Analiza danych środowiskowych III rok OŚ
|
|
- Bartłomiej Karczewski
- 9 lat temu
- Przeglądów:
Transkrypt
1 Analiza danych środowiskowych III rok OŚ Wykład 6 Andrzej Leśniak KGIS, GGiOŚ AGH Kroskorelacja Cel wykładu Rozszerzenie idei autokorelacji na przypadek dwóch różnych szeregów czasowych oraz dyskusja koherencji szeregów czasowych
2 Opady są zwykle przesunięte względem powodzi. Szereg czasowy pokazujący wielkość opadów jest podobny i przesunięty względem szeregu czasowego obrazującego wielkość przepływu wody w rzece opad, mm/dzień czas [dni] przepływ, m 3 /s czas [dni] opad, mm/day przepływ, m 3 /s czas [dni] pik oparów wyprzedza pik przepływu czas [dni]
3 opad, mm/day przepływ, m 3 /s czas [dni] kształt zbliżony czas [dni] Podejdźmy do dwóch szeregów probabilistycznie -uivdwa różne szeregi czasowe, próbki których są realizacjami zmiennych losowych. Rozpatrzmy dwuwymiarową funkcję gęstości prawdopodobieństwa: p(u i, v i+k- ) dla dwóch elementów przesuniętych o (k-)δt i policzmy ich kowariancję. Będzie ona nazywana kroskorelacją: Porównajmy z autokorelacją (poprzedni wykład): różne czasy i różne szeregi czasowe różne czasy i te same szeregi czasowe
4 podobnie jak autokorelacja funkcja kroskorelacji jest podobna do funkcji splotu spełnione są również dwa podstawowe związki poznane dla autokorelacji na poprzednim wykładzie: i w dziedzinie częstotliwościowej: wzajemna gęstość widmowa Proste i najpowszechniejsze zastosowanie funkcji kroskorelacji Postawienie zagadnienia należy znaleźć takie wzajemne przesunięcie dwóch szeregów czasowych, by osiągnąć maksymalną korelację. Jak się łatwo przekonać będzie to miejsce, gdzie funkcja kroskorelacji osiąga maksimum. Poniżej dwa podobne, wzajemnie przesunięte szeregi czasowe rejestracje impulsu sejsmicznego przez dwa różne czujniki - u(t) v(t)
5 kształt funkcji autokorelacji i określenie wartości maksymalnej Wartość funkcji kroskorelacji maksimum czas przesunięcie czasowe (time lag) po przesunięciu drugiego szeregu czasowego o obliczony time lag - u(t) v(t+t lag )
6 nasłonecznienie i poziom ozonu na powierzchni (przy gruncie) (rzeczywisty zbiór danych z West Point NY) s o la r, W / m 2 5 B) o z o n e, p p b porównajmy przesunięcia maksimów obu funkcji Wartość funkcji kroskorelacji maksimum 4 x time, hours czas [h] time lag = 3 godziny
7 solar radiation, W/m 2 ozone, ppb 5 5 A) hour lag originalna B) przesunięta Koherencja rozszerzenie idei korelacji na korelację zależną od częstotliwości Przykład I Na pewnym obszarze można zaobserwować zależność siły wiatru z temperaturą powietrza w skali zmian rocznych. Wynika to z określonego klimatu jaki panuje w danym regionie. Jeśli będziemy analizować taką korelację w krótszych okresach (np. kilku dni) nie stwierdzimy istnienia wysokiej korelacji. wind speed temperature lato ciepłe i wietrzne 2 zima chłodna i 3 bezwietrzna 2 2 3
