Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I
|
|
- Helena Zielińska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Wstęp do algebry liniowej i geometrii analitycznej B (03-MO1S-12-WALGB) Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne Koordynator modułu dr Beata Rothkegel, brothkegel@math.us.edu.pl rok akademicki 2012/2013 semestr letni forma studiów stacjonarne sposób ustalania oceny koocowej modułu 2. Opis dydaktycznych i pracy Na ocenę koocową składają się: oceny z dwóch kolokwiów (36%), krótkich testów pisemnych ze znajomości treści wykładów i ich elementarnych zastosowao (19%), ocena z rozwiązywania zadao przy tablicy (9%; w formie punktów bonusowych) oraz ocena z pisemnego egzaminu koocowego (36%). wykład prowadzący treści WALGB_fs_1 Beata Rothkegel, brothkegel@math.us.edu.pl Wszyscy studenci specjalności: modelowanie matematyczne, teoretyczna, nauczycielska nauczanie matematyki i komputerowych. Przestrzeo liniowa R n, n<=3 (3 godz.): wektory na prostej, płaszczyźnie i w przestrzeni, działania na wektorach, kombinacje liniowe, liniowa niezależnośd i liniowa zależnośd wektorów, podprzestrzeo, suma i suma prosta podprzestrzeni, baza, zmiana bazy. Przestrzeo liniowa K n, n dowolne (4 godz.): uogólnienie pojęd z poprzedniego punktu na przypadek dowolnego ciała K i dowolnego n, rząd macierzy i jego zastosowania, twierdzenie Kroneckera-Capelli, struktura zbioru rozwiązao układu równao liniowych. Przestrzeo afiniczna R n, n<=3 (2 godz.): suma afiniczna, układy punktów, środki ciężkości, podprzestrzeo afiniczna, baza punktowa, afiniczny układ współrzędnych i jego zmiana, proste i płaszczyzny oraz ich równania. Przestrzeo afiniczna K n, n dowolne (3 godz.): uogólnienie pojęd z poprzedniego punktu na przypadek dowolnego ciała K i dowolnego n, postad ogólna, parametryczna i kanoniczna podprzestrzeni afinicznej przestrzeni K n. Przestrzeo euklidesowa R n, n<=3 (7 godz.): iloczyn skalarny, macierz iloczynu skalarnego, funkcjonał kwadratowy, prostopadłośd, dopełnienie ortogonalne, baza ortogonalna, ortogonalizacja Grama-Schmidta, metoda Lagrange a, długośd wektora, baza ortonormalna, kąty i ich miary, orientacja przestrzeni, iloczyn wektorowy, przestrzeo euklidesowa R n dla dowolnego n. Afiniczna przestrzeo euklidesowa R n, n<=3 (7 godz.): odległośd, wzajemne położenie prostych i płaszczyzn, rzut i symetria prostopadła, wybrane twierdzenia geometrii elementarnej, pole i objętośd, afiniczna przestrzeo euklidesowa R n dla dowolnego n. Utwory stopnia 2 (4 godz.): stożkowe i powierzchnie (nad R) oraz ich własności, postacie kanoniczne stożkowych i powierzchni, klasyfikacja.
