Test na poczàtek nauki w gimnazjum
|
|
- Aneta Mróz
- 7 lat temu
- Przeglądów:
Transkrypt
1 94 Przykładowe sprawdziany Test na poczàtek nauki w gimnazjum Wersja A... imi i nazwisko ucznia data klasa Cz Êç I zadania zamkni te W zadaniac od. do 9. sà podane cztery odpowiedzi: A, B, C, D. Wybierz tylko jednà z nic. Jaka to liczba: ? A. sto tysi cy B. jeden milion C. dziesi ç milionów D. sto milionów Wska najwi kszà wêród liczb: XIX, XIV, XXI, XVIII. A. XIV B. XVIII C. XIX D. XXI Ile jest równa reszta z dzielenia liczby 009 przez 4? A. 0 B. C. D. 4 Jedna z poni szyc równoêci jest nieprawdziwa. Wska jà. A. 7 : = C = 00 B. 87 = 897 D = 7 Jakie działanie wykonamy jako ostatnie, obliczajàc wartoêç podanego wyra enia? (7 ) : ( + ) A. dzielenie B. mno enie C. odejmowanie D. dodawanie Wska liczb, która jest jednoczeênie podzielna przez, i 9. A. 9 B. 490 C. 0 D W poniedziałkowe południe termometr za oknem wskazywał 7 C. We wtorek w południe temperatura była o C wy sza ni w poniedziałek, a w Êrodowe południe była o C ni sza ni we wtorek. Jakà temperatur wskazywał termometr w Êrod w południe? A. C B. 9 C C. C D. + C 8 40 Która liczba nie jest równa ułamkowi? 0 0 A. B. C. D.
2 Przykładowe sprawdziany 9 9 Jaka liczba odpowiada punktowi A zaznaczonemu na osi liczbowej? A. B. C. 0, D. 0,7 0 Wska postaç dziesi tnà ułamka. 9 A. 0, B. 0, C. 0, D. 0,... Jakà liczb otrzymamy po zaokràgleniu liczby 84,8 do pełnyc dziesiàtek? A. 90 B. 80 C. 84, D. 84, Jedna z poni szyc równoêci jest nieprawdziwa. Wska jà. A. : = 4 C. = B. = D. 7 + = Plan miejscowoêci Kocie Łapki ma kształt kwadratu o boku długoêci 9 równe pole tego planu? cm. Ile jest A. 8 cm 4 B. cm C. 8 cm D. 84 cm 4 Wska diagram, w którym po wykonaniu działaƒ otrzymamy najwi kszy wynik. A. + 4 : = 4 B = 8 C. 4 = D. 0 = Na widowni pewnego kina jest rz dów po x miejsc oraz 8 rz dów po y miejsc. Ile miejsc jest na tej widowni? A. ( + x) (8 + y) C. 0 (x + y) B. y + 8x D. x + 8y
3 9 Przykładowe sprawdziany Rozwiàzaniem równania x + 0, =, jest liczba: A. B., C. D., 7 W wielokàcie przedstawionym na rysunku obok ka de dwa sàsiednie boki sà prostopadłe. Wska par boków równoległyc. A. JK i GH C. AB i FG B. ED i CD D. HI i JK 8 WÊród kàtów zaznaczonyc na rysunku łukami sà oznaczone: A. kàty ostre, 4 kàty rozwarte i kàty proste B. 4 kàty ostre, kàty rozwarte i kàty proste C. kàty ostre, kàtów rozwartyc i kàt prosty D. 4 kàty ostre, 4 kàty rozwarte i kàt prosty 9 Jeden z kàtów wierzcołkowyc ma miar 0. Jakà miar ma kàt przyległy do drugiego z tej pary kàtów wierzcołkowyc? A. 0 B. 0 C. 80 D. 0 0 W trójkàcie ostrokàtnym jeden z kàtów ma miar. Inny kàt w tym trójkàcie mo e mieç miar : A. 90 B. 7 C. D. 9 Na rysunku obok przedstawiono figur zło onà z kwadratu i dwóc trójkàtów równobocznyc. Czy mo na ten rysunek dokoƒczyç tak, aby otrzymaç siatk pewnego ostrosłupa lub graniastosłupa? A. Mo na otrzymaç siatk graniastosłupa lub ostrosłupa. B. Mo na otrzymaç siatk ostrosłupa, ale nie mo na otrzymaç siatki graniastosłupa. C. Mo na otrzymaç siatk graniastosłupa, ale nie mo na otrzymaç siatki ostrosłupa. D. Nie mo na otrzymaç ani siatki graniastosłupa, ani siatki ostrosłupa. Karton mleka ma wymiary cm, 0 cm i 0 cm, a karton soku 8 cm, 0 cm i cm. Wska zdanie prawdziwe. A. Karton mleka ma wi kszà obj toêç, ale mniejsze pole powierzcni ni karton soku. B. Karton mleka ma wi kszà obj toêç i wi ksze pole powierzcni ni karton soku. C. Karton mleka ma mniejszà obj toêç i mniejsze pole powierzcni ni karton soku. D. Karton mleka ma mniejszà obj toêç, ale wi ksze pole powierzcni ni karton soku.
