A B x x x 5 x x 8 x 18
|
|
- Gabriel Staniszewski
- 9 lat temu
- Przeglądów:
Transkrypt
1 Narzędzia modelowania niezawodności 1 Arkusz kalkulacyjny - jest to program zbudowany na schemacie relacyjnych baz danych. Relacje pomiędzy dwiema (lub więcej) cechami można zapisać na kilka sposobów. Np. relacja < w zbiorze liczb: {2, 5, 8, 18} jest z definicji zbiorem par uporządkowanych: (2, 5), (2, 8), (2, 18), (5, 8), (5, 18), (8, 18). Do zapisu tej relacji można wykorzystać dwa sposoby. w postaci tabelki w postaci arkusza Tabelka Arkusz A B x x x 5 x x 8 x 18 Powyższe formy prezentowania relacji zostały bardzo rozbudowane w praktyce. Nazwisko Imie Adres Rok urodzenia Data zatrudnienia Kowalski Jan Hoża Nowak Agnieszka Wilcza A B C D 1 2<5 5<18 2 2<18 3 5<8 2<8 4 8<18 W tabelce zastosowano nieograniczoną liczbę kolumn i nagłówki kolumn o dowolnym znaczeniu, przyjmując precyzyjne reguły wpisywania wartości do poszczególnych pól tabeli. W arkuszu na stałe oznakowano wiersze i kolumny a nazwę relacji wpisuje się do komórki w dowolnej postaci, gdyż w istocie zawartość komórki jest nazwą relacji pomiędzy wierszem a kolumną przecinających się w miejscu komórki.
2 Narzędzia modelowania niezawodności 2 Przykład 1. Obliczenie niezawodności obiektu a) szeregowa struktura niezawodnościowa b) równoległa struktura niezawodnościowa
3 Narzędzia modelowania niezawodności 3 Przykład 2. Obliczenie niezawodności obiektu o strukturze niezawodnościowej 2 z 3. a) elementy różne R (2,3) = R 1 R 2 R 3 + (1-R 1 ) R 2 R 3 +R 1 (1-R 2 ) R 3 + R 1 R 2 (1-R 3 ) (2,3) b) elementy jednakowe R n = =KOMBINACJE(3;G2) n i n i (k, n) R (1 R) i= k i =POTĘGA(B7;G2)*POTĘGA((1-B7);3-G2) =G4*G3 (2,3)
4 Narzędzia modelowania niezawodności 4 Przykład 3. Wyznaczenie funkcji niezawodności elementu o jednostajnym rozkładzie prawdopodobieństwa (0, b)
5 Narzędzia modelowania niezawodności 5 Przykład 4. Wyznaczenie funkcji niezawodności elementu o rozkładzie prawdopodobieństwa wykładniczym (λ)
6 Narzędzia modelowania niezawodności 6 Przykład 5. Wyznaczenie funkcji niezawodności elementu o rozkładzie prawdopodobieństwa normalnym (m, σ)
7 Narzędzia modelowania niezawodności 7 Przykład 6. Wyznaczenie funkcji niezawodności elementu o rozkładzie prawdopodobieństwa Weibulla (α, β)
8 Narzędzia modelowania niezawodności 8 Przykład 7. Wyznaczenie funkcji niezawodności obiektu o szeregowej strukturze niezawodnościowej elementów o rozkładzie prawdopodobieństwa wykładniczym
9 Narzędzia modelowania niezawodności 9 Przykład 8. Wyznaczenie funkcji niezawodności obiektu o równoległej strukturze niezawodnościowej elementów o rozkładzie prawdopodobieństwa wykładniczym
10 Przykład 9. Wyznaczenie funkcji niezawodności obiektu o strukturze niezawodnościowej k z n jednakowych elementów o wykładniczym rozkładzie prawdopodobieństwa Narzędzia modelowania niezawodności 10 n n i n i R (k, n) = R (1 R) i= k i
11 Narzędzia modelowania niezawodności 11 Przykład 10. Wyznaczenie funkcji niezawodności obiektu na podstawie danych empirycznych 1. utworzyć zbiór zawierający chwile uszkodzenia N obiektów, 2. utworzyć szereg rozdzielczy dla obiektu: n i; i = 1, L, 3. utworzyć skumulowany histogram dla obiektu: F i = F i-1 + n i / N, i = 1, L,