2 Uniwersytet Śląski w Katowicach str. 2 metody prowadzenia dydaktycznych (kontaktowych) pracy własnej opis pracy własnej organizacja obowiązkowa uzupełniająca adres strony www Jak w opisie modułu Samodzielne studiowanie notatek sporządzonych na wykładzie oraz literatury wskazanej w sylabusie. 2 godziny tygodniowo, ul. Bankowa 14, sala wg planu 1. G. Banaszak, W. Gajda, Elementy algebry liniowej, t. 1 i 2, WNT, Warszawa A. Białynicki-Birula, Algebra liniowa z geometrią, PWN, Warszawa A. Kostrikin, Wstęp do algebry, t. 2, PWN, Warszawa E. Piegat, Wektory i geometria. Algebra wektorów i jej zastosowania, PZWS, Warszawa K. Borsuk, W. Szmielew, Podstawy geometrii, PWN, Warszawa M. Moszyoska, J. Święcicka, Geometria z algebrą liniową, PWN, Warszawa M. Stark, Geometria analityczna, PWN, Warszawa konwersatorium prowadzący treści metody prowadzenia dydaktycznych (kontaktowych) pracy własnej opis pracy WALGB_fs_2 Beata Rothkegel gr. 4. Beata Rothkegel, brothkegel@math.us.edu.pl gr. 5. Alfred Czogała, alfred.czogala@us.edu.pl Rozwiązywanie zadao z 7 zestawów, z których każdy jest dokładnie dopasowany do każdej z siedmiu części wykładu (patrz treśd wykładów). Jak w opisie modułu Samodzielne rozwiązywanie zadao z zestawów zadao dostarczonych przez
3 Uniwersytet Śląski w Katowicach str. 3 własnej organizacja obowiązkowa uzupełniająca adres strony www wykładowcę. 2 godziny tygodniowo, ul. Bankowa 14, sale wg planu Jak w przypadku wykładów. Jak w przypadku wykładów oraz zbiory zadao: 1. A. Kostrikin (red.), Zbiór zadao z algebry, PWN, Warszawa J. Rutkowski, Algebra liniowa w zadaniach, PWN, Warszawa Opis sposobów weryfikacji efektów kształcenia modułu aktywnośd na zajęciach (-y) osoba(-y) gr. 4. Beata Rothkegel, brothkegel@math.us.edu.pl przeprowadzająca(- gr. 5. Alfred Czogała, alfred.czogala@us.edu.pl e) weryfikację wymagania merytoryczne WALGB_w_1 gr. 4. Beata Rothkegel, gr. 5. Alfred Czogała 1. Znajomośd i umiejętnośd zastosowania następujących pojęd i zagadnieo z zakresu przestrzeni liniowej K n : kombinacja liniowa wektorów, liniowa niezależnośd i liniowa zależnośd wektorów, podprzestrzeo liniowa, suma i suma prosta podprzestrzeni liniowych, podprzestrzeo liniowa generowana przez układ wektorów, minimalny układ rozpinający podprzestrzeo, maksymalny układ liniowo niezależny, baza, warunki równoważne na bazę, wymiar przestrzeni, współrzędne wektora w bazie, macierz przejścia. 2. Znajomośd definicji rzędu macierzy (rzędu kolumnowego i rzędu wierszowego) i umiejętnośd jego zastosowania (jego związek z odwracalnością macierzy i istnieniem rozwiązao układów równao liniowych twierdzenie Kroneckera-Capelli), znajomośd i umiejętnośd zastosowania definicji warstwy podprzestrzeni, podprzestrzeni kierunkowej i układu fundamentalnego rozwiązao układu równao liniowych. 3. Znajomośd i umiejętnośd zastosowania następujących pojęd i zagadnieo z zakresu przestrzeni afinicznej K n : suma afiniczna, układ punktów, środek ciężkości, układ wag, podprzestrzeo afiniczna, podprzestrzeo afiniczna generowana przez układ punktów, układ bazowy, baza punktowa, współrzędne barycentryczne, afiniczny układ współrzędnych i jego zmiana. 4. Znajomośd i umiejętnośd zastosowania postaci ogólnej, parametrycznej i kanonicznej podprzestrzeni afinicznej przestrzeni K n (w tym prostej i płaszczyzny), pojęcia hiperpłaszczyzny.