8 fala gorącego powietrza przy mniejszym wietrze wind speed temperature 2 okres b. zimny i 3 stosunkowo wietrzny W tym wypadku szeregi czasowe korelują się dla długich okresów czasu (małych częstotliwości zmian) zaś dla krótkich okresów (dużych częstotliwości) nie. Przykład II Na pewnym obszarze można zaobserwować zależność tempa rozrostu planktonu z wielkością opadów dla okresów kilkutygodniowych. Jeśli będziemy analizować taką korelację w okresie trwania danej pory roku (np. trwania lata) nie stwierdzimy istnienia wysokiej korelacji. tempo rozrostu nie jest związane z porą roku plant growth rate lato jest bardziej 2 3 suche niż zima precipitation 2 3
9 maksima tempa wzrostu przypadają jednak na maksima opadów plant growth rate 2 3 precipitation 2 3 W tym wypadku szeregi czasowe korelują się dla krótszych okresów czasu (dużych częstotliwości zmian) zaś dla dłuższych okresów (mniejszych częstotliwości) nie. Koherencja metoda do stwierdzenia czy i w jakim zakresie częstotliwości dwa szeregi są ze sobą skorelowane. strategia obliczeń poddaj dwa szeregi czasowe u(t) i v(t) filtracji pasmowej (środkowo przepustowej) dla częstotliwości środkowej ω policz ich korelację dla zerowego przesunięcia wzajemnego (duża wartość kiedy szeregi czasowe będą do siebie podobne) powtórz powyższe (filtrację i korelację) dla wielu ω by utworzyć funkcję c(ω ) zależną od czasu korelację
10 Dygresja Fakt Funkcja korelacji obliczona dla czasu t= jest równa całce z widma Fouriera w całym przedziale Fakt 2 Transformacja Fouriera splotu dwóch funkcji jest równa iloczynowi transformat Fouriera tych funkcji I [ f ( t) c( t) ] = I[ f ( t) ] I[ c( t) ] = f ( ω) c( ω) Fakt 3 całka po częstotliwości z funkcji może być traktowana jako średnia po obszarze całkowania (oznaczone poziomą kreską nad symbolem)
11 filtr środkowoprzepustowy f(t) ma poniższą widmową gęstość spektralną p.s.d. ( f(ω) 2 ) 2Δω f(ω) 2 2Δω -ω ω ω całka po wszystkich częstotliwościach idealny filtr pasmowy przyjmuje wartości lub ujemne częstotliwości dodatnie częstotliwości korelacja jest rzeczywista stąd rzeczywista część iloczynu jest parzysta zaś urojona nieparzysta więc się zeruje, całka jest to uśrednianie po po częstotliwościach w granicach całkowania
12 dwa końcowe kroki. Opuszczamy znak Re w ostatnim wzorze 2. Normalizujemy przez amplitudę dwóch szeregów czasowych i podniesionych do kwadratu tak by wartości zmieniały się od do końcowy rezultat nazywany jest Koherencją
13 precipitation T-air T-water salinity turbidity chlorophyll D) E) F) 2 A) B) C) opady temperatura powietrza temperatura wody zasolenie mętność chlorofil = zawartość alg dane: Water Quality Reynolds Channel, Coastal Long Island, New York precip A) periods near year precip B) periods near 5 days T-air T-air T-water T-water salinity turbidity chlorophyl salinity turbidity chlorophyl Fig, 9.8. Band-pass filtered water quality measurements from Reynolds Channel (New York) for several years starting January, 26. A) Periods near one year; and B) periods near 5 days. MatLab script eda9_6.
14 wysoka koherencja dla okresu roku A) air-temp and water-temp B) C) precipitation and salinity water-temp and chlorophyll one year c o h e re n c e.5 one year one week frequency, cycles per day c o h e re n c e frequency, cycles per day c o h e re n c e frequency, cycles per day średnia koherencja dla okresu około miesiąca bardzo niska koherencja dla okresów od miesiąca do kilku dni
Szereg i transformata Fouriera
Analiza danych środowiskowych III rok OŚ Wykład 3 Andrzej Leśniak KGIS, GGiOŚ AGH Szereg i transformata Fouriera Cel wykładu: Wykrywanie i analiza okresowości w szeregach czasowych Przepływ wody w rzece
Transformata Fouriera. Sylwia Kołoda Magdalena Pacek Krzysztof Kolago
Transformata Fouriera Sylwia Kołoda Magdalena Pacek Krzysztof Kolago Transformacja Fouriera rozkłada funkcję okresową na szereg funkcji okresowych tak, że uzyskana transformata podaje w jaki sposób poszczególne
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji
Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:
Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie
f (x)=mx 2 +(2m 2)x+m+1 ma co najmniej jedno
Zadanie 1 x 2 2mx+4m 3=0 ma dwa różne pierwiastki? Odp: m ( ; 1) (3 ; ) Zadanie 2 mx 2 +(2m 2) x+m+1=0 ma dwa różne pierwiastki? Odp: m ( ;0) (0; 1 3 ) Zadanie 3 ma jeden pierwiastek? Odp: m = -2, m =
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27
SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Przetwarzanie sygnałów biomedycznych
Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.
Strona 1 z 38 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko alicja@cbk.waw.pl 2 czerwca 2006 1 Omówienie danych 3 Strona główna Strona 2 z 38 2
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Podstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
Ważne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t
4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem
Analiza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały
Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE
1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie
Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Korelacja, autokorelacja, kowariancja, trendy. Korelacja określa stopień asocjacji między zmiennymi
Korelacja, autokorelacja, kowariancja, trendy Korelacja określa stopień asocjacji między zmiennymi Kowariancja Wady - ograniczenia. Wartość kowariancji zależy od rozmiarów zmienności zmiennej.. W konsekwencji
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Transformacje Fouriera * podstawowe własności
Transformacje Fouriera * podstawowe własności * podejście mało formalne Funkcja w domenie czasowej Transformacja Fouriera - wstęp Ta sama funkcja w domenie częstości Transformacja Fouriera polega na rozkładzie
Ćwiczenie 3. Właściwości przekształcenia Fouriera
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP
Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI JJ, IMiF UTP 05 MINIMUM LOKALNE y y = f () f ( 0 ) 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0. MINIMUM LOKALNE y y
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego
prof. dr hab. Zbigniew W. Kundzewicz
KONFERENCJA Wyzwania polityki klimatycznej połączona z posiedzeniem sejmowej Komisji OŚZNiL Warszawa, 21 października 2008 Scenariusze zmian klimatu i ich prawdopodobieństwa w świetle najnowszych badań
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Klimat w Polsce w 21. wieku
Klimat w Polsce w 21. wieku na podstawie numerycznych symulacji regionalnych Małgorzata Liszewska Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego UNIWERSYTET WARSZAWSKI 1/42 POGODA
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Podstawowe człony dynamiczne
. Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty
Transformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
A-2. Filtry bierne. wersja
wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne
Spis treści. Metody nieparametryczne. Transformacja Fouriera
Spis treści 1 Metody nieparametryczne 1.1 Transformacja Fouriera 1.2 Bliżej życia 1.3 Splot 2 Transformacja Z 3 Filtry 4 Metody parametryczne 5 Analiza danych wielokanałowych 5.1 Koherencje 5.2 Związki
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8
Teoria Synałów rok nformatyki Stosowanej Wykład 8 Analiza częstotliwościowa dyskretnych synałów cyfrowych okna widmowe (cd poprzednieo wykładu) N = 52; T =.24; %czas trwania synału w sekundach dt = T/N;
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Przetwarzanie i transmisja danych multimedialnych. Wykład 7 Transformaty i kodowanie. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 7 Transformaty i kodowanie Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład
Przekształcenie Fouriera obrazów FFT
Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
f = 2 śr MODULACJE
5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania
FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI
FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI ( frequency domain filters) Każdy człon F(u,v) zawiera wszystkie wartości f(x,y) modyfikowane przez wartości członów wykładniczych Za wyjątkiem trywialnych przypadków
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek
Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autorzy: Konrad Nosek 09 Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory Autor: Konrad Nosek DEFINICJA Definicja : Funkcja pierwotna Rozważmy
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.
Strona 1 z 27 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko Wiesław Kosek Waldemar Popiński Seminarium Sekcji Dynamiki Ziemi Komitetu Geodezji PAN
Analiza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Analiza czas - częstotliwość analiza częstotliwościowa: problem dla sygnału niestacjonarnego zwykła transformata
Przetwarzanie obrazów wykład 6. Adam Wojciechowski
Przetwarzanie obrazów wykład 6 Adam Wojciechowski Przykłady obrazów cyfrowych i ich F-obrazów Parzysta liczba powtarzalnych wzorców Transformata Fouriera może być przydatna przy wykrywaniu określonych
Przetwarzanie Sygnałów. Zastosowanie Transformaty Falkowej w nadzorowaniu
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Zastosowanie Transformaty Falkowej
DYSKRETNA TRANSFORMACJA FOURIERA
Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera
Przekształcenie całkowe Fouriera
Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Analiza i modelowanie przepływów w sieci Internet. Andrzej Andrijew
Analiza i modelowanie przepływów w sieci Internet Andrzej Andrijew Plan referatu Samopodobieostwo w sieci Internet Samopodobne procesy stochastyczne Metody sprawdzania samopodobieostwa Modelowanie przepływów
CMAES. Zapis algorytmu. Generacja populacji oraz selekcja Populacja q i (t) w kroku t generowana jest w następujący sposób:
CMAES Covariance Matrix Adaptation Evolution Strategy Opracowanie: Lidia Wojciechowska W algorytmie CMAES, podobnie jak w algorytmie EDA, adaptowany jest rozkład prawdopodobieństwa generacji punktów, opisany
Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-
Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można
Cyfrowe przetwarzanie i kompresja danych
Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 5. Dyskretna transformata falkowa Schemat systemu transmisji danych wizyjnych Źródło danych Przetwarzanie Przesył Przetwarzanie Prezentacja
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 4. Badanie optycznej transformaty Fouriera Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
lim Np. lim jest wyrażeniem typu /, a
Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona
CYKLICZNE ZMIANY MIEJSKIEJ WYSPY CIEPŁA W WARSZAWIE I ICH PRZYCZYNY. Cyclic changes of the urban heat island in Warsaw and their causes
Prace i Studia Geograficzne 2011, T. 47, ss. 409 416 Maria Stopa-Boryczka, Jerzy Boryczka, Jolanta Wawer, Katarzyna Grabowska Uniwersytet Warszawski, Wydział Geografii i Studiów Regionalnych, Zakład Klimatologii
4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...
Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe
Funkcja liniowa - podsumowanie
Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście
rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym
Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie
Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne
Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 01/015 Kierunek studiów: Transport Forma sudiów:
Transformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
Teoria Sygnałów. Inżynieria Obliczeniowa II rok 2018/19. Wykład 10. ( t) Wykorzystanie transformacji Fouriera w analizie korelacyjnej
Teoria Synałów Inżynieria Obliczeniowa II rok 208/9 Wykład 0 Wykorzystanie transformacji Fouriera w analizie korelacyjnej Na początek krótkie przypomnienie podstawowych definicji: Funkcja autokorelacji
CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)
I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.
SPITSBERGEN HORNSUND
Polska Stacja Polarna Instytut Geofizyki Polska Akademia Nauk Polish Polar Station Institute of Geophysics Polish Academy of Sciences BIULETYN METEOROLOGICZNY METEOROLOGICAL BULLETIN SPITSBERGEN HORNSUND
DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.
CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego
Metoda rozdzielania zmiennych
Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych
Rozpraszanie i dyfrakcja promieniowania X
Rozpraszanie i dyfrakcja promieniowania X Przypomnienie rozpraszanie Thomsona na swobodnym elektronie Padająca fala płaska Emitowana jest fala kulista Klasyczny promień elektronu Będziemy używać przybliżenia
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy