚCI OPARTE NA KOPULACH
Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 246 2015 Współczesne Finanse 3 Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie Wydział Matematyczno-Przyrodniczy.
WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW
Uniwersytet Ekonomiczny we Wrocławiu WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW Wprowadzenie Wrażliwość wyników analizy wielokryterialnej na zmiany wag kryteriów, przy
Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa
Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe
Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości
Szacowanie miary zagrożenia Expected Shortfall dla wybranych instrumentów polskiego rynku kapitałowego
Radosław Pietrzyk Katedra Inwestycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Szacowanie miary zagrożenia Expected Shortfall dla wybranych instrumentów polskiego rynku kapitałowego 1.
1 Podstawowe oznaczenia
Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.
Programowanie liniowe
Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)
Iloczyn wektorowy. Autorzy: Michał Góra
Iloczyn wektorowy Autorzy: Michał Góra 019 Iloczyn wektorowy Autor: Michał Góra DEFINICJA Definicja 1: Iloczyn wektorowy Iloczynem wektorowym wektorów v = ( v x, v y, v z ) R 3 oraz w = ( w x, w y, w z
Ciągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
Geometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11
Modele DSGE Jerzy Mycielski Maj 2008 Jerzy Mycielski () Modele DSGE Maj 2008 1 / 11 Modele DSGE DSGE - Dynamiczne, stochastyczne modele równowagi ogólnej (Dynamic Stochastic General Equilibrium Model)
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Szacowanie ryzyka z wykorzystaniem zmiennej losowej o pramatkach rozmytych w oparciu o język BPFPRAL
Szacowanie ryzyka z wykorzystaniem zmiennej losowej o pramatkach rozmytych w oparciu o język BPFPRAL Mgr inż. Michał Bętkowski, dr inż. Andrzej Pownuk Wydział Budownictwa Politechnika Śląska w Gliwicach
MIARY RYZYKA A POMIAR EFEKTYWNOŚCI INWESTYCJI
Grażyna Trzpiot Uniwersytet Ekonomiczny w Katowicach MIARY RYZYKA A POMIAR EFEKTYWNOŚCI INWESTYCJI Wprowadzenie Przedstawiamy zbiór miar ryzyka, określając zbiór aksjomatów, które powinny takie miary spełniać.
Fuzja sygnałów i filtry bayesowskie
Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna
Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach
Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb
Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę
O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)
(niekoniecznie ograniczonych) Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza, Poznań Będlewo, 25-30 maja 2015 Funkcje prawie okresowe w sensie Bohra Definicja Zbiór E R nazywamy względnie
Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska
Ciągłość funkcji jednej zmiennej rzeczywistej Autorzy: Anna Barbaszewska-Wiśniowska 2018 Spis treści Definicja ciągłości funkcji. Przykłady Funkcja nieciągła. Typy nieciągłości funkcji Własności funkcji
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Wstęp. Regresja logistyczna. Spis treści. Hipoteza. powrót
powrót Spis treści 1 Wstęp 2 Regresja logistyczna 2.1 Hipoteza 2.2 Estymacja parametrów 2.2.1 Funkcja wiarygodności 3 Uogólnione modele liniowe 3.1 Rodzina wykładnicza 3.1.1 Rozkład Bernouliego 3.1.2 Rozkład
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie
Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,
Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II
Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,
Lokalna odwracalność odwzorowań, odwzorowania uwikłane
Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju
Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.
Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.
Wykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna
Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna