Zadanie z mechaniki w arkuszu maturalnym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadanie z mechaniki w arkuszu maturalnym"

Transkrypt

1 54 FOTON 118, Jeień 1 Zadanie z mehanii w aruzu mauralnym Jadwiga Salah Podza egoroznej maury w aruzu przeznazonym dla poziomu rozzerzonego znalazło ię zadanie doyząe nieprężyego zderzenia iężara z obraająym ię rążiem W poleeniah nie żądano od uzniów dogłębnej analizy ego zjawia, należało jedynie oblizyć warość prędośi ąowej uładu po zderzeniu, za, po órym a wpólna prędość zoała oiągnięa i raę energii mehaniznej Sam problem je jedna ieawy i może być pouzająy ze względu na możliwość rozparywania ruhu iężara w różnyh uładah odnieienia, a aże możliwość poazania, że w opianym zjawiu opróz zaady zahowania momenu pędu ławo je zaoować rzeią zaadę dynamii dla ruhu obroowego, o rzado ię w aih przypadah zyni Poleenie oblizenia zau rwania zderzenia ugeruje porzebę rozważenia, o w ym zaie dzieje ię z rążiem lub/i z iężariem, zego nie mui ię robić, oują zaadę zahowania momenu pędu Przyozmy najpierw w ałośi (i dołownie) ema zadania 1, zawarego w aruzu mauralnym: Zadanie 1 Krąże o momenie bezwładnośi,1 g m obraał ię bez aria woół wojej oi z prędośią ąową / Na en rąże padł iężare o maie,6 g, upuzzony bez prędośi poząowej Ciężare był połązony z oią rąża nią ślizgająą ię po oi bez aria (ry 1) Po hwili iężare zazął ię obraać razem z rążiem, pozoają w odległośi 1 m od oi obrou Rozmiary iężara można pominąć Ry 1

2 FOTON 118, Jeień Napiz nazwę zaady zahowania, óra pozwala wyznazyć wpólną prędość ąową rąża i iężara Obliz warość ej prędośi ąowej 1 Wpółzynni aria iężara o rąże wynoi, Ponado załadamy, że można pominąć efey uderzenia przy upadu (zn przyjąć, że wyoość padu była bardzo mała) Korzyają z powyżzyh informaji wyprowadź wzór na momen iły oddziaływania iężara na rąże oraz obliz, po jaim zaie od upadu iężara jego poślizg uał i prędość ąowa rąża oiągnęła warość ońową / 1 Poząowo iężare znajdował ię na wyoośi 4 m nad rążiem Obliz ałowią energię mehanizną uładu a) w yuaji poząowej, b) po upadu iężara oraz zmniejzeniu prędośi ąowej rąża do warośi / Obliz iepło wydzielone w zaie upadu 14 Doświadzenie opiane w informaji wępnej wyonano ilaronie, zmieniają wyoość padu iężara Naziuj wyre zależnośi wydzielonego iepła Q od wyoośi padu h (ry ) Na wyreie nie nanoś warośi lizbowyh Ry Nie omenują amego poobu formułowania emau, odnioę ię ryyznie jedynie do użyego dwuronie pojęia wydzielone iepło Podza nieprężyego zderzenia iężara z rążiem zęść energii mehaniznej uładu zoała zamieniona na jego energię wewnęrzną (o objawiło ię niewielim wzroem emperaury iężara i rąża) i proe en nie ma ni wpólnego z iepłem Dopiero w naępwie wzrou emperaury uładu zęść jego energii wewnęrznej zoała przeazana hłodniejzemu oozeniu w poai iepła W dalzyh rozważaniah pominę ę zęść emau, zajmę ię oddziaływaniem iężara z rążiem Auor zadania, formułują poleenie 1 wyraźnie uierunowuje uznia na zajęie ię ruhem opóźnionym rąża

3 56 FOTON 118, Jeień 1 Ry Momen iły aria działająej na rąże (zwróony pod ryune ): M r T, a jego warość: M mgr, gdzie µ je wpółzynniiem aria, a m maą iężara Korzyają z drugiej zaady dynamii dla ruhu obroowego rąża i z definiji warośi przypiezenia ąowego M I, możemy ławo oblizyć za zmniejzania ię prędośi ąowej: mgr ( ) I, I mgr Po podawieniu warośi lizbowyh orzymujemy: ( ) 1, 1 g m,,6 g 1 m,1 m Po aim zaie uali ię prędość ąowa uładu, zn rąże przeanie zwalniać, a iężare przeanie przypiezać, zaem uanie poślizg Zadanie można rozwiązać inazej, oują rzeią zaadę dynamii dla ruhu obroowego momeny ił wzajemnego oddziaływania iężara i rąża mają

4 FOTON 118, Jeień 1 57 aie ame warośi i przeiwne zwroy Pod działaniem momenu iły aria pohodząego od rąża iężare (óry poząowo pozywał w uładzie laboraoryjnym) doznał przypiezenia ąowego o warośi Drugą zaadę dynamii oujemy eraz do ruhu przypiezonego iężara: M, I mgr r, mr g Po podawieniu warośi lizbowyh orzymamy wyni:,1 m 1 m,1 Obydwa ruhy (rąża i iężara) zoały opiane w uładzie laboraoryjnym Rozważmy ruh iężara w uładzie odnieienia, związanym z rążiem W zaie odważni ślizga ię po rążu, jego poząowa prędość ąowa w ym uładzie ma warość, a liniowa r; ońowa prędość je równa zeru (uaje poślizg) Zaem względem rąża iężare poruza ię ruhem jednoajnie opóźnionym z przypiezeniem o warośi, wzgl zwróonym w górę Aby orzyać z drugiej zaady dynamii, a ja robiliśmy o w poprzednih rozumowaniah, muimy ualić, jaa je warość momenu iły hamująej ruh iężara w ym uładzie odnieienia Uład związany z rążiem o uład nieinerjalny, wię opróz rzezywiej iły aria na iężare działa jezze iła bezwładnośi unozenia F * b (ry 4), órej warość je równa ilozynowi may m i warośi przypiezenia yznego punu rąża odległego o r od oi, zn r, gdzie mgr I (parz poząowa zęść rozwiązania) Oaeznie mgr gm r Fb m r I I * Siła odśrodowa bezwładnośi je zrównoważona przez iłę prężyośi nii

