Żródło:
|
|
- Krystyna Bielecka
- 8 lat temu
- Przeglądów:
Transkrypt
1 Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Test t- Studenta pozwala ustalić czy różnica pomiędzy średnimi jest istotna statystycznie, czyli czy możemy odrzucić hipotezę zerową (która zakłada, że średnie w grupach nie różnią się) przy ustalonym poziomie istotności Szczegółowe warunki stosowania testów zostały podane na wykładzie! Nazwa testów pochodzi od pseudonimu ich autora Williama Gosseta ( ) brytyjskiego statystyka i chemika (pracującego dla Guinnessa), który publikował swoje prace jako Student Żródło: 1
2 Dla jednej próby Porównuje średnią obliczoną na podstawie wyników badań z kryterium znanym z wcześniejszych badań lub danych teoretycznych (np. średnią dla populacji) Czy wpływy ze sztabów WOŚP w woj. lubuskim różnią się od średniej z ubiegłego roku? dane: wyniki finansowe sztabów, średnia z ubiegłego roku Czy zarobki nauczycieli szkół zielonogórskich różnią się istotnie statystycznie od średniej krajowej? dane: wysokość zarobków nauczycieli, wysokość średniej krajowej zarobków Czyś inteligencja studentów UZ różni się od średniej w populacji dane: wyniki testu inteligencji studentów, wysokość średniej w populacji Dla prób zależnych (skorelowanych) Porównuje średnie z dwóch pomiarów (np. przed i po eksperymencie (test/retest), pomiarów tej samej zmiennej prowadzonych w innych warunkach) wśród tych samych badanych (porównujemy dwa wyniki pochodzące od tego samego badanego) Czy słuchanie głośnej muzyki podczas rozwiązywania zadań wydłuża czas znalezienia rozwiązania? dane: czas rozwiązywania zadania bez i podczas słuchania muzyki Czy istnieje różnica między wysokością zarobków na początku zatrudnienia a wysokością zarobków po 5 latach pracy dane: wysokość zarobków pracowników w momencie zatrudnienia i po 5 latach Czy zastosowanie nowatorskiej techniki perswazji powoduje zmianę opinii dane: siła akceptacji opinii przed i po zastosowaniu techniki perswazji Dla prób niezależnych (nieskorelowanych) Porównuje średnie w dwóch grupach (grupa eksperymentalna/grupa kontrolna, kobiety/mężczyźni, zatrudnieni/bezrobotni ) Czy kobiety i mężczyźni różnią się liczbą podejść do egzaminu na prawo jazdy? dane: płeć, liczba podejść do egzaminu na prawo jazdy Czy mieszkańcy wsi i miast różnią się wysokością zarobków? dane: miejsce zamieszkania, wysokość zarobków Czy osoby biorące udział w eksperymencie mają inne samopoczucie wyniki od osób niebiorących w nim udziału dane: ocena samopoczucia, branie udziału w eksperymencie Wielkość efektu można wyznaczyć na podstawie znajomości średnich i odchyleń w grupach lub na podstawie znajomości wartości statystyki t i liczebności próby/prób (wzory na wykładzie) Aby obliczyć wielkość efektu (Effect size) można skorzystać (1) Pakietu STATISTICA (Menu Statystyka> Analiza mocy testu > Moc) Odczytujemy wartość ES (efekt standaryzowany) (2) z kalkulatorów na stronach internetowych, np.: (dla prób niezależnych/dla jednej próby ) - d Cohena (zbliżone wielkości grup, zbliżone odchylenia) - Glassa (różne odchylenia standardowe, wielkość efektu wyznaczana w oparciu o SD w grupie kontrolnej) - g Hedgesa (różne wielkości porównywanych grup) (dla prób zależnych i innych) (3) samodzielnie podstawić do wzorów 2
3 Czy średnia z matury z języka polskiego/matematyki uczniów szkół zielonogórskich różni się od średniej ogólnopolskiej? ( średnia poziom rozszerzony: 54%/56% ) Średnia z matury z języka polskiego/matematyki uczniów szkół zielonogórskich różni się od średniej ogólnopolskiej Średnia z matury z języka polskiego/matematyki uczniów szkół zielonogórskich nie różni się od średniej ogólnopolskiej Analiza z wykorzystaniem testu t-studenta dla jednej próby wskazuje, że średnia punktów z matury z matematyki uczniów szkół zielonogórskich (35,89%) różni się istotnie statystycznie od średniej ogólnopolskiej (56%). Uczniowie szkół zielonogórskich uzyskali (istotnie statystycznie) niższą średnią niż uczniowie w całym kraju (t=-31,219, df =499, p<0,05). t(499)=-31,219, p<0,05 t(409)=-31,219, p<0,001 Wielkość efektu (ES) d=1,396 co wskazuje na duży efekt czyli wyniki uczniów znacznie różnią się od wyników Analiza z wykorzystaniem testu t-studenta dla jednej próby wskazuje, że różnica między średnimi jest nieistotna statystycznie Moc testu wynosi 41,97% - zatem nie ma powodów, by twierdzić, że udało się wykazać, że różnicy rzeczywiście nie ma cel 2007.lnk 3