4 Przykładowe sprawdziany 97 Wska figur, która ma najwi ksze pole. A. figura I C. figura III B. figura II D. figura IV 4 7 W pewne upalne popołudnie zapytano 0 przypadkowo spotkanyc osób, ile porcji lodów zjadły ju dzisiaj. WÊród tyc osób 0% nie zjadło adnej porcji, % jednà, 0% dwie, a % trzy porcje. Pozostałe osoby stwierdziły, e zjadły wi cej ni trzy porcje lodów. Ile było tyc osób? A. B. 8 C. 0 D. Wojtek rozpoczyna dziê zaj cia o godzinie 8:. Ma tylko 4 lekcje po 4 minut, a przerwy mi dzy kolejnymi lekcjami trwajà po 0 minut. O której godzinie skoƒczy si ostatnia lekcja Wojtka? A. : B. : C. : D. : Wojtek narysował na mapie tras, jakà przepłynàł ze swoim tatà aglówkà po Jeziorze Mokrym. Trasa ta ma na mapie długoêç 4 cm, a mapa jest sporzàdzona w skali : Ile kilometrów w rzeczywistoêci liczy ta trasa? A.,8 B., C., D. 7 Asia pokonała na rowerze stromy podjazd górski o długoêci, w czasie 0 minut. Na szczycie zawróciła i w czasie 0 minut dotarła z powrotem do miejsca, z którego wyruszyła. Jaka była Êrednia pr dkoêç Asi podczas całej tej przeja d ki? A., B. C. 7, D. 0 8 Kostka do gry ma mas, g. Ile nale y wziàç takic kostek, aby ic łàczna masa była równa jednej tonie? A kostek B kostek C kostek D kostek 9 Ka dego pierwszoklasist w pewnym gimnazjum poproszono o wskazanie jednej grupy przedmiotów, które go najbardziej interesujà. Wyniki ankiety przedstawiono na diagramie. Wska zdanie nieprawdziwe. A. Prawie dwukrotnie wi cej osób wskazało przedmioty artystyczne ni przyrodnicze. B. Około połowa osób wybrała przedmioty Êcisłe lub artystyczne. C. Ârednio co trzecia osoba wybrała przedmioty umanistyczne. D. Prawie dwukrotnie wi cej osób wskazało przedmioty umanistyczne ni Êcisłe.