4 Uniwersytet Śląski w Katowicach str. 4 kryteria oceny przebieg procesu weryfikacji 5. Znajomośd i umiejętnośd zastosowania następujących pojęd i zagadnieo z zakresu przestrzeni euklidesowej R n, n<=3: iloczyn skalarny, macierz iloczynu skalarnego w bazie, funkcjonał kwadratowy, prostopadłośd wektorów, dopełnienie ortogonalne, baza ortogonalna, metody wyznaczania bazy ortogonalnej, długośd wektora, baza ortonormalna, kąt i jego miara, kąt pomiędzy prostymi (płaszczyznami), kąt pomiędzy prostą i płaszczyzną, iloczyn wektorowy, bazy zgodnie zorientowane, przestrzeo zorientowana. 6. Znajomośd i umiejętnośd zastosowania następujących pojęd i zagadnieo z zakresu afinicznej przestrzeni euklidesowej R n, n<=3: odległośd pomiędzy punktami, odległośd punktu od prostej (płaszczyzny), odległośd pomiędzy prostymi (płaszczyznami), odległośd pomiędzy prostą a płaszczyzną, wzajemne położenie prostych i płaszczyzn, rzut i symetria prostopadła, wyznacznik Grama i jego zastosowanie. 7. Znajomośd i umiejętnośd zastosowania twierdzeo z geometrii elementarnej wybranych przez wykładowcę z monografii: E. Piegat, Wektory i geometria. Algebra wektorów i jej zastosowania, PZWS, Warszawa Znajomośd i umiejętnośd zastosowania stożkowych i powierzchni nad R oraz ich postaci kanonicznych; pojęcia podprzestrzeni stycznej, środków i kierunków asymptotycznych oraz punktów osobliwych stożkowej. Aktywnośd na zajęciach będzie głównie dotyczyd przygotowania do na podstawie 5 krótkich pisemnych sprawdzianów ze znajomości teorii z wykładów i jej elementarnych zastosowao. Każdy student będzie miał ponadto możliwośd rozwiązywania zadao przy tablicy. W każdym z pisemnych testów można będzie uzyskad 4 punkty. W sumie będzie to stanowiło 29% maksymalnej liczby punktów do zdobycia w trakcie konwersatoriów. Termin testów wg uznania prowadzącego. Za rozwiązywanie zadao przy tablicy student będzie mógł uzyskad dodatkowo do 10 punktów bonusowych (14%). sprawdziany pisemne (-y) osoba(-y) przeprowadzająca(- e) weryfikację wymagania merytoryczne gr. 4. Beata Rothkegel, brothkegel@math.us.edu.pl gr. 5. Alfred Czogała, alfred.czogala@us.edu.pl WALGB_w_2 gr. 4. Beata Rothkegel, gr. 5. Alfred Czogała 1. Umiejętnośd: wykonywania działao na wektorach w przestrzeni współrzędnych K n, wyznaczania kombinacji liniowej układu wektorów, sprawdzania czy dany wektor jest kombinacją liniową układu wektorów, sprawdzania liniowej niezależności i liniowej zależności układu wektorów (z definicji, przy pomocy wyznacznika), sprawdzania czy dany podzbiór jest podprzestrzenią liniową, przedstawiania wektora w postaci sumy wektorów z sumy podprzestrzeni, sprawdzania czy suma podprzestrzeni
5 Uniwersytet Śląski w Katowicach str. 5 kryteria oceny przebieg procesu weryfikacji jest sumą prostą podprzestrzeni, wyznaczania (minimalnego) układu rozpinającego podprzestrzeo, wyznaczania bazy, wyznaczania wymiaru przestrzeni, wyznaczania współrzędnych wektora w bazie, wyznaczania macierzy przejścia pomiędzy bazami, wyznaczania wzorów na zmianę współrzędnych przy przejściu od bazy do bazy, wyznaczania rzędu macierzy i jego zastosowania, przedstawiania zbioru rozwiązao układu równao liniowych w postaci odpowiedniej warstwy podprzestrzeni, wyznaczania podprzestrzeni kierunkowej i układu fundamentalnego układu równao. Przykładowe zadania sprawdzające powyższe umiejętności zawarte są w Zestawie 1 i Zestawie Umiejętnośd: sprawdzania czy dany podzbiór jest