4 Czy średnia z matury z języka polskiego różni się od średniej z matematyki? Średnia z matury z języka polskiego różni się od średniej z matematyki Średnia z matury z języka polskiego nie różni się od średniej z matematyki Analiza danych z wykorzystaniem testu t-studenta dla prób zależnych wykazała, że średnia z matury z języka polskiego (M=52,42%) różni się istotnie statystycznie od średniej z matematyki (M=35,89) ( t(499)=16,240, p<0,001). Uczniowie uzyskują wyższe wyniki z matury z języka polskiego niż z matematyki. Wielkość efektu jest średnia (ES=0,72 /d-cohena=0,72). 4
5 Czy płeć różnicuje oceny z matury z języka polskiego/z matematyki Czy maturzystki i maturzyści różnią się wynikami z matury z języka polskiego/z matematyki Wyniki kobiet i mężczyzn z matury z języka polskiego/z matematyki są różne Wyniki kobiet i mężczyzn z matury z języka polskiego/z matematyki nie różnią się 1. Sprawdzenie założenia o homogeniczności wariancji 2. Odczytanie wyniku dla testu t-studenta Homogeniczność (jednorodność/równość) wariancji testuje test Levene a: jeżeli wynik testu jest nieistotny statystycznie (p >0,05) (wariancje uznajemy za równe) to wyniki dla testu t-studenta odczytujemy z pierwszego wiersza tabeli jeżeli wynik testu jest istotny statystycznie (p <0,05) (wariancje różnią się od siebie, nie są równe) to wyniki dla testu t-studenta odczytujemy z drugiego wiersza Analiza danych z wykorzystaniem testu t-studenta dla prób niezależnych wykazała, że średnia z matury z języka polskiego kobiet (M=55,17%) różni się istotnie statystycznie od średniej mężczyzn (M=48,61%) ( t(498)=-3,65, p<0,001). Płeć różnicuje wyniki z matury z języka polskiego. Kobiety uzyskują wyższe wyniki z matury z języka polskiego niż z mężczyźni. Efekt płci jest mały d=0,33 (różnica pomiędzy wynikami to około jedna trzecia odchylenia standardowego). Różnica między średnią wyników kobiet (M=35,15%) i mężczyzn (M=36,91%) z matury z matematyki jest nieistotna statystycznie. Średnie kobiet i mężczyzn są na zbliżonym poziomie. Moc testu jest mniejsza od 0,9 (1- =0,27), nie można stwierdzić, że różnicą nie istnieje. 5
6 1. Czy wynik testu na prawo jazdy wśród zdających pierwszy raz różni wyniku zdających po raz kolejny? 2. Czy średni czas rozwiązywania testu przed korepetycjami różni się od czasu rozwiązywania testu po korepetycjach? 3. Czy ilość czasu przeznaczana na przygotowanie się do zajęć na początku semestru jest różna od ilości czasu przeznaczanego na przygotowanie się do zajęć pod koniec semestru? 4. Czy różnią się średnie kwoty wydawane na przyjemności przed udziałem i po udziale w kursie Racjonalnego gospodarowania budżetem? 5. Czy istnieje różnica między średnią wieku studentek rodzących pierwsze dziecko a średnią wieku urodzenia pierwszego dziecka dla kobiet? 6. Czy średnia kwota wydatków na rozrywkę jest różna wśród mieszkańców wsi i miast? 7. Czy ilość czasu przeznaczanego na granie w gry komputerowe jest różna wśród uczniów gimnazjalnych i średnich? 8. Czy poziom samooceny jest rożny wśród osób przyjmujących środki psychotropowe i nieprzyjmujących leków? 9. Czy udział w terapii powoduje zmianę poziomu samooceny? 10. Czy szybkość reakcji zmienia się po wypiciu lampki wina? 11. Czy oglądanie telewizji modyfikuje ocenę działań partii rządzącej? 12. Czy kobiety i mężczyźni przeznaczają na oglądanie telewizji więcej czasu? 13. Czy członkowie partii dłużej słuchają radia? 14. Czy wynik w teście uzależnienia od Internetu jest różny wśród zwolenników i przeciwników Milionerów? 15. Czy mieszkańcy miast i wsi różnią się BMI? 16. Czy polscy skoczkowie osiągają w obecnym sezonie lepsze wyniki niż w sezonie ubiegłym? 17. Czy osoby z zaburzeniami odżywiania różnią się od osób zdrowych pod względem wagi? 18. Czy zarobki nauczycieli akademickich różnią się od zarobków urzędników państwowych? 19. Czy aktorzy telewizyjni różnią się wzrostem od aktorów teatralnych? 20. Czy udział w wykładzie różnicuje poziom wiedzy ze statystyki? Jeżeli w hipotezie wskazany jest kierunek zależności (hipoteza jednostronna) to interpretując wyniki przyjmujemy jako p połowę wyliczonej przez program p-wartości 6