5 98 Przykładowe sprawdziany Cz Êç II zadania otwarte Rozwiàzania zadaƒ od 0. do 7. zapisz czytelnie i starannie w wyznaczonyc miejscac. 0 Wpisz w puste pole sum liczb z dwóc pól znajdujàcyc si bezpoêrednio nad nim. 4 7 Uzupełnij tekst, wpisujàc nazw czworokàta. a) Romb, którego wszystkie kàty sà proste, to... b) Trapez, którego wszystkie boki majà t samà długoêç, to... Pani Joanna ma trzy psy: pudelka, jamnika i wilczura. Jamnik wa y kg i jest o, kg ci szy od pudelka oraz o, kg l ejszy od wilczura. a) Ile razy wilczur jest ci szy od pudelka?... b) O ile wilczur jest ci szy od pudelka?... Uzupełnij wykropkowane miejsca tak, aby równoêci były prawdziwe. 00 m =... dm = Oblicz wartoêç wyra enia,4 : ( ) + 0,
6 Przykładowe sprawdziany 99 Wyznacz miary kàtów α, β, γ zaznaczonyc na rysunku. (0 p.) Asia zaprosiła kilka kole anek. W pobliskiej cukierni kupiła 40 dag sernika, 0 dag szarlotki, 4 kremówki i ptysiów. Ile złotyc reszty otrzymała z 0 zł? (0 4 p.) 7 Oblicz obwód czworokàta przedstawionego na rysunku. (0 4 p.)
Test dla klasy drugiej pierwsze półrocze
9 Test dla klasy drugiej pierwsze półrocze Wersja B... imi i nazwisko ucznia...... data klasa Cz Êç I zadania zamkni te W zadaniach od. do 0. podano cztery odpowiedzi: A, B, C, D. Wska poprawnà. Jakie
Test na koniec pierwszej klasy
08 Przykładowe sprawdziany Test na koniec pierwszej klasy Wersja A... imi i nazwisko ucznia...... data klasa Cz Êç I zadania zamkni te W zadaniach od. do 9. sà podane cztery odpowiedzi: A, B, C, D. Wybierz
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. PESEL
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 0 KOD UCZNIA UZUPE NIA ZESPÓ NADZORUJ CY PESEL miejsce na naklejk z kodem
Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D)
W ka dym z zada.-24. wybierz i zaznacz jedn poprawn odpowied. Zadanie. (0- pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% Zadanie 2. (0- pkt) Wyra enie
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 1 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do 1. sà podane
Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON. Kopiowanie w całości lub we fragmentach bez pisemnej zgody wydawcy zabronione.
WPISUJE UCZEŃ KOD UCZNIA PESEL OGÓLNOPOLSKI PRÓBNY EGZAMIN ÓSMOKLASISTY Z OPERONEM MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 11 stron (zadania 1. 21.). Ewentualny brak
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009
Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy 170 minut 1. Sprawdê, czy arkusz zawiera 15 stron. 2. W zadaniach
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 14 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do 3. sà
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 13 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.
LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23
TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie. O ile więcej, o ile mniej 3. Rachunki pamięciowe,
XIII KONKURS MATEMATYCZNY
XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania
TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH
TEMAT 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym
TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH
TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Rachunki pamięciowe, dodawanie i odejmowanie 2. O ile więcej,
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 8 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do. sà podane
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..
WYMAGANIA EGZAMINACYJNE DLA KLASY IV WYMAGANIA SZCZEGÓŁOWE
TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie 2. O ile więcej, o ile mniej 3. Rachunki pamięciowe mnożenie i dzielenie 4. Mnożenie i dzielenie (cd.) 5. Ile razy więcej, ile
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V. Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r.