12 Narzędzia modelowania niezawodności 12 Przykład 11. Wyznaczenie funkcji niezawodności elementów na podstawie danych o uszkodzeniach obiektu o szeregowej strukturze niezawodnościowej Obserwujemy użytkowanie obiektów, z których każdy jest złożony z dwóch elementów tworzących szeregową strukturę niezawodnościową. Na podstawie zaobserwowanych uszkodzeń obiektu należy wyznaczyć charakterystyki elementów. W chwili uszkodzenia obiektu wiadomo jaki element spowodował uszkodzenie, lecz traci się informację o chwili uszkodzenia drugiego elementu. Algorytm 1. na podstawie zarejestrowanych chwil uszkodzeń N obiektów utworzyć dodatkowo dwa zbiory zawierające chwile uszkodzenia obiektu z powodu elementu 1 i 2, 2. utworzyć szeregi rozdzielcze dla obiektu i elementów: n e, i ; e = 0, 1, 2; i = 1, L, 3. utworzyć skumulowany histogram dla obiektu względem liczby uszkodzeń obiektu: F 0, i = n 0, i / N, i = 1, L, 4. utworzyć skumulowane histogramy dla elementów względem liczby uszkodzeń obiektu: F e, i = n e, i / N, e = 1, 2; i = 1, L, 5. na tej podstawie wyznaczyć funkcję dystrybuanty obiektu i subdystrybuanty elementów i sprawdzić zależność: F 0, i = F 1, i + F 2, i, i = 1, L 6. dla każdego z elementów wyznaczyć wartość funkcji niezawodności na końcu kolejnych przedziałów, jako iloczyn prawdopodobieństwa nieuszkodzenia na końcu poprzedniego przedziału i prawdopodobieństwa nieuszkodzenia na końcu danego przedziału: R 1, 1 = 1, R 1, i 7. sprawdzić zależność: R 0, i = R 1,i * R 2, i = 1 F 0,i N i-1 1, j 2, k j= 1 k= 1 = R 1,i-1 i 1 i 1 N n j= 1 n 1, j i 1 n k= 1 n - n 2, k 1,i, i = 2, L,
13 Przykład realizacji algorytmu. Narzędzia modelowania niezawodności 13
14 Narzędzia modelowania niezawodności 14 Przykład 12. Wyznaczenie wartości kwantyla rzędu p a) szeregowa struktura niezawodnościowa elementów o czasie do uszkodzenia wg rozkładu wykładniczego 1-p R(t) = e (λ1 + λ 2 + λ 3 )t
15 Narzędzia modelowania niezawodności 15 Przykład 12. Wyznaczenie wartości kwantyla rzędu p b) równoległa struktura niezawodnościowa elementów o czasie do uszkodzenia wg rozkładu wykładniczego 1-p R(t) = e 1 t λ 2t λ 3t (λ1 + λ 2 )t (λ1 + λ 3 )t (λ 2 + λ 3 )t e (λ e e e e e + + λ λ + λ )t
Niezawodność i Diagnostyka
Katedra Metrologii i Optoelektroniki Wydział Elektroniki Telekomunikacji i Informatyki Politechnika Gdańska Niezawodność i Diagnostyka Ćwiczenie laboratoryjne nr 3 Struktury niezawodnościowe Gdańsk, 2012
Niezawodność i Diagnostyka
Katedra Metrologii i Optoelektroniki Wydział Elektroniki Telekomunikacji i Informatyki Politechnika Gdańska Niezawodność i Diagnostyka Ćwiczenie laboratoryjne nr 3 Struktury niezawodnościowe 1. Struktury
Modelowanie niezawodności prostych struktur sprzętowych
Modelowanie niezawodności prostych struktur sprzętowych W ćwiczeniu tym przedstawione zostaną proste struktury sprzętowe oraz sposób obliczania ich niezawodności przy założeniu, że funkcja niezawodności
Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 4 Modelowanie niezawodności prostych struktur sprzętowych Prowadzący: mgr inż. Marcel Luzar Cel
PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV
Elektroenergetyczne linie napowietrzne i kablowe wysokich i najwyższych napięć PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV Wisła, 18-19 października 2017
Niezawodność i diagnostyka projekt. Jacek Jarnicki
Niezawodność i diagnostyka projekt Jacek Jarnicki Zajęcia wprowadzające 1. Cel zajęć projektowych 2. Etapy realizacji projektu 3. Tematy zadań do rozwiązania 4. Podział na grupy, wybór tematów, organizacja
W4 Eksperyment niezawodnościowy
W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i
W3 - Niezawodność elementu nienaprawialnego
W3 - Niezawodność elementu nienaprawialnego Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Niezawodność elementu nienaprawialnego 1. Model niezawodności elementu nienaprawialnego
Niezawodność i diagnostyka projekt
Niezawodność i diagnostyka projekt Jacek Jarnicki Henryk Maciejewski Zajęcia wprowadzające 1. Cel zajęć projektowych 2. Etapy realizacji projektu 3. Tematy zadań do rozwiązania 4. Podział na grupy, wybór
Struktury niezawodności systemów.
Struktury niezawodności systemów. 9 marca 2015 - system i jego schemat - struktury niezawodności a schemat techniczny System to zorganizowany zbiór elementów, współpracujacych ze soba pełniac przypisane
Wprowadzenie do estymacji rozkładów w SAS.
Wprowadzenie do estymacji rozkładów w SAS Henryk.Maciejewski@pwr.wroc.pl 1 Plan Empiryczne modele niezawodności Estymacja parametryczna rozkładów zmiennych losowych Estymacja nieparametryczna Empiryczne
Zadanie Tworzenie próbki z rozkładu logarytmiczno normalnego LN(5, 2) Plot Probability Distributions
Zadanie 1. 1 Wygenerować 200 elementowa próbkę z rozkładu logarytmiczno-normalnego o parametrach LN(5,2). Utworzyć dla tej próbki: - szereg rozdzielczy - histogramy liczebności i częstości - histogramy
Prawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski
Funkcje charakteryzujące proces eksploatacji Dr inż. Robert Jakubowski Niezawodność Niezawodność Rprawdopodobieństwo, że w przedziale czasu od do t cechy funkcjonalne statku powietrznego Ubędą się mieścić
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
SPRAWDZIAN NR 1 ROBERT KOPERCZAK, ID studenta : k4342
TECHNIKI ANALITYCZNE W BIZNESIE SPRAWDZIAN NR 1 Autor pracy ROBERT KOPERCZAK, ID studenta : k4342 Kraków, 22 Grudnia 2009 2 Spis treści 1 Zadanie 1... 3 1.1 Szereg rozdzielczy wag kobiałek.... 4 1.2 Histogram
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Zmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
Sterowanie wielkością zamówienia w Excelu - cz. 3
Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Informatyka Ćwiczenie 10. Bazy danych. Strukturę bazy danych można określić w formie jak na rysunku 1. atrybuty
Informatyka Ćwiczenie 10 Bazy danych Baza danych jest zbiór informacji (zbiór danych). Strukturę bazy danych można określić w formie jak na rysunku 1. Pracownik(ID pracownika, imie, nazwisko, pensja) Klient(ID
Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.
Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi
OPTYMALIZACJA PRODUKCJI ODLEWNI Z WYKORZYSTANIEM SYMULACJI ZDARZEŃ DYSKRETNYCH
OPTYMALIZACJA PRODUKCJI ODLEWNI Z WYKORZYSTANIEM SYMULACJI ZDARZEŃ DYSKRETNYCH Jan SZYMSZAL, Teresa LIS, Marian MALIŃSKI, Krzysztof NOWACKI Streszczenie: W artykule omówiono możliwości wykorzystania symulacji
INFORMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY W ROKU SZKOLNYM 2015/2016 FORMUŁA DO 2014 ( STARA MATURA ) INFORMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1, R2 MAJ 2016 Uwaga: Akceptowane są wszystkie odpowiedzi
INFORMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY W ROKU SZKOLNYM 2015/2016 FORMUŁA DO 2014 ( STARA MATURA ) INFORMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1, R2 MAJ 2016 Uwaga: Akceptowane są wszystkie odpowiedzi
rok 2006/07 Jacek Jarnicki,, Kazimierz Kapłon, Henryk Maciejewski
Projekt z niezawodności i diagnostyki systemów cyfrowych rok 2006/07 Jacek Jarnicki,, Kazimierz Kapłon, Henryk Maciejewski Cel projektu Celem projektu jest: 1. Poznanie metod i napisanie oprogramowania
WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO
Zał. nr 4 do ZW WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA STOSOWANA Nazwa w języku angielskim APPLIED STATISTICS Kierunek studiów (jeśli dotyczy): Specjalność
Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.
Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze
Oszacowanie niezawodności elektronicznych układów bezpieczeństwa funkcjonalnego
IV Sympozjum Bezpieczeństwa Maszyn, Urządzeń i Instalacji Przemysłowych organizowane przez Klub Paragraf 34 Oszacowanie niezawodności elektronicznych układów bezpieczeństwa funkcjonalnego Wpływ doboru
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Testy zgodności. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 11
Testy zgodności Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej 27. Nieparametryczne testy zgodności Weryfikacja
Jakub Wierciak Zagadnienia jakości i niezawodności w projektowaniu. Zagadnienia niezawodności w procesie projektowania
Jakub Wierciak Zagadnienia jakości i niezawodności w projektowaniu Zagadnienia niezawodności w procesie projektowania Produkty tradycyjne i nowoczesne Środki pomocnicze w projektowaniu pomoc specjalistów
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2
ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.
Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań
Określenie maksymalnego kosztu naprawy pojazdu
MACIEJCZYK Andrzej 1 ZDZIENNICKI Zbigniew 2 Określenie maksymalnego kosztu naprawy pojazdu Kryterium naprawy pojazdu, aktualna wartość pojazdu, kwantyle i kwantyle warunkowe, skumulowana intensywność uszkodzeń
Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI
1 Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI 1. Obliczenia w arkuszu kalkulacyjnym Rozwiązywanie problemów z wykorzystaniem aplikacji komputerowych obliczenia w arkuszu kalkulacyjnym wykonuje
ELEMENTÓW PODANYCH W PN-EN i PN-EN
PORÓWNANIE METOD OCENY NIEUSZKADZALNOŚCI ELEMENTÓW PODANYCH W PN-EN 6508- i PN-EN 680-2 prof. dr inż. Tadeusz MISSALA Przemysłowy Instytut Automatyki i Pomiarów, 02-486 Warszawa Al. Jerozolimskie 202 tel.
Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
6.4 Podstawowe metody statystyczne
156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014
Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje
Wycena nieruchomości w podejściu porównawczym - complex. Materiały reklamowe ZAWAM-Marek Zawadzki
Wycena nieruchomości w podejściu porównawczym - complex Materiały reklamowe ZAWAM-Marek Zawadzki Mimo skomplikowania metody szacowania nieruchomości program jest banalny w swojej obsłudze. Na początku
Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe
Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości
Ćwiczenie 6. Transformacje skali szarości obrazów
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 6. Transformacje skali szarości obrazów 1. Obraz cyfrowy Obraz w postaci cyfrowej
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 3 Generacja realizacji zmiennych losowych Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia: Generowanie
Wykład 13. Zmienne losowe typu ciągłego
Wykład 13. Zmienne losowe typu ciągłego dr Mariusz Grządziel styczeń 014 Pole trapezu krzywoliniowego Przypomnienie: figurę ograniczoną przez: wykres funkcji y = f(x, gdzie f jest funkcją ciągłą; proste
Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu
Zmienne losowe dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu rok akademicki 2016/2017 semestr letni Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór
Statystyka opisowa- cd.