7 Czy płeć różnicuje częstość zmiany pracy? H 1 = Kobiety częściej zmieniają pracę Jaka jest wielkość efektu? Czy oceny chłopców i dziewcząt z matematyki różnią się? H 1 = Uczennice uzyskują wyższe wyniki z matematyki niż uczniowie Jaka jest wielkość efektu? 7
8 Czy trening wpływa na sprawność? H 1 = Osoby po treningu są bardziej sprawne Jaka jest wielkość efektu? Czy przyjmowanie leków wpływa na długość czasu abstynencji? H 1 = Przyjmowanie leków różnicuje czas abstynencji Jaka jest wielkość efektu? 8
9 Czy studenci różnią się inteligencją od społeczeństwa? H 1 = Studenci mają inny poziom inteligencji niż społeczeństwo Jaka jest wielkość efektu? Czy młodzież i dorośli różnią się czasem tygodniowo przeznaczanym na korzystanie z Internetu? H 1 = Młodzież i dorośli w przeznaczają różna ilość czasu na korzystanie z Internetu. Jaka jest wielkość efektu? 9
Żródło:
Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Test
Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich
Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Nazwa
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
JEDNOCZYNNIKOWA ANOVA
Analizę ANOVA wykorzystujemy do wykrycia różnic pomiędzy średnimi w więcej niż dwóch grupach/więcej niż w dwóch pomiarach JEDNOCZYNNIKOWA ANOVA porównania jednej zmiennej pomiędzy więcej niż dwoma grupami
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25
Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012
Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.
Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w
P: Czy studiujący i niestudiujący preferują inne sklepy internetowe?
2 Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia czy pomiędzy zmiennymi istnieje związek/zależność. Stosujemy go w sytuacji, kiedy zmienna zależna mierzona jest na skali
WNIOSKOWANIE STATYSTYCZNE
STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących
GRUPY NIEZALEŻNE Chi kwadrat Pearsona GRUPY ZALEŻNE (zmienne dwuwartościowe) McNemara Q Cochrana
GRUPY NIEZALEŻNE Chi kwadrat Pearsona Testy stosujemy w sytuacji, kiedy zmienna zależna mierzona jest na skali nominalnej Liczba porównywanych grup (czyli liczba kategorii zmiennej niezależnej) nie ma
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
Test U Manna-Whitneya : Test H Kruskala-Wallisa Test Wilcoxona
Nieparametryczne odpowiedniki testów T-Studenta stosujemy gdy zmienne mierzone są na skalach porządkowych (nie można liczyć średniej) lub kiedy mierzone są na skalach ilościowych, a nie są spełnione wymagania
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Zadania ze statystyki cz.8. Zadanie 1.
Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,
STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2
STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia związku pomiędzy dwiema zmiennymi nominalnymi (lub porządkowymi)
Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia związku pomiędzy dwiema zmiennymi nominalnymi (lub porządkowymi) Czy miejsce zamieszkania różnicuje uprawianie sportu? Mieszkańcy
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
WNIOSKOWANIE STATYSTYCZNE
STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących
Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych
Analiza wariancji - ANOVA
Analiza wariancji - ANOVA Analizę wariancji, często określaną skrótem ANOVA (Analysis of Variance), zawdzięczamy angielskiemu biologowi Ronaldowi A. Fisherowi, który opracował ją w 1925 roku dla rozwiązywania
WERYFIKACJA HIPOTEZ STATYSTYCZNYCH
WERYFIKACJA HIPOTEZ STATYSTYCZNYCH I. TESTY PARAMETRYCZNE II. III. WERYFIKACJA HIPOTEZ O WARTOŚCIACH ŚREDNICH DWÓCH POPULACJI TESTY ZGODNOŚCI Rozwiązania zadań wykonywanych w Statistice przedstaw w pliku
TESTY NIEPARAMETRYCZNE 1/5
TESTY NIEPARAMETRYCZNE 1/5 Aby obliczyć test nieparametryczny należy wybrać menu: Analiza>Testy nieparametryczne>tradycyjne> i wskazać odpowiedni test: dwie próby niezależne (U Manna-Whitney a) (porównujemy
Jak sprawdzić normalność rozkładu w teście dla prób zależnych?
Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu
Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,
Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (punktowa, przedziałowa) Weryfikacja
Katedra Genetyki i Podstaw Hodowli Zwierząt Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy
Ćwiczenie: Doświadczenia 2-grupowe EXCEL Do weryfikacji różnic między dwiema grupami jednostek doświadczalnych w Excelu wykorzystujemy funkcję o nazwie TEST.T. Zastosowana funkcja (test statystyczny) pozwala
Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.
STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą
Katedra Biotechnologii i Genetyki Zwierząt, Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy
Temat: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. MS EXCEL Do weryfikacji różnic między dwiema grupami jednostek doświadczalnych w MS Excelu wykorzystujemy funkcję o nazwie T.TEST.
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Statystyka indukcyjna pozwala kontrolować i oszacować ryzyko popełnienia błędu statystycznego
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
TECHNIKA DRZWI ZATRZAŚNIĘTE PRZED NOSEM
Badanie pilotażowe TECHNIKA DRZWI ZATRZAŚNIĘTE PRZED NOSEM Czy łatwa prośba etyczna zostanie spełniona istotnie częściej jeśli poprzedzi się ją nieetyczną prośbą trudną? H0 nie, H1 tak. Schemat eksperymentu
Zadania ze statystyki, cz.6
Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z
Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r
Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym Wrocław, 18.03.2016r Testowanie hipotez dla średniej w rozkładzie normalnym dla jednej próby Model 1 Testowanie hipotez dla
Efekt główny Efekt interakcyjny efekt jednego czynnika zależy od poziomu drugiego czynnika Efekt prosty
ANOVA DWUCZYNNIKOWA testuje różnice między średnimi w grupach wyznaczonych przez dwa czynniki i ich kombinacje. Analiza pozwala ustalić wpływ dwóch czynników na wartości zmiennej zależnej (ilościowej!)
Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby
Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby 1. Wstęp teoretyczny Prezentowane badanie dotyczy analizy wyników uzyskanych podczas badania grupy rodziców pod kątem wpływu ich przekonań
dr hab. Dariusz Piwczyński, prof. nadzw. UTP
dr hab. Dariusz Piwczyński, prof. nadzw. UTP NIEZBĘDNE DO ZROZUMIENIA WYKŁADU POJĘCIA Doświadczenie jednogrupowe (jednopróbkowe), dwugrupowe (dwupróbkowe) Doświadczenie niezależne i wiązane (zależne, sparowane)
SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY
SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je
Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,
Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (estymacja punktowa, przedziałowa)
VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15
VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady
Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości
Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości Informatyka 007 009 aktualizacja dla 00 JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Plan wykładu. Przypomnienie testu dla
Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym
Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną
Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich.
Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. EXCEL Do weryfikacji różnic między dwiema grupami jednostek doświadczalnych w Excelu wykorzystujemy funkcję o nazwie T.TEST. Zastosowana
Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku
Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Statystyka indukcyjna pozwala kontrolować i oszacować ryzyko popełnienia błędu statystycznego
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Analiza wariancji - ANOVA
Analiza wariancji - ANOVA Analiza wariancji jest metodą pozwalającą na podział zmienności zaobserwowanej wśród wyników eksperymentalnych na oddzielne części. Każdą z tych części możemy przypisać oddzielnemu
Porównanie modeli statystycznych. Monika Wawrzyniak Katarzyna Kociałkowska
Porównanie modeli statystycznych Monika Wawrzyniak Katarzyna Kociałkowska Jaka jest miara podobieństwa? Aby porównywać rozkłady prawdopodobieństwa dwóch modeli statystycznych możemy użyć: metryki dywergencji
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 5 TEST T
STATYSTYKA MATEMATYCZNA WYKŁAD 5 TEST T WSTĘP Test t 1. Zakres stosowalności 2. Dla pojedynczej próby 3. Dla 2 niezależnych prób 4. Dla 2 sparowanych prób ZAKRES STOSOWALNOŚCI TESTU T 1. Test parametryczny
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Analiza wariancji. dr Janusz Górczyński
Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Metody Statystyczne. Metody Statystyczne