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r. Działania pamięciowe Potęgowanie 1) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe
SPRAWDZIAN WIADOMOŚCI CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA
Kod ucznia SPOŁECZNE GIMNAZJUM NR 27 IM. KARDYNAŁA STEFANA WYSZYŃSKIEGO SPOŁECZNEGO TOWARZYSTWA OŚWIATOWEGO W WARSZAWIE dysleksja SPRAWDZIAN WIADOMOŚCI CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA 16 maja 2011 czas
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 6 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do. sà podane 4 odpowiedzi:
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 8 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do 5. sà podane 4 odpowiedzi:
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do. sà podane 4 odpowiedzi:
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
dysleksja Miejsce na identyfikacj szko y ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY Czas pracy 120 minut GRUDZIE ROK 2007 Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz egzaminacyjny
II. Działania na liczbach naturalnych. Uczeń:
TEMAT 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 14. II. 2017. I. Liczby naturalne w dziesiątkowym
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9
Vancouver 2010 Êwi to sportów zimowych
... imi i nazwisko ucznia...... klasa suma punktów...... data ocena Vancouver 200 Êwi to sportów zimowych Tekst do zadania. i 2. Igrzyska Olimpijskie odbywajà si co cztery lata. W lutym 200 roku w Kanadzie
WYMAGANIA EGZAMINACYJNE DLA KLASY V
TEMAT WYMAGANIA EGZAMINACYJNE DLA KLASY V WYMAGANIA SZCZEGÓŁOWE 1.LICZBY I DZIAŁANIA 1. Zapisywanie i I. Liczby naturalne w dziesiątkowym układzie pozycyjnym. porównywanie liczb. Uczeń: 1) zapisuje i odczytuje
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE DLA KLASY IV TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne w dziesiątkowym
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 0 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do 5. sà podane 4 odpowiedzi:
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 1.LICZBY I DZIAŁANIA
Wymagania edukacyjne niezbędne do otrzymania przez ucznia klasy 5 poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych w roku szkolnym2016/2017. TEMAT 1.LICZBY I DZIAŁANIA 1. Zapisywanie i porównywanie
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa 4 Dział 1. Liczby. Uczeń: gromadzi dane; porządkuje dane; przedstawia dane interpretuje dane odczytuje dane w tabelach, na przedstawione w tekstach, przedstawione
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Sprytne rachunki. 4. Szacowanie wyników działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 10 minut 1. Sprawdê, czy arkusz zawiera 10 stron.. W zadaniach od 1. do 5. sà podane
Obwody i pola figur -klasa 4
Obwody i pola figur -klasa 4 str. 1/6...... imię i nazwisko lp. w dzienniku...... klasa data 1. Przyjmij za jednostkę. Zapisz, jakie pole ma narysowana figura. Pole =.......................... 2. Jakie
Sprawdzian umiejętności matematycznych po klasie V szkoły podstawowej
Sprawdzian Sprawdzian umiejętności matematycznych po klasie V szkoły podstawowej Grupa A Powodzenia!... imi i nazwisko ucznia 1 a) Zapisz liczby cyframi arabskimi. XIX XXIV b) Zapisz liczby cyframi rzymskimi.
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2017/2018 04.01.2018 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.
Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe.
SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca)
SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania Wymagania ponad Dział 1. Liczby. Uczeń: 1. Zbieranie i prezentowanie danych gromadzi dane; odczytuje dane przedstawione w tekstach, tabelach,
NUMER IDENTYFIKATORA:
Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl
Wymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI
ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 4 MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do 1. sà podane
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT 1.LICZBY I DZIAŁANIA
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZ. LEKCYJN YCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ I. Liczby
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 4. II. 07.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki.
KRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1
KRYTERIA OCEN DLA KLASY VI Zespół Szkolno-Przedszkolny nr 1 2 3 KRYTERIA OCEN Z MATEMATYKI DLA KLASY VI LICZBY NATURALNE I UŁAMKI Na ocenę dopuszczającą uczeń powinien: - znać algorytm czterech
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.
Wymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
WYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2015/2016 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 23 MARCA 203 CZAS PRACY: 90 MINUT ZADANIE ( PKT.) Na diagramie zaznaczono, w których miesiacach urodzili się uczniowie
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI
Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne. Matematyka
Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,
Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny
Przedmiotowe zasady oceniania Matematyka Wymagania edukacyjne na poszczególne oceny Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV Dział I. Liczby naturalne część 1 Jak się uczyć matematyki Oś liczbowa Jak zapisujemy liczby Szybkie dodawanie Szybkie odejmowanie Tabliczka mnożenia Tabliczka
Wymagania edukacyjne z matematyki- klasa 4
Wymagania edukacyjne z matematyki- klasa 4 Rozdział Wymagania podstawowe konieczne (ocena dopuszczająca) Podstawowe (ocena dostateczna) rozszerzające (ocena dobra) Wymagania ponadpodstawowe dopełniające
14:00 15:00 16:00. Godzina Turysta A. Godzina. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli jest fałszywe.