5 58 FOTON 118, Jeień 1 Ry 4 Teraz możemy zapiać drugą zaadę dynamii dla ruhu iężara po oręgu w uładzie rąża: ( F T) r Fb T, mr mr b, wzgl gm r mg I g g mr I r Ir mr 1 mr I Ir ąd g( mr I), Orzymaliśmy rzei wzór na za zderzenia, inny niż dwa poprzednie, jedna po podawieniu warośi wyni lizbowy je ai am! 1,1g m,1m,1 (,6,1,1) g m m Spójrzmy jezze na en problem z punu widzenia względnośi ruhu Przypiezenie ąowe iężara w uładzie laboraoryjnym powinno być równe umie przypiezeń iężara względem rąża i przypiezenia rąża Sprawdzimy, że a je ionie Oblizmy warośi lizbowe yh przypiezeń: Przypiezenie iężara w uładzie odnieienia rąża ma warość:, wzgl 48

6 FOTON 118, Jeień 1 59, wzgl je zwróone w górę ruh opóźniony, dla ooby parząej z góry zgodny z ruhem wazówe zegara Przypiezenie rąża (w uładzie laboraoryjnym) ma warość: ( ) 18 je zwróone w dół ruh opóźniony, dla ooby parząej z góry zgodny z ruhem wazówe zegara Przypiezenie iężara w uładzie laboraoryjnym ma warość: je zwróone w górę ruh przypiezony, dla ooby parząej z góry zgodny z ruhem wazówe zegara (ry 5) Ionie, wzgl Ry 5

= 10 m/s i zatrzymał się o l = 20 m od miejsca uderzenia. Współczynnik tarcia krążka o lód wynosi a. 0,25 b. 0,3 c. 0,35 d. 0,4

= 10 m/s i zatrzymał się o l = 20 m od miejsca uderzenia. Współczynnik tarcia krążka o lód wynosi a. 0,25 b. 0,3 c. 0,35 d. 0,4 Imię i nazwiso Daa Klasa Grupa A Sprawdzian 3 PracA, moc, energia mechaniczna 1. Ze sojącego działa o masie 1 wysrzelono pocis o masie 1 g. nergia ineyczna odrzuu działa w chwili, gdy pocis opuszcza lufę

Bardziej szczegółowo

SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I

SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I 1. (3p) Jaki rodzaj oddziaływań zachodzi w podanych ytuacjach? a) Spadanie jabłka z drzewa -... b) Uderzenie łotkie w gwóźdź...

Bardziej szczegółowo

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi. Grawitacja Zad. 1 Ile muiałby wynoić okre obrotu kuli ziemkiej wokół włanej oi, aby iła odśrodkowa bezwładności zrównoważyła na równiku iłę grawitacyjną? Dane ą promień Ziemi i przypiezenie grawitacyjne.

Bardziej szczegółowo

SPRAWDZIAN z działu: Dynamika. TEST W zadaniach 1 33 każde twierdzenie lub pytanie ma tylko jedną prawidłową odpowiedź. Należy ją zaznaczyć.

SPRAWDZIAN z działu: Dynamika. TEST W zadaniach 1 33 każde twierdzenie lub pytanie ma tylko jedną prawidłową odpowiedź. Należy ją zaznaczyć. SPRAWDZIAN z działu: Dynamika TEST W zadaniach 1 33 każde twierdzenie lub pytanie ma tylko jedną prawidłową odpowiedź. Należy ją zaznaczyć....... imię i nazwiko... klaa 1. Które z poniżzych zdań tanowi

Bardziej szczegółowo

KONSPEKT ZAJĘĆ EDUKACYJNYCH

KONSPEKT ZAJĘĆ EDUKACYJNYCH KONSPEK ZAJĘĆ EDUKACYJNYCH Część organizayjna: Opraowała: grupa d. korelaji aeayzno - izyznej Przedio: aeayka Klaa: I ehniku - pozio podawowy Cza rwania: 45 in. Daa: Część eryoryzna Dział prograowy: Planieria

Bardziej szczegółowo

1. Samochód jadący z szybkością 10 m/s na prostoliniowym odcinku trasy zwolnił i osiągnął szybkość 5 m/s.

1. Samochód jadący z szybkością 10 m/s na prostoliniowym odcinku trasy zwolnił i osiągnął szybkość 5 m/s. Iię i nazwiko Daa Klaa Werja A Sprawdzian 1 opi ruchu poępowego 1. Saochód jadący z zybkością 1 / na prooliniowy odcinku ray zwolnił i oiągnął zybkość 5 /. 1 a. Przyro prędkości a warość 5 / i zwro zgodny

Bardziej szczegółowo

Zagadnienia na badanie wyników nauczani z fizyki kl II. [min]

Zagadnienia na badanie wyników nauczani z fizyki kl II. [min] Zagadnienia na badanie wyników nauczani z fizyki kl II Badanie wyników obejmuje natępujące działy: 1.Ruchy.Dynamika 3.Praca, moc, energia mechaniczna Przykładowe zadania Zad.1 (0-3pkt.) Jacek przez dwie

Bardziej szczegółowo

i odwrotnie: ; D) 20 km h

i odwrotnie: ; D) 20 km h 3A KIN Kinematyka Zadania tr 1/5 kin1 Jaś opowiada na kółku fizycznym o wojej wycieczce używając zwrotów: A) zybkość średnia w ciągu całej wycieczki wynoiła 0,5 m/ B) prędkość średnia w ciągu całej wycieczki

Bardziej szczegółowo

Plan wynikowy z fizyki. dla klas drugich gimnazjum. wraz z określeniem wymagań edukacyjnych

Plan wynikowy z fizyki. dla klas drugich gimnazjum. wraz z określeniem wymagań edukacyjnych Plan wynikowy z fizyki dla kla drugich gimnazjum wraz z określeniem wymagań edukacyjnych 4. Jak opiujemy ruch? Lp. Tema lekcji Wymagania konieczne i podawowe 1 Układ odnieienia. Tor ruchu, droga opiuje

Bardziej szczegółowo

5. Równania Maxwella. 5.1 Równania Maxwella 5.2 Transformacja pól 5.3 Fala elektromagnetyczna

5. Równania Maxwella. 5.1 Równania Maxwella 5.2 Transformacja pól 5.3 Fala elektromagnetyczna 5 Równania Maxwella 5 Równania Maxwella 5 Transformaja pól 53 ala eleromagnezna 86 5 Równania Maxwella Wśród poazanh uprzednio równań Maxwella znajduje się prawo Ampere a j Jedna można pozać, że posać

Bardziej szczegółowo

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną.