podprzestrzenią afiniczną przestrzeni K n, wyznaczania bazy punktowej, wyznaczania współrzędnych barycentrycznych, zmiany afinicznego układu współrzędnych, wyznaczania postaci ogólnej, parametrycznej i kanonicznej podprzestrzeni afinicznych (w tym prostej, płaszczyzny, hiperpłaszczyzny), wykorzystania wyznacznika do konstrukcji równao ogólnych podprzestrzeni afinicznych. Przykładowe zadania sprawdzające powyższe umiejętności zawarte są w Zestawie 3 i Zestawie Umiejętnośd: swobodnego operowania iloczynem skalarnym w przestrzeni euklidesowej R n, n<=3, wyznaczania macierzy iloczynu skalarnego w dowolnej bazie, sprawdzania prostopadłości wektorów, wyznaczania dopełnienia ortogonalnego, bazy ortogonalnej (metodą ortogonalizacji Grama-Schmidta i metodą ortogonalnych dopełnieo), stosowania metody Lagrange a, wyznaczania długości wektora, bazy ortonormalnej, miary kąta pomiędzy prostymi (płaszczyznami), miary kąta pomiędzy prostą i płaszczyzną, wyznaczania iloczynu wektorowego. Przykładowe zadania sprawdzające powyższe umiejętności zawarte są w Zestawie Umiejętnośd: posługiwania się geometryczną interpretacją rozwiązao układów równao liniowych, wyznaczania odległości pomiędzy punktami, odległości punktu od prostej (płaszczyzny), odległości pomiędzy prostymi (płaszczyznami), odległości pomiędzy prostą a płaszczyzną, określania wzajemnego położenia prostych i płaszczyzn, wyznaczania wzorów na rzut i symetrię prostopadłą, wyznaczania obrazu wektora (podprzestrzeni) w rzucie i symetrii prostopadłej, wyznaczania pól, objętości, rozwiązywania zadao z geometrii elementarnej. Przykładowe zadania sprawdzające powyższe umiejętności zawarte są w Zestawie Umiejętnośd: klasyfikacji stożkowych i powierzchni nad R z wykorzystaniem wyznaczników macierzy związanych z równaniami tych utworów, wyznaczania stycznej, środków i kierunków asymptotycznych oraz punktów osobliwych stożkowej. Przykładowe zadania sprawdzające powyższe umiejętności zawarte są w Zestawie 7. 2 kolokwia pisemne ze znajomości zadao z dostarczonych zestawów zadao. Pierwsze z nich sprawdza efekty kształcenia WALGB_1, WALGB_2, WALGB_3, WALGB_4, a drugie efekty WALGB_1, WALGB_3, WALGB_5, WALGB_6, WALGB_7. 2 kolokwia pisemne (w 7. oraz 13. tygodniu ). Każde pozwala na zdobycie 20 punktów, co stanowi 57% punktów do zdobycia w trakcie konwersatoriów.
6 Uniwersytet Śląski w Katowicach str. 6 egzamin pisemny (-y) osoba(-y) przeprowadzająca(- e) weryfikację wymagania merytoryczne kryteria oceny przebieg procesu weryfikacji Beata Rothkegel, brothkegel@math.us.edu.pl WALGB_w_3 Wszyscy studenci specjalności: modelowanie matematyczne, teoretyczna, nauczycielska nauczanie matematyki i komputerowych. W pierwszej części egzaminu wymagane będą umiejętności uwzględnione w wymaganiach merytorycznych dla sprawdzianów pisemnych przeprowadzanych w trakcie konwersatoriów, a w drugiej sprawdzane będą znajomości faktów wymienionych w wymaganiach merytorycznych weryfikacji efektów kształcenia w zakresie aktywności na zajęciach. Do egzaminu student przystępuje z liczbą punktów uzyskaną w trakcie konwersatoriów. W trakcie egzaminu można zdobyd 40 punktów. Zatem do zdobycia będzie w sumie 110 punktów ( punktów bonusowych). Przedmiot będzie zaliczony w przypadku zdobycia co najmniej 50 punktów. Egzamin składad się będzie z dwóch części (obie w formie pisemnej): pierwsza z zadao (za 20 punktów) i druga z teorii i jej elementarnych zastosowao (za 20 punktów).
Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Wstęp do algebry liniowej i geometrii analitycznej (03-M01N-12-WALG)
Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Wstęp do algebry liniowej i geometrii analitycznej A (03-M01S-12-WALGA)
1. Informacje ogólne. 2. Opis zajęć dydaktycznych i pracy studenta. wykład
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia, rok I Sylabus modułu: Wstęp do algebry i teorii liczb (03-MO1S-12-WATL) Nazwa wariantu modułu (opcjonalnie):
Kierunek i poziom studiów: Sylabus modułu: Wstęp do algebry i teorii liczb (03-M01N-WATL) Nazwa wariantu modułu (opcjonalnie): -
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Sylabus modułu: Wstęp do algebry i teorii liczb (03-M01N-WATL) Nazwa wariantu modułu (opcjonalnie): - 1. Informacje ogólne koordynator
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Nazwa Algebra liniowa z geometrią Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot Kod Studia Kierunek
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Geometria analityczna (GAN010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Algebra liniowa i geometria analityczna II Linear algebra and geometry II Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Algebra liniowa z geometrią Kod przedmiotu/
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1
Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Algebra z Geometria Analityczna Nazwa w języku angielskim : Algebra and Analytic Geometry Kierunek studiów
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Algebra liniowa (ALL010) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Algebra liniowa (ALL010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30 7. TYP
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30
Zał. nr do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry Kierunek studiów (jeśli dotyczy): Specjalność
Kierunek i poziom studiów: Matematyka, studia II stopnia (magisterskie), rok 1
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia (magisterskie), rok 1 Sylabus modułu: Analiza funkcjonalna (03-MO2S-12-AFun) 1. Informacje ogólne koordynator
Informatyka, I stopień
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Informatyka, I stopień Sylabus modułu: Podstawy logiki i teorii mnogości (LTM200.2) wariantu modułu (opcjonalnie): 1. Informacje ogólne
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA M1 Nazwa w języku angielskim ALGEBRA M1 Kierunek studiów (jeśli dotyczy): Matematyka Stopień studiów
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ALGEBRA LINIOWA Z GEOMETRIĄ ANALITYCZNĄ Linear algebra and analytical geometry Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka,
Algebra liniowa. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Algebra liniowa Nazwa modułu w języku angielskim Linear algebra Obowiązuje
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Inżynieria biomedyczna Linear algebra and analytical geometry forma studiów: studia stacjonarne Kod przedmiotu: IB_mp_ Rodzaj przedmiotu:
Algebra liniowa Linear algebra
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Mechatronika Linear algebra and analytical geometry Kod przedmiotu: A01 Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Poziom
Z-ID-103 Algebra liniowa Linear Algebra
KARTA MODUŁU / KARTA PRZEDMIOTU Z-ID-0 Algebra liniowa Linear Algebra Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/06 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.SIK103 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30
Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA M2 Nazwa w języku angielskim ALGEBRA M2 Kierunek studiów (jeśli dotyczy): Matematyka Specjalność (jeśli
Algebra liniowa Linear algebra
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu. Zakład Statystyki i Informatyki Medycznej
Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi
Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Informatyka A (03-MO1S-12-InfoA) 1. Informacje ogólne koordynator modułu
Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/1 z dnia 1 lutego 01r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka Nazwa modułu w języku angielskim Mathematics Obowiązuje od roku akademickiego
2. Opis zajęć dydaktycznych i pracy studenta
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Technologia chemiczna, I Sylabus modułu: Matematyka B (006) 1. Informacje ogólne koordynator modułu rok akademicki 2013/2014 semestr forma
Matematyka I i II - opis przedmiotu
Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2016/2017
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 206/207 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Opis przedmiotu: Matematyka I
24.09.2013 Karta - Matematyka I Opis : Matematyka I Kod Nazwa Wersja TR.NIK102 Matematyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność
Z-0085z Algebra Liniowa Linear Algebra. Stacjonarne wszystkie Katedra Matematyki Dr Beata Maciejewska. Podstawowy Obowiązkowy Polski Semestr pierwszy
KARTA MODUŁU / KARTA PRZEDMIOTU Z-0085z Algebra Liniowa Linear Algebra Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE
Z-EKO-085 Algebra liniowa Linear Algebra. Ekonomia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Z-EKO-085 Algebra liniowa Linear Algebra Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Matematyka II Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Wydział Nauk Technicznych i Ekonomicznych, Instytut Nauk Technicznych, Zakład
PRZEWODNIK PO PRZEDMIOCIE
Załącznik nr 1 do procedury nr W_PR_12 Nazwa przedmiotu: Matematyka II Mathematics II Kierunek: inżynieria środowiska Rodzaj przedmiotu: Poziom kształcenia: nauk ścisłych, moduł 1 I stopnia Rodzaj zajęć:
Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.NIK102 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30
Zał. nr do ZW WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka Nazwa w języku angielskim Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów
GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka I Nazwa modułu w języku angielskim Mathematics I Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na kierunku: Mechatronika Rodzaj zajęd: wykład, dwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie
Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Matematyka I Rok akademicki: 2013/2014 Kod: EIB-1-110-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna Specjalność:
Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Matematyczne metody fizyki 1 Rok akademicki: 2013/2014 Kod: JFT-1-103-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Techniczna Specjalność: - Poziom studiów:
Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012.
Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012 Spis treści Przedmowa 9 CZĘŚĆ I. WSTĘP DO MATEMATYKI 11 Wykład 1. Rachunek
Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Matematyka A (0310-CH-S1-001)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Matematyka A (001) 1. Informacje ogólne koordynator modułu rok akademicki 2013/2014 semestr forma studiów
Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH
Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające
Geodezja i Kartografia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka I Nazwa modułu w języku angielskim Mathematics I Obowiązuje od
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2018 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE
PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Architektura
Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat) 1. Informacje ogólne koordynator
Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Dr Jadwiga Dudkiewicz
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka I Nazwa modułu w języku angielskim Mathematics I Obowiązuje od roku akademickiego 2016/2017 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka II Nazwa modułu w języku angielskim Mathematics II Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Informatyka B (03-MO1S-12-InfoB) Nazwa wariantu modułu (opcjonalnie):
R n jako przestrzeń afiniczna
R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Mechanika teoretyczna Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,
Algebra Liniowa Linear Algebra. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Algebra Liniowa Linear Algebra A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Uniwersytet Śląski w Katowicach str. 1 Wydział
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Krystalografia (016) Nazwa wariantu modułu (opcjonalnie): _wariantu ( wariantu) 1. Informacje ogólne koordynator
Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jarosław Kotowicz, dr
SYLLABUS na rok akademicki 009/010 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr Rok I/ I i II semestr Specjalność Bez specjalności Kod
Uniwersytet Śląski w Katowicach str. 1 Wydział Informatyki i Nauki o Materiałach. opis efektu kształcenia
Uniwersytet Śląski w Katowicach str.. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 207/208Z 3. Poziom kształcenia studia pierwszego stopnia (inżynierskie) 4. Profil kształcenia ogólnoakademicki 5. Forma
Podstawowy (podstawowy / kierunkowy / inny HES) Obowiązkowy (obowiązkowy / nieobowiązkowy) Semestr 2. Semestr letni (semestr zimowy / letni)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka 2 Nazwa modułu w języku angielskim Mathematics 2 Obowiązuje od
Odnawialne Źródła Energii I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Prof. dr hab. inż. Jerzy Zb.
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka 1 Nazwa modułu w języku angielskim Mathematics 1 Obowiązuje od
SPIS TREŚCI PRZEDMOWA... 13
SPIS TREŚCI PRZEDMOWA... 13 CZĘŚĆ I. ALGEBRA ZBIORÓW... 15 ROZDZIAŁ 1. ZBIORY... 15 1.1. Oznaczenia i określenia... 15 1.2. Działania na zbiorach... 17 1.3. Klasa zbiorów. Iloczyn kartezjański zbiorów...
