Celem ćwiczenia jest eksperymentalne określenie rozkładu ciśnienia na powierzchni walca kołowego oraz obliczenie jego współczynnika oporu.
|
|
- Mikołaj Janik
- 7 lat temu
- Przeglądów:
Transkrypt
1 OPŁYW WALCA KOŁOWEGO 1. Cel ćwiczenia Celem ćwiczenia jest eksperymentalne określenie rozkładu ciśnienia na powierzchni walca kołowego oraz obliczenie jego współczynnika oporu. Wyznaczenie rozkładu ciśnienia na powierzchni walca to jedna z metod określenia współczynnika. 2. Wiadomości podstawowe Opływ walca jest zagadnieniem, z którym często spotykamy się w praktyce. Odnosi się to na przykład do opływu wiatrem kominów przemysłowych, przewodów energetycznych, przęseł mostu lub wszelkiego rodzaju słupów, podpór i masztów, rurowych wymienników ciepła itp. Oprócz tego, ze względu na bogactwo zjawisk jakie towarzyszą opływowi walca i problemy z tym związane, znajdują one zastosowanie w lotnictwie, w przemyśle samochodowym oraz wszędzie tam gdzie mamy do czynienia z opływem ciał stałych przez płyn. Opływ walca kołowego można rozpatrywać jako opływ przy pomocy płynu doskonałego lub rzeczywistego. Zależności opisujące opływ walca płynem doskonałym (nielepkim) są wyprowadzone na drodze analitycznej w oparciu o zasady kinematyki płynu doskonałego. W przypadku opływu płynem rzeczywistym bardzo często posługujemy się wizualizacją opływu przy pomocy dymu ( w tunelach aerodynamicznych ) lub wody. 3. Opływ walca kołowego płynem doskonałym. a) Przepływ potencjalny / nie wirowy /. Charakterystyczną cechą przepływu nie wirowego jest to, że elementy płynu doznają tylko przesunięć i odkształceń, a nie wykonują obrotów. Przepływ potencjalny (nie wirowy) może być zrealizowany tylko przy pomocy płynu nielepkiego. Rys. 1. Rozkład prędkości i ciśnień przy opływie bezcyrkulacyjnym profilu kołowego
2 Jak widać z Rys.1. bezcyrkulacyjny opływ walca kołowego płynem idealnym wykazuje symetrię względem obu osi układu współrzędnych. Zawiera dwa punkty stagnacji i dwa punkty maksymalnej depresji. A zatem wypadkowa sił ciśnieniowych musi być równa zero. Składową reakcji płynu równoległą do kierunku wektora prędkości w obszarze niezakłóconym nazywa się oporem, natomiast składową prostopadłą do kierunku przepływu niezakłóconego siłą nośną. Z faktu, że na skutek pełnej symetrii zarówno jak i wynika potwierdzenie tzw. paradoksu d'alemberta głoszącego, że przy ruchu ciał w płynie doskonałym nie powstają żadne siły. Wynik ten jest w sposób oczywisty sprzeczny z doświadczeniem, co oznacza, że lepkość zmienia obraz przepływu a w praktyce rozkład ciśnienia dla takiego przypadku nie istnieje. b) Przepływ cyrkulacyjny Aby na gruncie kinematyki płynu doskonałego objaśnić powstanie siły nośnej, należy do rozważań wprowadzić wir płaski kołowy o cyrkulacji cyrkulacyjny opływ walca kołowego.. Wówczas ma miejsce Rys. 2. Rozkład prędkości i ciśnień na profilu kołowym przy opływie cyrkulacyjnym W tym wypadku symetria przepływu względem osi x zostaje zakłócona przez wprowadzenie wiru, natomiast względem osi y rozkład prędkości i ciśnień jest symetryczny. Asymetryczny względem osi x rozkład prędkości pociąga za sobą asymetryczny rozkład ciśnień. Powstaje więc wypadkowa sił ciśnieniowych prostopadła do kierunku przepływu równoległego, czyli tzw. siła nośna.