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną. INSRUKCJA Ćwiczenie A Wyznaczanie wpółczynnia prężytości prężyny metodą dynamiczną. Przed zapoznaniem ię z intrucją i przytąpieniem do wyonania ćwiczenia należy zapoznać ię z natępującymi zagadnieniami:

Bardziej szczegółowo

ROZWIĄZANIE PRZYKŁADOWYCH ZADAŃ Z FIZYKI Dział Kinematyka Realizowany w klasie pierwszej Gimnazjum nr 2 w Ełku. 2. Prędkość

ROZWIĄZANIE PRZYKŁADOWYCH ZADAŃ Z FIZYKI Dział Kinematyka Realizowany w klasie pierwszej Gimnazjum nr 2 w Ełku. 2. Prędkość ROZWIĄZANIE PRZYKŁADOWYCH ZADAŃ Z FIZYKI Dział Kineayka Realizowany w klaie pierwzej Ginazju nr w Ełku Przyponienie podawowyc danyc: Wielkość fizyczna Nazwa Jednoka Jednoka łownie Droga er Prędkość er

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych

Blok 2: Zależność funkcyjna wielkości fizycznych Blok : Zależność funkcyjna wielkości fizycznych ZESTAW ZADAŃ NA ZAJĘCIA 1. Na podtawie wykreu oblicz średnią zybkość ciała w opianym ruchu.. Na ryunku przedtawiono wykre v(t) pewnego pojazdu jadącego po

Bardziej szczegółowo

Doświadczenie Atwood a

Doświadczenie Atwood a Doświadczenie Atwood a Dwa kocki o maach m 1 i m 2 = m 1 wiza na inie przewiezonej przez boczek. Oś boczka podwiezona jet do ufitu. Trzeci kocek o maie m 3 zota po ożony na pierwzym kocku tak że oba poruzaja

Bardziej szczegółowo

2.5. Ciepło właściwe gazów doskonałych

2.5. Ciepło właściwe gazów doskonałych Gazy dosonałe i ółdosonałe /3.. ieło właśiwe gazów dosonałyh Definija ieła właśiwego: es o ilość ieła orzebna do ogrzania jednosi asy subsanji o. W odniesieniu do g ieło właśiwe ilograowe; wyraża się w

Bardziej szczegółowo

Właściwości Kinematyki z Uniwersalnym Układem Odniesienia

Właściwości Kinematyki z Uniwersalnym Układem Odniesienia Właśiwośi Kinemayki z Uniweralnym Układem Odnieienia Karol Szoek, Roman Szoek Poliehnika Rzezowka, Kaedra Termodynamiki i Mehaniki Płynów, Rzezów, Polka kzoek@prz.edu.pl Poliehnika Rzezowka, Kaedra Meod

Bardziej szczegółowo

Wymagania edukacyjne z przedmiotu fizyka na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki

Wymagania edukacyjne z przedmiotu fizyka na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Wymagania edukacyjne z przedmiou fizyka na pozczególne oceny przy realizacji i podręcznika Świa fizyki 1. Wykonujemy pomiary Tema według 1.1. Wielkości fizyczne, kóre mierzyz na co dzień 1.2. Pomiar warości

Bardziej szczegółowo

Ćwiczenie 39 KLOCEK I WALEC NA RÓWNI POCHYŁEJ - STATYKA.

Ćwiczenie 39 KLOCEK I WALEC NA RÓWNI POCHYŁEJ - STATYKA. Ćwiczenie 39 KLOCEK WALEC A ÓW POCHYŁEJ - SAYKA. 39... Wiadoości ogólne Zjawiko tarcia jet jedny z najbardziej rozpowzechnionych w nazej codziennej rzeczywitości. W świecie w jaki żyjey tarcie jet dołownie

Bardziej szczegółowo

Układy inercjalne i nieinercjalne w zadaniach

Układy inercjalne i nieinercjalne w zadaniach FOTON 98 Jeień 007 53 Układy inercjalne i nieinercjalne w zadaniach Jadwia Salach Zadanie 1 Urzędnik pracujący w biurowcu wiadł do windy która ruzył dół i przez 1 ekundę jechała z przypiezenie o wartości

Bardziej szczegółowo

6 = λ Częstotliwość odbierana przez nieruchomą głowicę, gdy źródło o prędkości v s emituje falę o częstotliwości f k : + = g g

6 = λ Częstotliwość odbierana przez nieruchomą głowicę, gdy źródło o prędkości v s emituje falę o częstotliwości f k : + = g g Projet Fizya wobec wyzwań XXI w. wpółinanowany przez Unię Europeją ze środów Europejieo Funduzu Społeczneo w raach Prorau Operacyjneo Kapitał Ludzi Zadania z olowiu 16.11.2009 (Fizya Medyczna i Neuroinoratya)

Bardziej szczegółowo

FIZYKA - wymagania programowe na poszczególne oceny

FIZYKA - wymagania programowe na poszczególne oceny FIZYKA - wymagania programowe na pozczególne oceny I. Wykonujemy pomiary Ocena dopuzczająca wymienia przyrządy, za pomocą kórych mierzymy długość, emperaurę, cza, zybkość i maę podaje zakre pomiarowy przyrządu

Bardziej szczegółowo

Właściwości Kinematyki z Uniwersalnym Układem Odniesienia

Właściwości Kinematyki z Uniwersalnym Układem Odniesienia Właśiwośi Kinemayki z Uniweralnym Układem Odnieienia Karol Szoek, Roman Szoek Poliehnika Rzezowka, Kaedra Termodynamiki i Mehaniki Płynów, Rzezów, Polka kzoek@prz.edu.pl Poliehnika Rzezowka, Kaedra Meod