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa- cd. Wykład 4 Dr inż. Adam Deptuła HISTOGRAM UNORMOWANY Pole słupka = wysokość słupka x długość przedziału Pole słupka = n i n h h,
ROZKŁAD MATERIAŁU ZAJĘCIA KOMPUTEROWE KL.V
ROZKŁAD MATERIAŁU ZAJĘCIA KOMPUTEROWE KL.V 1 (1) Bezpiecznie w pracowni i w sieci tworzymy regulamin pracowni 2 (2, 3) Uwaga na wirusy! Bezpieczeństwo w Internecie. Regulamin pracowni komputerowej oraz
Elementy Rachunek prawdopodobieństwa
Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 STATYSTYKA
Analiza Statystyczna
Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza
Opis przedmiotu. Karta przedmiotu - Probabilistyka I Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK304 Nazwa przedmiotu Probabilistyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne
x y
Tym razem pominę wstęp teoretyczny i skupię się na praktycznym aspekcie sprawy, czyli jak szybko policzyć korelację oraz ocenić jej istotność. Bardzo zachęcam do przejrzenia książki autorstwa Adama wspomnianej
TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA. T4. Tablica kwantyli rozkładu chi-kwadrat (I część - poziomy kwantyli 0,5)
TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA T1. Tablica dystrybuanty standardowego normalnego rozkładu N(0,1) T2. Tablica kwantyli standardowego normalnego rozkładu N(0,1) T3. Tablica kwantyli rozkładu
Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych
dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo
Zmienne losowe zadania na sprawdzian
Zmienne losowe zadania na sprawdzian Zad. 1. Podane poniżej dane dotyczą zawartości suchej masy (w %) i sosu (w %) w 24 konserwach ze śledzia w pomidorach: Zawartość suchej masy: 12,0 13,0 14,5 14,0 12,0
Zawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami
PODSTAWY BIOSTATYSTYKI ĆWICZENIA
PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM PRZYPOMNIENIE ROZKŁAD NORMALNY http://www.zarz.agh.edu.pl/bsolinsk/statystyka.html
Opis przedmiotu: Probabilistyka I
Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca
Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.
STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą
dr Jerzy Pusz, st. wykładowca, Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.SIK303 Nazwa przedmiotu Probabilistyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne
Excel: niektóre rozkłady ciągłe (1)
MS Ecel niektóre rozkłady ciągłe (1) Ecel: niektóre rozkłady ciągłe (1) 1. ROZKŁAD.BETA (tylko dystrybuanta)...1 2. ROZKŁAD.BETA.ODW (kwantyl w rozkładzie beta)...3 3. ROZKŁAD.LIN.GAMMA (to nie jest żaden
Statystyczna analiza awarii pojazdów samochodowych. Failure analysis of cars
Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 1/15/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.1.1 ROMAN RUMIANOWSKI Statystyczna analiza awarii pojazdów
Przedmiot: Informatyka w inżynierii produkcji Forma: Laboratorium Temat: Zadanie 4. Instrukcja warunkowa.
Przedmiot: Informatyka w inżynierii produkcji Forma: Laboratorium Temat: Zadanie 4. Instrukcja warunkowa. Celem ćwiczenia jest nabycie umiejętności wykorzystania w praktyce instrukcji warunkowych programowania
Część II. W = W + Wi * Kol Wi = Wi + 1 Kol = Kol -1 Zwróć W. Zadanie 4.1. (0 3)
W = W + Wi * Kol Wi = Wi + 1 Kol = Kol -1 Zwróć W Część II Zadanie 4.1. (0 3) 3 p. za podanie wszystkich prawidłowych objętości. 2 p. za podanie dwóch prawidłowych objętości. 1 p. za podanie jednej prawidłowej
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,
Wymagania edukacyjne z informatyki dla uczniów klas VI SP nr 53 w Krakowie w roku szkolnym 2019/2020
Prowadzący: Elwira Kukiełka Ewa Pawlak-Głuc 1 Opracowano na podstawie: 1. Podstawa programowa(dz.u. z 017r. poz. ) Rozporządzenie Ministra Edukacji Narodowej z dnia 1 lutego 017 r. w sprawie podstawy programowej
przedmiot podstawowy obowiązkowy polski drugi
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 07/08 IN--008 STATYSTYKA W INŻYNIERII ŚRODOWISKA Statistics in environmental engineering
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia. Język polski
Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia Przedmiot: Niezawodność środków transportu Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: TR 1 S 0 6 42-0_1 Rok: III Semestr: 6 Forma studiów:
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ
ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2
Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne
Lista 1a 1 Statystyka Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej 52 karty
WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD
POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD 3 dr inż. Kamila Kustroń Warszawa, 10 marca 2015 24 lutego: Wykład wprowadzający w interdyscyplinarną tematykę eksploatacji statków
Wykład 14. Testowanie hipotez statystycznych - test zgodności chi-kwadrat. Generowanie liczb losowych.
Wykład 14 Testowanie hipotez statystycznych - test zgodności chi-kwadrat. Generowanie liczb losowych. Rozkład chi-kwadrat Suma kwadratów n-zmiennych losowych o rozkładzie normalnym standardowym ma rozkład
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Sposób tworzenia tabeli przestawnej pokażę na przykładzie listy krajów z podstawowymi informacjami o nich.
Tabele przestawne Tabela przestawna to narzędzie służące do tworzenia dynamicznych podsumowań list utworzonych w Excelu lub pobranych z zewnętrznych baz danych. Raporty tabeli przestawnej pozwalają na
EKSPLOATACJA SYSTEMÓW TECHNICZNYCH
Jan Kaźmierczak EKSPLOATACJA SYSTEMÓW TECHNICZNYCH dla studentów kierunków: ZARZĄDZANIE Gliwice, 1999 SPIS TREŚCI 1. WPROWADZENIE... 7 2. PRZEGLĄD PODSTAWOWYCH PROBLEMÓW EKSPLOATACJI SYSTEMÓW TECHNICZNYCH...
Matematyka ubezpieczeń majątkowych 1.10.2012 r.
Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna
Symulacja w przedsiębiorstwie
Symulacja w przedsiębiorstwie Generowanie liczb losowych Cel Celem laboratorium jest zapoznanie się z funkcjami generowania liczb pseudolosowych w środowisku Ms Excel. Funkcje te są podstawą modeli symulacyjnych
PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ
Andrzej Purczyński PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Materiały szkolenia technicznego, Jakość energii elektrycznej i jej rozliczanie, Poznań Tarnowo Podgórne II/2008, ENERGO-EKO-TECH
BAZY DANYCH. Co to jest baza danych. Przykłady baz danych. Z czego składa się baza danych. Rodzaje baz danych
BAZY DANYCH Co to jest baza danych Przykłady baz danych Z czego składa się baza danych Rodzaje baz danych CO TO JEST BAZA DANYCH Komputerowe bazy danych już od wielu lat ułatwiają człowiekowi pracę. Są
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): Górnictwo
Wymagania na poszczególne oceny szkolne dla klasy VI. (na podstawie Grażyny Koba, Teraz bajty. Informatyka dla szkoły podstawowej.
1 Wymagania na poszczególne oceny szkolne dla klasy VI (na podstawie Grażyny Koba, Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI ) 2 1. Obliczenia w arkuszu kalkulacyjnym słucha poleceń nauczyciela
POLITECHNIKA WARSZAWSKA
POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ STATYSTYCZNA KONTROLA PROCESU (SPC) Ocena i weryfikacja statystyczna założeń przyjętych przy sporządzaniu
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest
1 Praktyczne metody wyznaczania podstawowych miar bez zastosowania komputerów
Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 8.03.014 - godziny ćwiczeń autor: Adam Kiersztyn 1 Praktyczne metody wyznaczania podstawowych miar
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI
1 Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI Opis założonych osiągnięć ucznia przykłady wymagań na poszczególne oceny szkolne dla klasy VI Grażyna Koba Spis treści 1. Obliczenia w arkuszu