3 4. Opływ walca kołowego płynem rzeczywistym c) Warstwa przyścienna oraz jej oderwanie Dla brył o kształcie nieopływowym ( duże siły styczne nie wpływają znacząco na wartość oporu. Można przyjąć, że siła oporu czołowego dla takich brył zależy przede wszystkim od rozkładu ciśnień na powierzchni bryły. Rozkład ciśnień na powierzchni bryły jest ściśle związany ze zjawiskiem oderwania warstwy przyściennej i rodzajem przepływu w tej warstwie. Warstwa przyścienna rys.3. tworzy się w pobliżu powierzchni bryły w wyniku działania adhezji i sił lepkości powietrza. Jest to cienka warstwa płynu w bezpośredniej bliskości powierzchni ciała stałego, w której występuje gradient prędkości w kierunku normalnym do tej powierzchni. W warstwie tej, o bardzo małej grubości, prędkość przepływu względnego zmienia się wraz z odległością od powierzchni bryły. Poza warstwą przyścienną prędkość opływu w kierunku normalnym do powierzchni bryły pozostaje prawie niezmienna, natomiast ulega ona zmianom wzdłuż przepływu w pobliżu powierzchni bryły. Dla konkretnej bryły, o określonym kształcie i wymiarach, rodzaj przepływu w warstwie przyściennej zależy przede wszystkim od prędkości względnej płynu poza warstwą przyścienną. Na skutek działania sił stycznych oraz przyrostu ciśnienia wzdłuż przepływu, ruch elementów powietrza w warstwie przyściennej może zostać wyhamowany, a nawet może się zmienić zwrot wektora prędkości. Wówczas następuje oderwanie warstwy przyściennej, tworząc za bryłą obszar zawirowany ( zastoju ), w którym ciśnienie jest niższe niż w obszarze niezakłóconym. Zależnie od rodzaju przepływu w warstwie przyściennej, oderwanie jej następuje bliżej lub dalej od czoła bryły. Przy małych prędkościach opływu powstaje laminarna warstwa przyścienna. Oderwanie jej zachodzi bliżej czoła bryły rys.3. w porównaniu z oderwaniem turbulentnej warstwy przyściennej rys.4. kiedy tworzy się szeroki obszar zawirowany ( o niższym ciśnieniu ). Rys. 3. Szeroki obszar zawirowany Wzrost prędkości opływu może spowodować przejście warstwy laminarnej w turbulentną, która odrywa się dalej, ponieważ jej wyhamowanie jest trudniejsze. Energia kinetyczna ruchu
4 elementów tej warstwy jest uzupełniana przez powietrze poruszające się względem bryły poza warstwa przyścienną. Dla ruchu turbulentnego cała warstwa przyścienna wymienia elementy o mniejszej energii kinetycznej na elementy o większej energii przenikające spoza obszaru tej warstwy a przez to nie dopuszczają one do tak szybkiego zmniejszenia energii kinetycznej elementów przyściennych jak w przypadku warstwy laminarnej.w rezultacie tworzy się węższy obszar zawirowany. Rys. 4. Wąski obszar zawirowany. Miejsce oderwania warstwy przyściennej decyduje o rozkładzie ciśnień na powierzchni bryły. Porównanie rozkładów ciśnień dla laminarnej i turbulentnej warstwy przyściennej pozwala stwierdzić, że korzystniejszy jest rozkład ciśnień towarzyszący oderwaniu warstwy turbulentnej. W przypadku oderwania laminarnej warstwy przyściennej występuje szeroki obszar zawirowany i silne oddziaływanie podciśnienia na tylną część bryły. W przypadku oderwania turbulentnej warstwy przyściennej obszar zawirowany jest węższy i oddziaływanie podciśnienia słabsze. a.) b.) Rys. 5. Rozkład ciśnień na profilu kołowym.