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego -  - zadania fizyka, wzory fizyka, matura fizyka 2. Dynamika zadania z arkuza I 2.8 2.1 2.9 2.2 2.10 2.3 2.4 2.11 2.12 2.5 2.13 2.14 2.6 2.7 2.15 2. Dynamika - 1 - 2.16 2.25 2.26 2.17 2.27 2.18 2.28 2.19 2.29 2.20 2.30 2.21 2.40 2.22 2.41 2.23 2.42 2.24

Bardziej szczegółowo

q s,t 1 r k 1 t k s q k 1 q k... q n 1 q n q 1 i ef e, v 1 q,

q s,t 1 r k 1 t k s q k 1 q k... q n 1 q n q 1 i ef e, v 1 q, Maemayka finanowa i ubezpieczeniowa - 3 Przepływy pienięŝne 1 Warość akualna i przyzła przepływów dykrenych i ciągłych Oprocenowanie - dykonowanie ciągłe ze zmienną opą (iłą). 1. Sopy przedziałami ałe

Bardziej szczegółowo

Wymagania programowe na oceny szkolne z podziałem na treści Fizyka klasa I Gimnazjum

Wymagania programowe na oceny szkolne z podziałem na treści Fizyka klasa I Gimnazjum 1. Wykonujemy pomiary Tema według 1.1. Wielkości fizyczne, kóre mierzyz na co dzień 1.2. Pomiar warości iły ciężkości 1.3. Wyznaczanie gęości ubancji wymienia przyrządy, za pomocą kórych mierzymy długość,

Bardziej szczegółowo

Bryła sztywna - zadanka

Bryła sztywna - zadanka Bryła ztywna - zadanka 1. Hantla kłada ię z dwóch kul o maach m 1 = 1kg i m = kg połączonych prętem o długości l = 0.5m maie dużo mniejzej niż may tych kul. Wyznacz środek ciężkości tej haltli. Trzy kule

Bardziej szczegółowo

KLASA II Rozkład i Wymagania

KLASA II Rozkład i Wymagania KLASA II Rozkład i Wymagania 4. Jak opiujemy ruch? 33 Układ odnieienia. Tor ruchu, droga opiuje ruch ciała w podanym układzie odnieienia klayfikuje ruchy ze względu na kzał oru rozróżnia pojęcia oru ruchu

Bardziej szczegółowo

Dynamika punktu materialnego

Dynamika punktu materialnego Dynaia punu aerialnego dr inż. Sebaian Pauła Wydział Inżynierii Mechanicznej i Roboyi Kaedra Mechanii i Wibroauyi ail: paula@agh.edu.pl www: hoe.agh.edu.pl/~paula/ dr inż. Sebaian Pauła - Kaedra Mechanii

Bardziej szczegółowo

Wymagania edukacyjne z fizyki dla kl. 1b Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016

Wymagania edukacyjne z fizyki dla kl. 1b Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016 NAUCZYCIEL: Wymagania edukacyjne z fizyki dla kl. 1b Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku zkolnym 2015/2016 mgr Doroa Maj PODRĘCZNIK : ŚWIAT FIZYKI 1 Wyd. WSiP Na lekcjach fizyki poępy

Bardziej szczegółowo

Ł Ź Ź Ł Ź Ę Ś Ę Ę Ś Ą Ę Ś Ą Ć Ć ć Ę Ą Ł Ś ć ń ć Ł ć Ź ć Ę Ą Ą Ź ź ź ć ć ć ć ć ń ń ć ć ń Ó ź Ę Ą ć ć ć Ź ć Ź ć ć ń ń ć ń Ó ć Ą ń ć Ę Ą Ą ń ń ń ń ć ń ć ć Ź ć ń Ź ń ń Ć ń ń ń Ę Ą Ś Ą ń ć ń ć ź ń Ę Ś Ą Ąć

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom podstawowy

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom podstawowy KRYTERIA OCEIAIA ODPOWIEDZI Próbn Mtur z OPEROEM izyk i tronoi Pozio podtwowy Litopd 0 W niniejzy heie oenini zdń otwrtyh ą prezentowne przykłdowe poprwne odpowiedzi. W tego typu h nleży również uznć odpowiedzi

Bardziej szczegółowo

Blok 4: Dynamika ruchu postępowego. Równia, wielokrążki, układy ciał

Blok 4: Dynamika ruchu postępowego. Równia, wielokrążki, układy ciał Blok 4: Dynaika ruchu potępowego Równia, wielokrążki, układy ciał I Dynaiczne równania ruchu potępowego Chcąc rozwiązać zagadnienie ruchu jakiegoś ciała lub układu ciał bardzo częto zaczynay od dynaicznych

Bardziej szczegółowo

Skręcanie prętów napręŝenia styczne, kąty obrotu, projektowanie 3

Skręcanie prętów napręŝenia styczne, kąty obrotu, projektowanie 3 Skręcanie pręów napręŝenia yczne, kąy obrou, projekowanie W przypadku kręcania pręa jego obciąŝenie anowią momeny kręcające i. Na ry..1a przedawiono przykład pręa zywno zamocowanego na ewym końcu (punk

Bardziej szczegółowo

Zadania do rozdziału 5

Zadania do rozdziału 5 Zadania do rozdziału 5 Zad.5.1. Udowodnij, że stosując równię pochyłą o dającym się zmieniać ącie nachylenia α można wyznaczyć współczynni tarcia statycznego µ o. ozwiązanie: W czasie zsuwania się po równi

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY MIEJSCE NA KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2010/2011 Cza trwania: 90 inut Tet kłada ię z dwóch części. W części pierwzej az do rozwiązania 15 zadań zakniętych,

Bardziej szczegółowo

Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny

Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny Zadania do rozdziału 3. Zad.3.1. Rozważy klocek o aie kg ciągnięty wzdłuż gładkiej pozioej płazczyzny przez iłę P. Ile wynoi iła reakcji F N wywierana na klocek przez gładką powierzchnię? Oblicz iłę P,

Bardziej szczegółowo

9. Akustyka. Wybór i opracowanie zadań 9.1-9.14: Ryszard J. Barczyński

9. Akustyka. Wybór i opracowanie zadań 9.1-9.14: Ryszard J. Barczyński 9. Auya. Wybór i opraowanie aań 9.-9.4: Ryar. Baryńi 9.. W rou 46 poijan amierał uarać manaem ierowę, óry nie arymał ię na źwię jeo wia o ęoiwośi H. Kierowa łumaył ię, że nie mół ułyeć wia, yż na ue jawia