Zadanie 1. (0 1) Turysta A szedł ze schroniska w kierunku szczytu, natomiast turysta B schodził ze szczytu w kierunku schroniska. Obaj szli tym samym szlakiem i tego samego dnia. Wykresy przedstawiają,
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 24
Sprawdzian całoroczny kl. II Gr. A x
. Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw
Matematyka z plusem Klasa IV
Matematyka z plusem Klasa IV KLASA IV SZCZEGÓŁOWE CELE EDUKACYJNE KSZTAŁCENIE Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych. Stosowanie
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.
WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa IV Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające
Lista działów i tematów
Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe mnożenie i dzielenie Ile razy więcej, ile
Lista działów i tematów
Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe - dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe - mnożenie i dzielenie Mnożenie i dzielenie
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.
Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.
Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono
MaTeMaTYka arkusz egzaminacyjny nr 1
01 arkusz egzaminacyjny Imię i nazwisko Data Klasa MaTeMaTYka arkusz egzaminacyjny nr 1 Drogi Gimnazjalisto, przed Tobą arkusz egzaminacyjny sprawdzający twoją wiedzę z matematyki. Przed przystąpieniem
1 Odległość od punktu, odległość od prostej
24 Figury geometryczne 2 Figury geometryczne 1 Odległość od punktu, odległość od prostej P 1. Odległość punktu K od prostej p jest równa 4 cm. Który z odcinków ma długość równą 4 cm? K p A B C D A. AK
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 11 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.
Zadanie 1. (0 1) Cena okularów bez promocji wynosi 240 zł. Ile zapłaci za te okulary klient, który ma 35 lat? Wybierz odpowiedź spośród podanych.
Informacja do zadań 1. i 2. Promocja w zakładzie optycznym jest związana z wiekiem klienta i polega na tym, że klient otrzymuje tyle procent zniżki, ile ma lat. Zadanie 1. (0 1) Cena okularów bez promocji
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018 13.04.2018 R. 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte i otwarte.
Matematyka. Klasa V. Pytania egzaminacyjne
Matematyka Pytania egzaminacyjne Klasa V 07. Oblicz najprostszym sposobem. a) + 9 + 67 + b) 0 8. Oblicz łączny koszt zakupów: owoców za zł, książki za 9 zł, mapy za 7 zł i kosmetyków za zł.. Oblicz najprostszym
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja
31 MAJA 2012 CZAS PRACY: 90 MIN.
IMIE I NAZWISKO MAJA 202 CZAS PRACY: 90 MIN. ZADANIE Asia jeździła rowerem 2 godziny. Na diagramie przedstawiono w procentach (w %) czas jazdy Asi po leśnej drodze, ścieżce rowerowej i polnej drodze, ale
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 7 MATURA 2010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron. 2. W zadaniach od 1. do 21.
Matematyka. Repetytorium szóstoklasisty
Matematyka Repetytorium szóstoklasisty 7 do sprawdzianu Najpierw... Potem... 4 1 2 + 8 Powodzenia!!! 7 Szóstoklasisto, już wkrótce ukończysz naukę w szkole podstawowej. Zanim to jednak nastąpi, w kwietniu
SUKCES W NAUCE MATEMATYKA. klasa IV
SUKCES W NAUCE SPRAWDZIANY MATEMATYKA klasa IV FIGURY GEOMETRYCZNE: WIELOKĄTY, KOŁA I SKALA Zadanie 1. Która z narysowanych figur jest wielokątem? A. B. C. D. Zadanie 2. Wielokąt o 5 wierzchołkach ma:
MaTeMaTYka arkusz egzaminacyjny nr 1
egzamin próbny 1 Imię i nazwisko Data Klasa Zadanie 1. (0 1) MaTeMaTYka arkusz egzaminacyjny nr 1 Pierwsze archiwalne wzmianki dotyczące egzotycznych zwierząt hodowanych w Krakowie pochodzą z 1406 roku.
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 7 KWIETNIA 2018 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 W budynku przeprowadzono test dwóch zainstalowanych
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL
Układ graficzny CKE 20 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z kodem
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Uprawnienia ucznia do: dostosowania