5 Na rys. 5. pokazano dwojaki sposób oderwania warstwy przyściennej (pkt.2), który jak już wspomniano wcześniej, zależny jest od wartości liczby Reynoldsa. Na rys. 5a. od punktu zerowego zwanego punktem stagnacji ( maksymalne nadciśnienie ) do punktu 1, zwanego punktem oderwania ( maksymalne podciśnienie ) występuje ujemny gradient ciśnienia. Gradientem ciśnienia nazywamy zmianę ciśnienia w kierunku przepływu: ujemny gradient ciśnienia oznacza, że wzdłuż drogi przepływu ciśnienie maleje. Od punktu 1 gradient ciśnienia jest dodatni, czyli wzrasta ciśnienie, oczywiście kosztem zmniejszenia energii kinetycznej w warstwie przyściennej, czemu towarzyszy oderwanie się strugi. Przesunięcie kątowe punktu 1 względem punktu 0 wynosi dla małych liczb Reynoldsa (przepływ laminarny ) ok Dla płynu doskonałego punkt 1 jest przesunięty względem punktu 0 dokładnie o 90, bo wówczas nie występują siły lepkości. Jeżeli przepływ odbywa się w zakresie większych liczb Re, czyli przy większym udziale sił bezwładności, warstwa przyścienna jest już turbulentna i energia kinetyczna wyczerpuje się na dłuższej drodze, co przy dodatnim gradiencie ciśnienia, zmiany na opływanej powierzchni zachodzą na znacznie dłuższej drodze a oderwanie ma miejsce w punkcie 2 dla kąta nawet 140, rys.5b. Przepływ przy małych ( przy laminarnej warstwie przyściennej ), a więc przy większym udziale sił lepkości w stosunku do sił bezwładności charakteryzuje szerszy obszar zaburzeń i większy współczynnik oporu. Aby współczynnik oporu był mniejszy, przepływ w warstwie przyściennej powinien być zatem turbulentny. Dla małych liczb można go zrealizować w ten sposób, że sztucznie zaburza się przepływ w bezpośredniej bliskości powierzchni za pomocą uczynienia szorstką przedniej części walca lub umieszczenia drucików zakłócających. Uzyskuje się w ten sposób paradoksalny pozornie efekt, że takie zakłócenie powierzchni opływanej zmniejszyć może współczynnik oporu. 5. Współczynnik oporu W przypadku ciał mających oś lub płaszczyznę symetrii równoległą do kierunku przepływu ( jak np. walec kołowy ) nie występuje siła nośna, ma miejsce jedynie opór. Opór ten nazywany profilowym to inaczej siłą oporu ciała, którą można określić mierząc reakcję wywieraną przez płyn na opływane ciało. Wartość jej określa wzór : Gdzie: S a
6 Wielkość współczynnika oporu zależy od kształtu ciała, chropowatości powierzchni oraz od liczby Reynoldsa. Przykładowo dla nieskończenie długiego walca kołowego, wartości współczynnika oporu kształtują się jak na rys.6. Rys.6. Współczynnik oporu walca w funkcji liczby Reynoldsa Dla walca kołowego wartość krytycznej liczby Reynoldsa, przy której ruch w warstwie przyściennej przechodzi z laminarnego w burzliwy (turbulentny) wynosi ok. 2. Opory walca (np. siła wiatru ) w zakresie prędkości nadkrytycznych są blisko trzykrotnie mniejsze niż w przypadku konstrukcji o stałej wartości współczynnika oporu. Rys.7. Siła oporu w funkcji prędkości wiatru dla słupa (. Na wartość siły oporu oprócz wymienionych wcześniej wielkości ma również chropowatość powierzchni, zależność tą przedstawia rysunek 7. wpływ Z wszystkich powyższych przykładów wynika,że wartość współczynnika nie maleje wraz z coraz gładszą powierzchnią a siła oporu nie rośnie stale ze wzrostem prędkości ośrodka. Wpływ ma na to rodzaj opływu, nad czy podkrytyczny, jak również wiry Karmana.