Bardziej szczegółowo

Zasady oceniania uczniów na lekcjach fizyki

Zasady oceniania uczniów na lekcjach fizyki Zaady oceniania uczniów na lekcjach fizyki Uczeń może orzymać jedną z naępujących ocen: celujący - proał wymaganiom na ocenę bardzo dobrą - amodzielnie korzya z różnych źródeł informacji - porafi zaoować

Bardziej szczegółowo

FIZYKA - wymagania edukacyjne (klasa 7)

FIZYKA - wymagania edukacyjne (klasa 7) FIZYKA - wymagania edukacyjne (klaa 7) I. Wykonujemy pomiary wymienia przyrządy, za pomocą kórych mierzymy długość, emperaurę, cza, zybkość i maę podaje zakre pomiarowy przyrządu przelicza jednoki długości,

Bardziej szczegółowo

Szczególna Teoria Eteru

Szczególna Teoria Eteru Szzególna Teoria eru FRAGMNTY KSIĄŻKI Karol Szoek Roman Szoek wydanie I Rzezów wrzeień 5 Szzególna Teoria eru www.e.om.l Coyrigh by Karol Szoek and Roman Szoek Wzelkie rawa zarzeżone. Cała kiążka oraz

Bardziej szczegółowo

CHARAKTERYSTYKI CZASOWE UKŁADÓW DYNAMICZNYCH

CHARAKTERYSTYKI CZASOWE UKŁADÓW DYNAMICZNYCH CHARAKERYSYKI CZASOWE UKŁADÓW DYNAMICZNYCH Zadani Chararyyi czaow uładów. Odpowidź oową wyznacza ię z wzoru: { } Problm: h L G X Wyznaczyć odpowidz oową i impulową całującgo z inrcją G h L G gdzi: Y X

Bardziej szczegółowo

Wykład 3: Kinematyka - względność ruchów. dr inż. Zbigniew Szklarski

Wykład 3: Kinematyka - względność ruchów. dr inż. Zbigniew Szklarski Wykład 3: Kinemayka - względność ruhów dr inż. Zbigniew Szklarski szkla@agh.edu.pl hp://layer.ui.agh.edu.pl/z.szklarski/ Wzgledność ruhów Każdy ruh opisujemy względem jakiegoś układu odniesienia W hwili

Bardziej szczegółowo

Egzamin maturalny z fizyki poziom rozszerzony (16 maja 2016)

Egzamin maturalny z fizyki poziom rozszerzony (16 maja 2016) Egzamin maturalny z fizyki poziom rozzerzony (16 maja 016) Arkuz zawiera 16 zadań, za których rozwiązanie można było uzykać makymalnie 60 punktów. Ogólną charakterytykę zadań przedtawia poniżza tabela.

Bardziej szczegółowo

Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego

Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego Powtórzenie na olowiu nr 4 Dynaia puntu aterialnego 1 zadanie dynaii: znany jest ruh, szuay siły go wywołująej. Znane funje opisująe trajetorię ruhu różnizujey i podstawiay do równań ruhu. 2 zadanie dynaii:

Bardziej szczegółowo

Wykład 4: Względność ruchów. dr inż. Zbigniew Szklarski

Wykład 4: Względność ruchów. dr inż. Zbigniew Szklarski Wykład 4: Względność ruhów dr inż. Zbigniew Szklarski szkla@agh.edu.pl hp://layer.ui.agh.edu.pl/z.szklarski/ Wzgledność ruhów Każdy ruh opisujemy względem jakiegoś układu odniesienia W hwili 0 rusza samohód

Bardziej szczegółowo

8.Dynamika ruchu drgającego i fale w ośrodkach sprężystych.

8.Dynamika ruchu drgającego i fale w ośrodkach sprężystych. 8Dynaia ruchu rgającego i fale w ośroach prężyych Wybór i opracowanie zaań 8 835 - Ryzar warowi Wybór i opracowanie zaań 836-845 - Boguław Kuz 8 W ułazie przeawiony na ryunu 8 aę g w chwili ochylono o

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Przekształcenie Laplace a. Definicja i własności, transformaty podstawowych sygnałów

Przekształcenie Laplace a. Definicja i własności, transformaty podstawowych sygnałów Przekzałcenie Laplace a Deinicja i właności, ranormay podawowych ygnałów Tranormaą Laplace a unkcji je unkcja S zmiennej zepolonej, kórą oznacza ię naępująco: L[ ] unkcja S nazywana bywa również unkcją

Bardziej szczegółowo

Kinematyka opisanie ruchu

Kinematyka opisanie ruchu Kinemayka opianie ruchu. Co o je ruch? Ruch je zjawikiem powzechnym. Poruzają ię gwiazdy i planey, poruza ię woda i powierze, zwierzęa i rośliny. Poruzaz ię Ty. Poruzają ię najmniejze cząki maerii. Słowem

Bardziej szczegółowo

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO I ETAP SZKOLNY 19 października 2017 r. Uczennico/Uczniu: 1. Na rozwiązanie wzytkich zadań az 90 inut. 2. Piz długopie/pióre -

Bardziej szczegółowo

Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór

Temat 6. ( ) ( ) ( ) k. Szeregi Fouriera. Własności szeregów Fouriera. θ możemy traktować jako funkcje ω, których dziedziną jest dyskretny zbiór ema 6 Opracował: Lesław Dereń Kaedra eorii Sygnałów Insyu eleomuniacji, eleinformayi i Ausyi Poliechnia Wrocławsa Prawa auorsie zasrzeżone Szeregi ouriera Jeżeli f ( ) jes funcją oresową o oresie, czyli

Bardziej szczegółowo

motocykl poruszał się ruchem

motocykl poruszał się ruchem Tet powtórzeniowy nr 1 W zadaniach 1 19 wtaw krzyżyk w kwadracik obok wybranej odpowiedzi Inforacja do zadań 1 5 Wykre przedtawia zależność prędkości otocykla od czau Grupa B 1 Dokończ zdanie, określając,

Bardziej szczegółowo

Wymagania edukacyjne - fizyka klasa 2 gimnazjum

Wymagania edukacyjne - fizyka klasa 2 gimnazjum ymagania edukacyjne - fizyka klaa gimnazjum Klayfikacja śródroczna Ocena dopuzczająca i doaeczna (numery przy wymaganiach anowią odnieienie do podawy programowej) opiuje ruch ciała w podanym układzie odnieienia

Bardziej szczegółowo

7. Szczególna teoria względności. Wybór i opracowanie zadań : Barbara Kościelska Więcej zadań z tej tematyki znajduje się w II części skryptu.