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH
WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X
Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący
koordynator modułu dr hab. Michał Baczyński rok akademicki 2012/2013
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (03-MO2S-12-MPIn) 1. Informacje ogólne koordynator
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Definicja 1 (Iloczyn skalarny). Niech V będzie rzeczywistą przestrzenią liniową. Iloczynem skalarnym w przestrzeni V nazywamy funkcję
Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu
Sylabus przedmiotu: Specjalność: Matematyka I Wszystkie specjalności Data wydruku: 21.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane
Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie):
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
OPIS MODUŁ KSZTAŁCENIA (SYLABUS)
OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Matematyka 2 2 Kod modułu 04-A-MAT2-60-1L 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień 6 Rok
Kierunek i poziom studiów: Chemia budowlana, II stopień Sylabus modułu: Chemia ciała stałego 0310-CH-S2-B-065
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia budowlana, II stopień Sylabus modułu: Chemia ciała stałego 065 1. Informacje ogólne koordynator modułu rok akademicki 2014/2015
E-N-1112-s1 MATEMATYKA Mathematics
KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Algebra Liniowa. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Algebra Liniowa Nazwa modułu w języku angielskim Linear Algebra Obowiązuje od roku akademickiego 2013/2014 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Przedmiot A związany ze specjalnością (0310-CH-S2-001) Nazwa wariantu modułu: Termodynamika
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Przedmiot A związany ze specjalnością (0310-CH-S2-001) Nazwa wariantu modułu: Termodynamika 1. Informacje
spis treści 1 Zbiory i zdania... 5
wstęp 1 i wiadomości wstępne 5 1 Zbiory i zdania............................ 5 Pojęcia pierwotne i podstawowe zasady 5. Zbiory i zdania 6. Operacje logiczne 7. Definicje i twierdzenia 9. Algebra zbiorów
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2017 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Geometria szkolna Kod
Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Informatyka (03-MO1N-12-Info) 1. Informacje ogólne koordynator modułu
Kierunek i poziom studiów: matematyka, studia I stopnia, rok I. Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: matematyka, studia I stopnia, rok I Sylabus modułu: Wstęp do matematyki (03-MO1S-12-WMat) 1. Informacje ogólne koordynator modułu Tomasz
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Analiza Funkcjonalna II Functional Analysis II Kierunek: Rodzaj przedmiotu: Obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: II
Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln)
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Matematyczne podstawy informatyki (kod modułu:03-mo2n-12-mpln) 1. Informacje ogólne
Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Analiza zespolona (03-MO2S-12-AZes) 1. Informacje ogólne koordynator modułu rok akademicki
Geometria Lista 0 Zadanie 1
Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio
Matematyka - opis przedmiotu
Matematyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka Kod przedmiotu 11.1-WZ-EkoP-M-W-S14_pNadGenAT6Y9 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POLITECHNICZNEJ KLASA 2
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POLITECHNICZNEJ KLASA 2 I. GEOMETRIA ANALITYCZNA: Wektor w układzie współrzędnych.
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
ANALIZA SYLABUS. A. Informacje ogólne
ANALIZA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów
KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30
Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Analiza matematyczna 1A (03-MO1S-12-AMa1A) 1. Informacje ogólne koordynator
1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.
1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.
MATEMATYKA SYLABUS. A. Informacje ogólne
MATEMATYKA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów
Analiza na rozmaitościach Calculus on Manifolds. Matematyka Poziom kwalifikacji: II stopnia
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Przedmiot obowiązkowy dla wszystkich specjalności Rodzaj zajęć: Liczba godzin/tydzień: Liczba punktów: wykład, ćwiczenia W, C 5 ECTS PRZEWODNIK PO PRZEDMIOCIE
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym
Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim PODSTAWY GEOMETRII RÓŻNICZKOWEJ Nazwa w języku angielskim INTRODUCTION TO DIFFERENTIAL GEOMETRY Kierunek
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Matematyka 2 Rok akademicki: 2012/2013 Kod: JFM-1-201-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów: Studia I stopnia Forma
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Zał. nr 4 do ZW WYDZIAŁ Geoinżynierii, Górnictwa i Geologii KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do analizy i algebry Nazwa w języku angielskim Introduction to analysis and algebra Kierunek studiów
Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne
Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218