7 W życiu codziennym bardzo często spotykamy się z obiektami opływanymi przez wiatr i wodę, podczas których może występować oderwanie lub siły powodujące drgania. Dlatego fakty te należy mieć na uwadze podczas ich projektowania. 6. Stanowisko pomiarowe Rys. 8. Schemat stanowiska pomiarowego. 1. komora pomiarowa 2. wentylator 3. walec kołowy 4. kątomierz 5. króciec pomiaru uśrednienia ciśnienia całkowitego 6. króciec pomiaru uśrednionego 7. u-rurka Kątomierz umożliwia pomiar położenia walca w stosunku do kierunku napływu powietrza w zakresie kątów Metodyka obliczeń
8 Jednostkowy opór walca można obliczyć wg. następującego wzoru: Gdzie: p nadciśnienie w punkcie walca określonym kątem Całkowity opór walca L długość walca Z drugiej strony A zatem Czyli Posługując się metodą trapezową wyznaczania całek otrzymuje się Ostatecznie Gdzie Pomiary zaczyna się przy kącie a kończy przy
9 Po przebadaniu walca gładkiego, należy go owinąć papierem ściernym a następnie siatką drucianą o wymiarze oczka i powtórzyć pomiary a następnie porównać wartości wyliczonych współczynników. Sprawozdanie winno zawierać: 1. Schemat stanowiska 2. Tabelę pomiarowo obliczeniową 3. Wykres rozkładu ciśnień dla: 4. walca gładkiego 5. walca owiniętego papierem ściernym 6. walca owiniętego siatką Opracował : W. Knapczyk Oprac. graf. S. Bielik
OPŁYW PROFILU. Ciała opływane. profile lotnicze łopatki. Rys. 1. Podział ciał opływanych pod względem aerodynamicznym
OPŁYW PROFILU Ciała opływane Nieopływowe Opływowe walec kula profile lotnicze łopatki spoilery sprężarek wentylatorów turbin Rys. 1. Podział ciał opływanych pod względem aerodynamicznym Płaski np. z blachy
Pomiar rozkładu ciśnień na modelu samochodu
Miernictwo C-P 1 Pomiar rozkładu ciśnień na modelu samochodu Polonez (Część instrukcji dotyczącą aerodynamiki samochodu opracowano na podstawie książki J. Piechny Podstawy aerodynamiki pojazdów, Wyd. Komunikacji
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę
Mechanika płynów : laboratorium / Jerzy Sawicki. Bydgoszcz, Spis treści. Wykaz waŝniejszych oznaczeń 8 Przedmowa
Mechanika płynów : laboratorium / Jerzy Sawicki. Bydgoszcz, 2010 Spis treści Wykaz waŝniejszych oznaczeń 8 Przedmowa 1. POMIAR CIŚNIENIA ZA POMOCĄ MANOMETRÓW HYDROSTATYCZNYCH 11 1.1. Wprowadzenie 11 1.2.
Badanie własności aerodynamicznych samochodu
1 Badanie własności aerodynamicznych samochodu Polonez (Instrukcję opracowano na podstawie ksiąŝki J. Piechny Podstawy aerodynamiki pojazdów, Wyd. Komunikacji i Łączności, Warszawa 000) Cele ćwiczenia
Laboratorium. Hydrostatyczne Układy Napędowe
Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,
Opływ walca kołowego
1. Wprowadzenie Ć w i c z e n i e Opływ walca kołowego Celem ćwiczenia jest eksperymentalne określenie rozkładu ciśnienia na powierzchni walca kołowego oraz obliczenie współczynnika oporu ciśnieniowego
WYDZIAŁ LABORATORIUM FIZYCZNE
1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość
J. Szantyr Wykład nr 20 Warstwy przyścienne i ślady 2
J. Szantyr Wykład nr 0 Warstwy przyścienne i ślady W turbulentnej warstwie przyściennej można wydzielić kilka stref różniących się dominującymi mechanizmami kształtującymi przepływ. Ogólnie warstwę można
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika
. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz
ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem
Jan A. Szantyr tel
Katedra Energetyki i Aparatury Przemysłowej Zakład Mechaniki Płynów, Turbin Wodnych i Pomp J. Szantyr Wykład 1 Rozrywkowe wprowadzenie do Mechaniki Płynów Jan A. Szantyr jas@pg.gda.pl tel. 58-347-2507
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez
OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH
ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczeń
PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH
ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczęń
J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne
J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym eksperymencie
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
WYDZIAŁ OCEANOTECHNIKI I OKRĘTOWNICTWA. Katedra Hydromechaniki i Hydroakustyki
WYDZIAŁ OCEANOTECHNIKI I OKRĘTOWNICTWA Katedra Hydromechaniki i Hydroakustyki ĆWICZENIA LABORATORYJNE Z HYDROMECHANIKI OKRĘTU Ćwiczenie Nr 20 Pomiar oporu ciał o różnych kształtach, wizualizacja opływu.
Tarcie poślizgowe
3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.
J. Szantyr Wykład nr 18 Podstawy teorii płatów nośnych Płaty nośne są ważnymi elementami wielu wytworów współczesnej techniki.