7. Szczególna teoria względności. Wybór i opracowanie zadań : Barbara Kościelska Więcej zadań z tej tematyki znajduje się w II części skryptu. 7 Szzególna eoria względnośi Wybór i opraowanie zadań 7-79: Barbara Kośielska Więej zadań z ej emayki znajduje się w II zęśi skrypu 7 Czy można znaleźć aki układ odniesienia w kórym Chrzes Polski i Biwa

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY stopień wojewódzki

WOJEWÓDZKI KONKURS FIZYCZNY stopień wojewódzki KOD UCZNIA Białytok 07.03.2007r. WOJEWÓDZKI KONKURS FIZYCZNY topień wojewódzki Młody Fizyku! Przed Tobą topień wojewódzki Wojewódzkiego Konkuru Fizycznego. Maz do rozwiązania 10 zadań zamkniętych i 3 otwarte.

Bardziej szczegółowo

Zasada ruchu środka masy i zasada d Alemberta 6

Zasada ruchu środka masy i zasada d Alemberta 6 Zaada ruchu środka ay i zaada d Aleerta 6 Wprowadzenie Zaada ruchu środka ay Środek ay układu punktów aterialnych poruza ię tak, jaky w ty punkcie yła kupiona cała aa układu i jaky do teo punktu przyłożone

Bardziej szczegółowo

Fizyka i astronomia. Poziom podstawowy pkt za zapisanie wzoru na pr dkoêç wzgl dnà h. 2. b 0 1

Fizyka i astronomia. Poziom podstawowy pkt za zapisanie wzoru na pr dkoêç wzgl dnà h. 2. b 0 1 izya i atronoia Pozio podtawowy Nuer. pt za zapianie wzoru na pr doêç wzgl dnà " " + " + pt za obliczenie czau ijania t l t l + t 55 + 5 6. b 3. pt za obliczenie ca owitej drogi oraz ca owitego czau rucu

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP REJONOWY] ROK SZKOLNY 2009/2010 Czas trwania: 120 minut

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP REJONOWY] ROK SZKOLNY 2009/2010 Czas trwania: 120 minut KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP REJONOWY] ROK SZKOLNY 009/010 Cza trwania: 10 inut Tet kłada ię z dwóch części. W części pierwzej az do rozwiązania 15 zadań zakniętych, za które

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII

WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO RZETWARZANIA ENERGII 1.1. Zasada zachowania energii. unem wyjściowym dla analizy przewarzania energii i mocy w pewnym przedziale czasu jes zasada zachowania energii

Bardziej szczegółowo

SPRAWDZIAN WIADOMOŚCI I UMIEJETNOŚCI Z KINEMATYKI KLASA I GIMNAZJUM

SPRAWDZIAN WIADOMOŚCI I UMIEJETNOŚCI Z KINEMATYKI KLASA I GIMNAZJUM SPRAWDZIAN WIADOMOŚCI I UMIEJETNOŚCI Z KINEMATYKI KLASA I GIMNAZJUM GRUPA I 1. (1p) Wymień 3 dycypliny porowe, w kórych wyniki mierzy ię w jednokach długości.. (1p) Drogą jedzie auobu. Względem auobuu

Bardziej szczegółowo

PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO Z FIZYKI DZIAŁ III. SIŁA WPŁYWA NA RUCH

PRZYGOTOWANIE DO EGZAMINU GIMNAZJALNEGO Z FIZYKI DZIAŁ III. SIŁA WPŁYWA NA RUCH DZIAŁ III. SIŁA WPŁYWA NA RUCH Wielkość fizyczna nazwa ybol Przypiezenie (II zaada dynaiki) a Jednotka wielkości fizycznej Wzór nazwa ybol F N w a niuton na kilogra kg Ciężar Q Q g niuton N Przypiezenie

Bardziej szczegółowo

Optymalna alokacja kapitału w funduszach inwestycyjnych w przypadku dwóch stóp zwrotu

Optymalna alokacja kapitału w funduszach inwestycyjnych w przypadku dwóch stóp zwrotu Opymalna aloacja apiału w funduzach inweycyjnych w pzypadu dwóch óp zwou Leze S Zaemba Leze Pęy Wpowadzenie W niniejzej pacy podobnie ja w publiacjach [5-6] popzedzających ozpawę dooą [7] óa je aualnie

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika,,świat fizyki w klasie 7

Wymagania na poszczególne oceny przy realizacji programu i podręcznika,,świat fizyki w klasie 7 na pozczególne oceny przy realizacji i podręcznika,,świa fizyki w klaie 7 1. Wykonujemy pomiary 1.1. Wielkości fizyczne, kóre mierzyz na co dzień 1.2. Pomiar warości iły ciężkości 1.3. Wyznaczanie gęości

Bardziej szczegółowo

Mikrosilniki synchroniczne

Mikrosilniki synchroniczne Mikoilniki ynchoniczne Specyfika eoii: R >0 z uwagi na ounkowo dużą waość ezyancji ojana nie wolno jej pomijać w analizie zjawik mikomazyny ynchonicznej. Zwykle wykozyywane ą óżne odzaje momeny ynchonicznego:

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 6 10.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 6 10.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów izya 1- Mechania Wyład 6 1.XI.16 Zygun Szeflińi Środowiowe Laboraoriu Ciężich Jonów zef@fuw.edu.l h://www.fuw.edu.l/~zef/ Praca i energia Najrozy rzyade: Sała iła działa na ciało P owodując jego rzeunięcie

Bardziej szczegółowo

3. RUCHY CIAŁ (KINEMATYKA) Pojęcie ruchu, układ odniesienia, tor, droga, przemieszczenie

3. RUCHY CIAŁ (KINEMATYKA) Pojęcie ruchu, układ odniesienia, tor, droga, przemieszczenie 3. RUCHY CIAŁ (KINEMATYKA) Zakre wiadomości Pojęcie ruchu, układ odnieienia, tor, droga, przemiezczenie Względność ruchu Klayfikacja ruchów Prędkość średnia i chwilowa Ruch jednotajny protoliniowy (równanie