#7 1 Czy straszenie jest bardziej skuteczne niż zachęcanie? Przykład 5.2. s.197 Grupa straszona: 8,5,8,7 M 1 =7 Grupa zachęcana: 1, 1, 2,4 M 2 =2 Średnia ogólna M=(M1+M2)/2= 4,5 Wnioskowanie statystyczne
Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie
Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Zadanie Zbadano satysfakcję z życia w skali 1 do 10 w dwóch grupach rodziców: a) Rodzice dzieci zdrowych oraz b) Rodzice dzieci z niepełnosprawnością
Weryfikacja hipotez statystycznych testy t Studenta
Weryfikacja hipotez statystycznych testy t Studenta JERZY STEFANOWSKI Marek Kubiak Instytut Informatyki Politechnika Poznańska Standardowy schemat postępowania (znane σ) Założenia: X ma rozkład normalny
Metody Statystyczne. Metody Statystyczne. #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji
gkrol@mail.wz.uw.edu.pl #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji 1 Ryzyko błędu - powtórzenie Statystyka niczego nie dowodzi, czyni tylko wszystko mniej lub bardziej prawdopodobnym
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
Statystyka matematyczna
Statystyka matematyczna Wykład 9 i 10 Magdalena Alama-Bućko 14 i 21 maja 2018 Magdalena Alama-Bućko Statystyka matematyczna 14 i 21 maja 2018 1 / 25 Hipotezy statystyczne Hipoteza statystyczna nazywamy
1 Testowanie hipotez statystycznych
1 Testowanie hipotez statystycznych Zadanie 1 W pewnym eksperymencie psychiatrycznym przeprowadzonym na grupie 42 chorych otrzymano nastepuj wyniki: (w %) 34.8, 33.9, 32.6, 49.4, 44.9, 55.2, 48.5, 40.3,
TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne Czyli jak bardzo jesteśmy pewni że parametr oceniony na podstawie próbki jest
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności
Czego się nie dowiemy z NHST? Efekt size, stupid!1. Null Hypothesis Significance Testing
Czego się nie dowiemy z NHST? Null Hypothesis Significance Testing Statistical significance testing retards the growth of scientific knowledge; it never makes a positive contribution Schmidt and Hunter
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Konrad Miziński, nr albumu 233703 31 maja 2015 Zadanie 1 Wartości oczekiwane µ 1 i µ 2 oszacowano wg wzorów: { µ1 = 0.43925 µ = X
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Konrad Miziński, nr albumu 233703 26 maja 2015 Zadanie 1 Wartość krytyczna c, niezbędna wyliczenia mocy testu (1 β) wyznaczono za
Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28
Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych
1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji DECYZJE Obszar krytyczny od pozostałej
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy
laboratoria 24 zaliczenie z oceną
Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Niestacjonarne
Hipoteza: Dziewczynki częściej niż chłopcy mają sprecyzowane plany dotyczące dalszego kształcenia (dlaczego?)
Problem: Czy płeć różnicuje plany edukacyjne uczniów? Hipoteza: Dziewczynki częściej niż chłopcy mają sprecyzowane plany dotyczące dalszego kształcenia (dlaczego?) Hipoteza zerowa: Płeć nie różnicuje precyzji
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
Zmienna bazowa. 100(1 α)% przedział ufności dla µ: 100(α)% test hipotezy dla µ = µ 0; odrzucić, jeżeli Ȳ nie jest w przedziale
Wprowadzenie Wprowadzenie Wnioskowanie podsumowanie Zdefiniuj populację, która będzie przedmiotem badań Zbierz parametry, które będą przedmiotem wnioskowania Wybierz losową próbę z populacji Przeprowadź
Pobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
przedmiot podstawowy obowiązkowy polski drugi
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 07/08 IN--008 STATYSTYKA W INŻYNIERII ŚRODOWISKA Statistics in environmental engineering
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,
Wykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
Statystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Tabele punktacyjne testu Coopera dla uczniów i uczennic w wieku od 7 do 18 lat
Akademia Wychowania Fizycznego Józefa Piłsudskiego w Warszawie Janusz Dobosz Tabele punktacyjne testu Coopera dla uczniów i uczennic w u od 7 do 18 lat Warszawa 26 czerwca 2012 1. SPOSÓB POSŁUGIWANIA
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Prawdopodobieństwo i rozkład normalny cd.
# # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl
Metody Statystyczne. Metody Statystyczne.
gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja
Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW
Założenia do analizy wariancji dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Zagadnienia 1. Normalność rozkładu cechy Testy: chi-kwadrat zgodności, Shapiro-Wilka, Kołmogorowa-Smirnowa
Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015
Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ, σ 2 X ),