J. Szantyr Wykład nr 18 Podstawy teorii płatów nośnych Płaty nośne są ważnymi elementami wielu wytworów współczesnej techniki. < Helikoptery Samoloty Lotnie Żagle > < Kile i stery Wodoloty Śruby okrętowe
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA
ĆWICZENIE 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa
J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I
J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy
Hydrostatyczne Układy Napędowe Laboratorium
Hydrostatyczne Układy Napędowe Laboratorium Temat: Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracował: Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak CEL
2.5 Aerodynamika. W = 0,5 c x A v 2 ρ
2.5 Aerodynamika Spośród oporów, jakie napotyka i pokonuje samochód podczas jazdy, dla konstruktora nadwozi najistotniejszy jest opór powietrza. Zjawiska aerodynamiczne mają bowiem wpływ nie tylko na osiągi,
AERODYNAMIKA I WYKŁAD 7 WYBRANE ZAGADNIENIA AERODYNAMIKI MAŁYCH PRĘDKOŚCI
WYKŁAD 7 WYBRANE ZAGADNIENIA AERODYNAMIKI MAŁYCH PRĘDKOŚCI W wykładzie wykorzystano ilustracje pochodzące z: [UA] D. McLean, Understanding Aerodynamics. Arguing from the Real Physics. Wiley, 2013. [AES]
Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ]
Mechanika płynów Płyn każda substancja, która może płynąć, tj. dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje oraz może swobodnie się przemieszczać (przepływać), np. przepompowywana
Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi
Ć w i c z e n i e 5a Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi 1. Wprowadzenie Celem ćwiczenia jest zapoznanie się z przyrządami stosowanymi do pomiarów prędkości w przepływie
WYDZIAŁ OCEANOTECHNIKI I OKRĘTOWNICTWA. Katedra Hydromechaniki i Hydroakustyki
WYDZIAŁ OCEANOTECHNIKI I OKRĘTOWNICTWA Katedra Hydromechaniki i Hydroakustyki ĆWICZENIA LABORATORYJNE Z HYDROMECHANIKI OKRĘTU Ćwiczenie Nr 18 Pomiar sił hydrodynamicznych na płacie nośnym. Opracował: dr
WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ
INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na
Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia II stopnia
Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia II stopnia Przedmiot: Aerodynamika Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MBM 2 N 2 2 18-0_1 Rok: 1 Semestr: 2 Forma studiów: Studia
Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni.
Ciśnienie i gęstość płynów Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Powszechnie przyjęty jest podział materii na ciała stałe i płyny. Pod pojęciem substancji, która może płynąć rozumiemy zarówno ciecze
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Kurs teoretyczny PPL (A) Dlaczego samolot lata?
1 Kurs teoretyczny PPL (A) Dlaczego samolot lata? 2 Spis treści: 1. Wstęp (str. 4) 2. Siła nośna Pz (str. 4) 3. Siła oporu Px (str. 7) 4. Usterzenie poziome i pionowe (str. 9) 5. Powierzchnie sterowe (str.
J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i
J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym
Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń:
Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Wymagania rozszerzone i dopełniające 1 Układ odniesienia opisuje
Wywietrzniki grawitacyjne i ich właściwy dobór dla poprawnej wentylacji naturalnej w budynkach
Wywietrzniki grawitacyjne i ich właściwy dobór dla poprawnej wentylacji naturalnej w budynkach Do wentylacji pomieszczeń w budynkach mieszkalnych oraz pomieszczeń przemysłowych, stosowane są nie tylko
WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA
Ćwiczenie 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa,
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury
Aerodynamika Ś rodowiska
Aerodynamika Ś rodowiska dr inż. Elżbieta Moryń - Kucharczyk Temat: Ć wiczenie 11 Zastosowanie olejowej techniki wizualizacji Do analizy opływu obiektów 1. Cel ćwiczenia Celem ćwiczenia jest określenie
OKREŚLENIE WSPÓŁCZYNNIKA OPORU C X CIAŁA O KSZTAŁCIE OPŁYWOWYM.