Bardziej szczegółowo

Część 1 9. METODA SIŁ 1 9. METODA SIŁ

Część 1 9. METODA SIŁ 1 9. METODA SIŁ Część 1 9. METOD SIŁ 1 9. 9. METOD SIŁ Metoda ił jet poobem rozwiązywania układów tatycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Sprowadza ię ona do rozwiązania

Bardziej szczegółowo

Elementy mechaniki relatywistycznej

Elementy mechaniki relatywistycznej Podstawy Proesów i Konstrukji Inżynierskih Elementy mehaniki relatywistyznej 1 Czym zajmuje się teoria względnośi? Teoria względnośi to pomiary zdarzeń ustalenia, gdzie i kiedy one zahodzą, a także jaka

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejce na identyfikację zkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 03 Cza pracy: 50 inut Intrukcja dla zdającego. Sprawdź, czy arkuz egzainacyjny zawiera tron

Bardziej szczegółowo

Zasady dynamiki. 1. Jakie mogą być oddziaływania ciał? 2. Co dzieje się z ciałem, na które nie działają żadne siły?

Zasady dynamiki. 1. Jakie mogą być oddziaływania ciał? 2. Co dzieje się z ciałem, na które nie działają żadne siły? Zaady dynaiki. 1. Jakie ogą być oddziaływania ciał? Świat jet pełen rozaitych ciał. Ciała te nie ą od iebie niezależne, nieutannie na iebie działają. Objawy tego działania, czy też, jak ówią fizycy, oddziaływania

Bardziej szczegółowo

9. DZIAŁANIE SIŁY NORMALNEJ

9. DZIAŁANIE SIŁY NORMALNEJ Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE UKŁADÓW DYNAMICZNYCH

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE UKŁADÓW DYNAMICZNYCH CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE UKŁADÓW DYNAMICZNYCH Zadanie 1. (Charaterytyi czętotliwościowe) Problem: Wyznaczyć charaterytyi czętotliwościowe (amplitudową i fazową) członu całującego rzeczywitego

Bardziej szczegółowo

Szczególna teoria względności i jej konsekwencje

Szczególna teoria względności i jej konsekwencje W-7 (Jaroszewiz) slajdy Na odsawie rezenaji rof. J. Ruowsiego Szzególna eoria względnośi i jej onsewenje Szzególna eoria względnośi Konsewenje wyniająe z ransformaji Lorenza: względność równozesnośi dylaaja

Bardziej szczegółowo

Ł Ł Ś Ę ź ź ź ź Ś ź ż Ę Ę Ś ż Ś ń Ś Ó Ą Ł Ą Ś ź Ę ć Ś ź ż ż ż ż ż ć ż ż Ń ć ń Ś ź ż ń ć ć ż ć ż źń ć ż ż ż ź ń ć ć Ł ż Ę ń ć ż ń ż ż Ś ź ż ń ń Ś ż Ś ń Ś ż ż Ś ń Ą ż Ł ć ż ż ż ń ż ż ż ż ń Ł ń Ę Ę Ą ń ź

Bardziej szczegółowo

Ń Ó Ą Ó Ą Ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć Ń ć ć ć ź ź Ą ć ć ć ź Ź ź ć ŚĆ ć ć ć ź ć źń Ć Ż ź ć ć ć ź ć Ż Ą ć Ż ć ź ć ź ź ź Ą ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć Ą ć Ó ź Ó Ó Ń Ą Ó

Bardziej szczegółowo

ń Ą ń Ż Ż ń Ó ź Ę ź ź Ę ć ć ć Ś ź ŚĆ Ś ź ź ź ź Ś ź ń Ś Ó Ć ŚĆ Ć ć ć ć ź ń ć Ó ń ń ń Ś ń ń Ś ń ź ź ź źń Ź Ś ń Ć Ś Ś Ź ń ń Ś ń ń Ś ź ź Ś ź źń Ś ć ć ń Ś ń ń Ś Ś Ś Ś ń ź ź Ś ź źń ź Ś ń ź Ś Ś Ś ź ń ń Ś ń ń

Bardziej szczegółowo

Ą Ł ń Ź Ź Ą Ą ź ć Ź ń ź Ę Ł Ę Ł ż ć ć ć ż ż ż ć Ż ń ć ń ć Ń Ę ż Ż Ż Ż ć Ń Ż Ż Ą ń Ż Ż Ą Ą ń ż ń Ż Ź ż ż Ź ń ć ć Ą ć ć ć Ż ć ć ż ć ć Ż Ą ć Ż ć Ż ż ń ż ń ć Ż ć ć Ż Ł Ż Ż ć ż ć ć Ń Ń ż Ą ć ć ć ń ć ź ć ż ć

Bardziej szczegółowo

Ą ż ń ń ń ń ż Ą ń ń ż ć ń ś ż ż ż ś ż ż ż ż ć ć ś Ą ż ń ż ż ć ń ś ź ń ś ż ś ś ń ś ń ś ś ś Ń ś ż ń ś ń ń ść ż Ę ń ś ń ń ń ś ż ć Ą ś ż Ń żń ś ż ż ń ś Ę ŁÓ Ą ż ń ń ś ń ń ż ć ż Ś ź Ń ś Ń ż ń ś ń ż ź

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z a m a w i a j» c y G D Y S K I O R O D E K S P O R T U I R E K R E A C J I J E D N O S T K A B U D E T O W A 8 1 5 3 8 G d y n i a, u l O l i m p i j s k a 5k 9 Z n a k s p r a w y G O S I R D Z P I

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczasowych gimnazjów. Schemat punktowania zadań

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczasowych gimnazjów. Schemat punktowania zadań 1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczaowych ginazjów 0 tycznia 019 r. etap rejonowy Scheat punktowania zadań Makyalna liczba punktów 40. 85% 4pkt. Uwaga! 1. Za poprawne rozwiązanie zadania

Bardziej szczegółowo

Elementy szczególnej teorii względności

Elementy szczególnej teorii względności Elementy szzególnej teorii względnośi Podstawowe założenia szzególnej teorii względnośi: Albert Einstein 195 Prawa fizyzne są takie same dla wszystkih obserwatorów któryh kłady odniesienia porszają się

Bardziej szczegółowo

Wyjaśnienie wyników eksperymentu Michelsona-Morleya przy pomocy teorii z eterem

Wyjaśnienie wyników eksperymentu Michelsona-Morleya przy pomocy teorii z eterem Wyjaśnienie wyników ekperymentu Mihelona-Morleya przy pomoy teorii z eterem Karol Szotek, Roman Szotek Politehnika Rzezowka, Katedra Termodynamiki i Mehaniki Płynów, Rzezów, Polka kzotek@prz.edu.pl Politehnika

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych

Blok 2: Zależność funkcyjna wielkości fizycznych Bl : Zależnść funcyjna wielści fizycznych Odpwiedzi d zeawu d adzielneg rzwiązania:. Odległść je warścią bezwzględną przeiezczenia. Najpierw bliczy przeiezczenie: Pun aru azyny znajduje ię w Przeiezczenie

Bardziej szczegółowo

Rozdział III IZOTERMICZNE OSUSZANIE ZAWILGOCONYCH ZABYTKÓW. 1. Wstęp

Rozdział III IZOTERMICZNE OSUSZANIE ZAWILGOCONYCH ZABYTKÓW. 1. Wstęp 3 Rozdział III IZOTERMICZNE OSUSZANIE ZAWILGOCONYCH ZABYTKÓW 1. Wtęp Ouzanie mono zawilgoonyh zabytków nizym ię w itoie nie różni od ouzania budynków po powodzi. Metody potępowania ą podobne, a różnia

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Szkoła z przyszłośią szkolenie współfinansowane przez Unię Europejską w ramah Europejskiego Funduszu Społeznego Narodowe Cenrum Badań Jądrowyh, ul. Andrzeja Sołana 7, 05-400 Owok-Świerk ĆWICZENIE a L A

Bardziej szczegółowo

Wykład 4: Transformata Laplace a

Wykład 4: Transformata Laplace a Rachunek prawdopodobieńwa MAP164 Wydział Elekroniki, rok akad. 28/9, em. leni Wykładowca: dr hab. A. Jurlewicz Wykład 4: Tranformaa Laplace a Definicja. Niech f() będzie funkcją określoną na R, przy czym

Bardziej szczegółowo

Relaksacja. Chem. Fiz. TCH II/19 1

Relaksacja. Chem. Fiz. TCH II/19 1 Relasaja Relasaja oznaza powrót uładu do stanu równowagi po zaburzeniu równowagi pierwotnej jaimś bodźem (wielośią zewnętrzną zmieniająą swoją wartość soowo, np. stężenie jednego z reagentów, iśnienie

Bardziej szczegółowo

Przeanalizujmy układ termodynamiczny przedstawiony na rysunku 1. - początkowa, przejściowa i końcowa objętość kontrolnej ilości gazu w naczyniu.

Przeanalizujmy układ termodynamiczny przedstawiony na rysunku 1. - początkowa, przejściowa i końcowa objętość kontrolnej ilości gazu w naczyniu. M. Chorowski Podstawy Kriogeniki, wykład 5. 3. Metody zyskiwania niskih temperatr - iąg dalszy 3.3. Wypływ swobodny ze stałej objętośi Rozważmy adiabatyzną ekspansję gaz wypływająego z nazynia o stałej

Bardziej szczegółowo

ODPOWIEDZI, KRYTERIA OCENIANIA I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY. ZADANIE punktów. r r r

ODPOWIEDZI, KRYTERIA OCENIANIA I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY. ZADANIE punktów. r r r Okęoa Koija zainacyjna Poznaniu Maeiał ćiczenioy z fizyki i aonoii 011. Pozio ozzezony Kyeia oceniania i chea punkoania 1 ODPOWIDZI, KYTIA OCNIANIA I SCHMAT PUNKTOWANIA POZIOM OZSZZONY ZADANI 1. 10 punkó

Bardziej szczegółowo

2 ), S t r o n a 1 z 1 1

2 ), S t r o n a 1 z 1 1 Z a k r e s c z y n n o c i s p r z» t a n i a Z a ł» c z n i k n r 1 d o w z o r u u m o w y s t a n o w i» c e g o z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w

Bardziej szczegółowo

1 W ruchu jednostajnym prostoliniowym droga:

1 W ruchu jednostajnym prostoliniowym droga: TEST z działu: Kineatyka iię i nazwiko W zadaniac 8 każde twierdzenie lub pytanie a tylko jedną prawidłową odpowiedź Należy ją zaznaczyć data W rucu jednotajny protoliniowy droga: 2 jet wprot proporcjonalna

Bardziej szczegółowo

I. KINEMATYKA I DYNAMIKA

I. KINEMATYKA I DYNAMIKA piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne

Bardziej szczegółowo

2. Załadowany pistolet spręŝynowy ustawiono pionowo w górę i oddano strzał. SpręŜyna

2. Załadowany pistolet spręŝynowy ustawiono pionowo w górę i oddano strzał. SpręŜyna Energia potencjalna pręŝytości 1. W kontrukcji pitoletu pręŝynowego uŝyto pręŝyny o wpółczynniku pręŝytości 100. Jaką aę a pocik pitoletu, jeśli odkztałcona o 6 c pręŝyna nadaje pocikowi w trakcie trzału

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki klasa II

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki klasa II LINKI WAŻNE DLA KLAS III hp://fizyka.zamkor.pl/image/maerialy/men_om_5_11110.pdf hp://fizyka.zamkor.pl/arykul/63/1188-obowiazkowe-dowiadczenia-fizyczne/ Wymagania na pozczególne oceny przy realizacji i

Bardziej szczegółowo

MODEL WYRZUTNI ELEKTROMAGNETYCZNEJ

MODEL WYRZUTNI ELEKTROMAGNETYCZNEJ Szybkobieżne Pojazdy Gąienicowe (22) nr 1, 2007 Zbigniew RACZYŃSKI MODEL WYRZUTNI ELEKTROMAGNETYCZNEJ Strezczenie: W artykule przedtawiono zaadę działania wyrzutni cewkowej i zynowej. Przedtawiono wyniki

Bardziej szczegółowo