OKREŚLENIE WSPÓŁCZYNNIKA OPORU C X CIAŁA O KSZTAŁCIE OPŁYWOWYM. WIADOMOŚCI PODSTAWOWE. Podczas opływu ciała stałego płynem lepkim ( lub gdy ciało porusza się w ośrodku nieruchomym ), na ciało to działa
MECHANIKA PŁYNÓW LABORATORIUM
MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych
WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU. Przygotował: Dr inż. Marian Mikoś
WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU Przygotował: Dr inż. Marian Mikoś Kocierz, 3-5 wrzesień 008 Wstęp Przedmiotem opracowania jest wykazanie, w jakim stopniu
MECHANIKA PŁYNÓW Płyn
MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać
Polska gola! czyli. Fizyk komputerowy gra w piłkę. Sławomir Kulesza
Polska gola! czyli Fizyk komputerowy gra w piłkę Sławomir Kulesza Plan prezentacji Fizyka ruchu ciała a w ośrodkuo Rzucamy jak Artur Siódmiak Kopiemy jak Roberto Carlos Serwujemy jak Stephane Antiga Plan
J. Szantyr Wykład nr 21 Aerodynamika płatów nośnych Płaty nośne są ważnymi elementami wielu wytworów współczesnej techniki.
J. Szantyr Wykład nr 21 Aerodynamika płatów nośnych Płaty nośne są ważnymi elementami wielu wytworów współczesnej techniki. < Helikoptery Samoloty Lotnie Żagle > < Kile i stery Wodoloty Śruby okrętowe
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
Fizyka w sporcie Aerodynamika
Sławomir Kulesza kulesza@matman.uwm.edu.pl Symulacje komputerowe (07) Fizyka w sporcie Aerodynamika Wykład dla studentów Informatyki Ostatnia zmiana: 26 marca 2015 (ver. 5.1) Po co nauka w sporcie? Przesuwanie
18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa
Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów
Opory ruchu. Fizyka I (B+C) Wykład XII: Tarcie. Ruch w ośrodku
Opory ruchu Fizyka I (B+C) Wykład XII: Tarcie Lepkość Ruch w ośrodku Tarcie Tarcie kinetyczne Siła pojawiajaca się między dwoma powierzchniami poruszajacymi się względem siebie, dociskanymi siła N. Ścisły
VII.1 Pojęcia podstawowe.
II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku
STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY)
STTYK I DYNMIK PŁYNÓW (CIECZE I GZY) Ciecz idealna: brak sprężystości postaci (czyli brak naprężeń ścinających) Ciecz rzeczywista małe naprężenia ścinające - lepkość F s F n Nawet najmniejsza siła F s
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
ĆWICZENIE I WYZNACZENIE ROZKŁADU PRĘDKOŚCI STRUGI W KANALE
ĆWICZENIE I WYZNACZENIE ROZKŁADU PRĘDKOŚCI STRUGI W KANALE 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą pomiaru prędkości płynu przy pomocy rurki Prandtla oraz określenie rozkładu prędkości
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie
DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje
Badania efektywności pracy wywietrzników systemowych Zefir w układach na pustaku wentylacyjnym w czterorzędowym wariancie montażowym
Badania efektywności pracy wywietrzników systemowych Zefir - 150 w układach na pustaku wentylacyjnym w czterorzędowym wariancie montażowym wywietrzniki ZEFIR-150 Środkowe wywietrzniki z podniesioną częścią
Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.
Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie
Mechanika Płynów Fluid Mechanics
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Mechanika Płynów Fluid Mechanics A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
MECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO . Cel ćwiczenia Doświadczalne wyznaczenie rozkładu ciśnienia piezometrycznego w zwęŝce Venturiego i porównanie go z
Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów.
Ćwiczenie : Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów. Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na kierunku Mechanika i Budowa Maszyn Rodzaj zajęć: wykład, ćwiczenia, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU
Ćwiczenie laboratoryjne Parcie wody na stopę fundamentu
Ćwiczenie laboratoryjne Parcie na stopę fundamentu. Cel ćwiczenia i wprowadzenie Celem ćwiczenia jest wyznaczenie parcia na stopę fundamentu. Natężenie przepływu w ośrodku porowatym zależy od współczynnika
Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich
Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy
Numeryczne modelowanie mikrozwężkowego czujnika przepływu
Numeryczne modelowanie mikrozwężkowego czujnika przepływu Antoni Gondek Tadeusz Filiciak Przedstawiono wybrane wyniki modelowania numerycznego podwójnej mikrozwężki stosowanej jako czujnik przepływu, dla
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Mechanika teoretyczna
Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe
Wektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/17-2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Mechanika płynów Kod przedmiotu/ modułu* Wydział (nazwa jednostki
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2018 Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Praca wykonana przez siłę wypadkową działającą
Parametry układu pompowego oraz jego bilans energetyczny
Parametry układu pompowego oraz jego bilans energetyczny Układ pompowy Pompa może w zasadzie pracować tylko w połączeniu z przewodami i niezbędną armaturą, tworząc razem układ pompowy. W układzie tym pompa
Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości
LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK
Wyznaczanie modułu Younga metodą strzałki ugięcia
Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych
8. OPORY RUCHU (6 stron)
8. OPORY RUCHU (6 stron) Wszystkie ciała poruszające się w naszym otoczeniu napotykają na mniejsze lub większe opory ruchu. Siły oporu są zawsze skierowane przeciwnie do kierunku wektora prędkości ciała
WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA
Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między
Temat ćwiczenia. Pomiary otworów na przykładzie tulei cylindrowej
POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary otworów na przykładzie tulei cylindrowej I Cel ćwiczenia Zapoznanie się z metodami pomiaru otworów na przykładzie pomiaru zuŝycia gładzi
wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe
Ćwiczenie 15 ZGNANE UKOŚNE 15.1. Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe
Pomiar ciśnienia krwi metodą osłuchową Korotkowa
Ćw. M 11 Pomiar ciśnienia krwi metodą osłuchową Korotkowa Zagadnienia: Oddziaływania międzycząsteczkowe. Siły Van der Waalsa. Zjawisko lepkości. Równanie Newtona dla płynięcia cieczy. Współczynniki lepkości;
Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).
Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie
REAKCJA HYDRODYNAMICZNA STRUMIENIA NA NIERUCHOMĄ PRZESZKODĘ.
REAKCJA HYDRODYNAMICZNA STRUMIENIA NA NIERUCHOMĄ PRZESZKODĘ. Reakcją hydrodynamiczną nazywa się siłę, z jaką strumień cieczy działa na przeszkodę /zaporę / ustawioną w jego linii działania. W technicznych
AERODYNAMIKA I WYKŁAD 3 TEORIA CIENKIEGO PROFILU LOTNICZEGO
WYKŁAD 3 TEORIA CIENKIEGO PROFILU LOTNICZEGO TEMATYKA I CEL WYKŁADU: Przedstawić koncepcję modelowania dwuwymiarowego przepływu potencjalnego płynu nieściśliwego bazującego na wykorzystaniu rozłożonych
Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja
Nawiew powietrza do hal basenowych przez nawiewne szyny szczelinowe
Nawiew powietrza do hal basenowych przez nawiewne szyny szczelinowe 1. Wstęp Klimatyzacja hali basenu wymaga odpowiedniej wymiany i dystrybucji powietrza, która jest kształtowana przez nawiew oraz wywiew.
R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y
Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można
Badanie własności hallotronu, wyznaczenie stałej Halla (E2)
Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie
Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,
INSTYTUT KONSTRUKCJI MASZYN. POCZTA PNEUMATYCZNA The pneumatic post
INSTYTUT KONSTRUKCJI MASZYN POCZTA PNEUMATYCZNA The pneumatic post 1 POCZTA PNEUMATYCZNA The pneumatic post Zakres ćwiczenia: 1. Zapoznanie się z podziałem poczty pneumatycznej. 2. Zapoznanie się z budową
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
Aerodynamika i mechanika lotu
Prędkość określana względem najbliższej ścianki nazywana jest prędkością względną (płynu) w. Jeśli najbliższa ścianka porusza się względem ciał bardziej oddalonych, to prędkość tego ruchu nazywana jest
Ćwiczenie nr 31: Modelowanie pola elektrycznego
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr : Modelowanie pola
STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży
STAN NAPRĘŻENIA dr hab. inż. Tadeusz Chyży 1 SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE Rozważmy ciało o objętości V 0 ograniczone powierzchnią S 0, poddane działaniu sił będących w równowadze. Rozróżniamy tutaj
Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych
Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku
Człowiek najlepsza inwestycja FENIKS
Człowiek najlepsza inwestycja ENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych