Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP"

Transkrypt

1 Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Łukasz Strąk Uniwersytet Śląski, Instytut Informatyki, Będzińska 39, Sosnowiec 9 grudnia 2014, Sosnowiec

2 Plan prezentacji Problem komiwojażera i jego dynamiczna wersja Klasyczny algorytm PSO Dyskretna wersja algorytmu PSO Adaptacja do problemu DTSP Dodanie macierzy feromonowej Zastosowanie nowego sąsiedztwa Przeszukiwanie lokalne Wyniki eksperymentów Podsumowanie Dalsze kierunki badań 2/23

3 TSP Definicja Klasyczny problem TSP można zdefiniować następująco: w pełnym grafie ważonym: G = (V, E), gdzie V jest zbiorem wierzchołków, E jest zbiorem krawędzi oraz D jest macierzą odległości znajdź minimalny cykl Hamiltona. a b c d e a b c d e 0 a b d c e 3/23

4 DTSP Definicja W przeciwieństwie do klasycznego problemu TSP w wersji dynamicznej, odległość jest przedmiotem zmian. Formalnie problem może być opisany poniższym równaniem: D(t) = {d ij (t)} n(t) n(t), (1) gdzie: D jest macierzą odległości, t oznacza czas - parametr, który jest modyfikowany po każdej zmianie. W pracy rozpatrywana jest tylko wersja ze zmianą odległości. 4/23

5 DTSP Środowisko testowe Test algorytmu rozwiązującego problem DTSP w przypadku zmiany tylko odległości między miastami wygląda następująco: Algorytm 1: Środowisko testowe DTSP Przeczytaj współrzędne miast while Kryterium stopu do Inicjuj algorytm Rozwiąż problem TSP Porównaj otrzymane rozwiązanie z optimum Zmień dane - n% // TSPLIB 5/23

6 DTSP Przykład Optimal tour Optimal tour Rysunek: Po lewej stronie wizualizacja trasy optymalnej zmodyfikowanego problemu, po prawej stronie kolorem czerwonym zaznaczono krawędzie, którymi różni się rozwiązanie optymalne sprzed zmian w stosunku do rozwiązania po zmianach. 6/23

7 PSO Klasyczne równanie Wzory opisujące ruch cząsteczek po przestrzeni rozwiązań są następujące: v k+1 i ω v k i + U(0, φ 1 ) ( pbest x k i ) + U(0, φ 2 ) ( gbest x k i ) (2) x k+1 i x k i + v i k+1 gdzie: v to prędkość cząsteczki, x to pozycja cząsteczki, gbest to najlepsza pozycja stada, pbest to najlepsza pozycja cząsteczki, i to numer cząsteczki, k to numer iteracji, rand() to wartość losowa [0, 1], ω to wartość bezwładności, c 1 to parametr kognitywny, c 2 to parametr społeczny. 7/23

8 PSO Przykład działania Optimum Rysunek: Ruch cząsteczek po przestrzeni rozwiązań. 8/23

9 DPSO Adaptacja do TSP Algorytm DPSO zaproponowany przez Zhonga 1 działa opierając się na zmienionym pojęciu krawędzi: definiuje się ją jako (a, x, y), gdzie: a oznacza prawdopodobieństwo wybrania krawędzi. Jest wartością z przedziału [0, 1] x oraz y są końcami krawędzi (a, x, y) = (a, y, x). Krawędź (2,3) z prawdopodobieństwem wyboru 0.4 przyjmuje postać (0.4, 2, 3). Prawdopodobieństwo wyboru krawędzi używane jest, gdy algorytm jest w fazie selekcji omówionej w dalszej części prezentacji. 1 Wen-liang Zhong and Jun Zhang and Wei-neng Chen 9/23

10 DPSO Ruch cząsteczek Poniżej znajduje się równanie opisujące ruch cząsteczki w przestrzeni dyskretnej. V k+1 i = c 2 rand() (gbest X k i ) + c 1 rand() (pbest X k i ) (3) + w V k i X k+1 i = V k+1 i c 3 rand() Xi k gdzie: V, X to kolejna prędkość cząsteczki i jej kolejna pozycja, gbest i pbest to zbiory zawierające najlepsze cykle Hamiltona: znalezione w całym roju oraz znalezione przez cząsteczkę i, c 1 i c 2, c 3, ω to wartości skalujące prawdopodobieństwo, że krawędź należąca do danego zbioru będzie w kolejne pozycji cząsteczki. 10/23

11 DPSO Algorytm działania 1. W pierwszym kroku obliczana jest prędkość cząsteczki V i. 2. W drugim kroku wybierane są krawędzie z V i, zgodnie z ich prawdopodobieństwem wyboru a. 3. Następnie wybierane są krawędzie z X i, zgodnie z ich prawdopodobieństwem wyboru a. 4. Jeśli poprzednie dwa kroki nie utworzą cyklu Hamiltona, brakujące krawędzie zostaną dodane poprzez heurystykę najbliższego sąsiada. Dodana krawędź nie może tworzyć sub-cykli. Wierzchołek nie może wystąpić więcej niż 2 razy. 11/23

12 Modyfikacje DPSO Zastosowanie feromonu Pierwszą modyfikacją, którą zastosowałem jest dodanie feromonu do algorytmu DPSO. Wykorzystywany jest jako atraktor lub repelent dla krawędzi, które wpływają bądź nie wpływają na poprawę najlepszego rozwiązania. Po każdej zmianie danych, macierz feromonowa jest kopiowana z poprzedniego rozwiązania. Wartość wzmocnienia prawdopodobieństwa wyboru krawędzi do następnej pozycji obliczana jest na podstawie wzoru: τ k v = (P e 0.5) k k c (4) gdzie: e oznacza wzmacnianą krawędź, P e to wartość odczytana z macierzy feromonowej, k oznacza numer iteracji, k c to liczba wszystkich iteracji. 12/23

13 Modyfikacje DPSO Sąsiedztwo Drugą modyfikacją jest zastosowanie sąsiedztwa bazującego na pojęciu min 1-cyklu 2. Tworzenie go odbywa się w dwóch krokach. 1. Wyznaczamy MST z n 1 wierzchołków. 2. Łączymy dwoma najkrótszymi krawędziami powstałe drzewo z pominiętym wierzchołkiem. Metoda Ascent zaproponowana przez Helsgauna ma na celu przekształcenie min 1-cyklu w cykl Hamiltona Keld Helsgaun 13/23

14 Modyfikacje DPSO Sąsiedztwo Odległość między sąsiednimi wierzchołkami liczona jest na podstawie α - miary. Jest ona określona następująco: gdzie: α(i, j) = L(T + (i, j)) L(T ) (5) L oznacza sumę wag krawędzi min 1-cyklu, T to min 1-cykl pochodzący z metody Ascent, T + oznacza min 1-cykl z krawędzią (i, j). Każdej krawędzi przypisywana jest jej α wartość. Po sortowaniu tych wartości powstaje sąsiedztwo stosowane w pracy. 14/23

15 Modyfikacje DPSO Przeszukiwanie lokalne Uruchomienie przeszukiwania lokalne zazwyczaj poprawia jakość rozwiązania. Zastosowanie tej metody może spowodować przedwczesną zbieżność, tym samym algorytm może zatrzymać się na optimum lokalnym. Algorytm k-algorytm ma złożoność O(n k ). Ze względu na najkorzystniejszy stosunek skrócenia długości trasy do czasu obliczeń, najczęściej wybiera się algorytm k 3. 15/23

16 Badania Algorytmu DPSO Eksperymenty wykonano dla następujących ustawień: c 1 = 0.5, c 2 = 0.5, c 3 = 0.5, ω to: berlin52-0.2, kroa100 i gr , i - liczba iteracji, berlin52 = 52 6, kroa100=100 7, gr202=202 12, n s - rozmiar stada, berlin52 = 30, kroa100=60, gr202=80. Eksperymenty uruchomiono na komputerze z procesorem i7 o taktowaniu 3.2 GHz oraz wyposażonego w 12 GB pamięci ram. Komputer działa pod kontrolą system operacyjnego Microsoft Windows Server 2008 R2. Wszystkie testu uruchomiono na jednym rdzeniu. 16/23

17 Badania Warianty przeszukiwania Bez przesz. Warianty przeszukiwania lokalnego Problem lokalnego Każda iter. Co 30 iter. Co 50 iter. Czas Opt. Czas Opt. Czas Opt. Czas Opt. berlin kroa eil kroa gr ch gil pcb ,39 2, ,5 0, ,4 0, ,11 0,415 gr ,87 4, ,06 0, ,25 0, ,34 0,457 17/23

18 Badania Zbieżność algorytmu Rysunek: Charakterystyka zbieżności dla problemu gr202 18/23

19 Badania Wyniki z LS Problem Proc. zmian Licz. iter. Czas [s] Odległość od opt. [%] LS- LS+ LS- LS+ berlin52 0% 1 0,25 0, berlin52 3% 11 0,24 0,24 0,01 0 berlin52 5% 11 0,26 0,26 0,4 0,07 berlin52 10% 11 0,25 0,26 0,17 0 berlin52 20% 11 0,26 0,27 0,36 0,02 kroa100 0% 1 2,37 2,42 1,04 0 kroa100 3% 11 2,51 2,52 0,87 0,02 kroa100 5% 11 2,25 2,55 1,07 0,02 kroa100 10% 11 2,45 2,55 1,22 0,03 kroa100 20% 11 2,56 2,33 1,17 0,02 gr202 0% 1 26,14 24,82 1,93 0,05 gr202 3% 11 25,98 25,57 1,59 0,15 gr202 5% 11 25,23 25,12 1,58 0,11 gr202 10% 11 24,73 24,53 1,36 0,07 gr202 20% 11 20,18 20,69 1,38 0,11 19/23

20 Badania Podsumowanie Przeszukiwanie lokalne często stosuje się jako metoda poprawiająca jakość rozwiązania. Znacznie przyspieszyła zbieżność do optimum, zarówno dla wersji statycznej jak i dynamicznej. Algorytm nie ma tendencji do wpadania w lokalne optimum co zostało pokazane w badaniach. Największą wadą jest wzrost czasu obliczeń, pomimo tego iż zastosowano przyspieszoną wersję dedykowaną dla symetrycznego problemu. Proponowane rozwiązanie, dzięki feromonowi nie zaczyna przeszukiwania pełnej przestrzeni rozwiązań, a skupia się na poprawie najlepszych rozwiązań, co znacząco wpływa na odległość od optimum. 20/23

21 Dalsze prace W najbliższej przyszłości chcemy skupić się na następujących zagadnieniach: porównanie z algorytmami: ILS i ACO, propozycja nowego algorytmu dla metody Ascent, dalsze wykorzystanie teorii tolerancji w celu zwiększenia zysku związanego z kopiowaniem macierzy feromonowej. 21/23

22 Dalsze prace Bibliografia I K. Helsgaun. An effective implementation of k-opt moves for the linkernighan tsp heuristic. Technical report, Roskilde University, W. liang Zhong, J. Zhang, and W. neng Chen. A novel set-based particle swarm optimization method for discrete optimization problems. In Evolutionary Computation, CEC 2007, volume 14, pages IEEE, /23

23 Dalsze prace Dziękuję za uwagę 23/23

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia

Bardziej szczegółowo

Problem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym.

Problem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. Problem komiwojażera ACO Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. -Wikipedia Problem do rozwiązania zazwyczaj jest przedstawiany jako

Bardziej szczegółowo

Wyznaczanie optymalnej trasy problem komiwojażera

Wyznaczanie optymalnej trasy problem komiwojażera Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji

Bardziej szczegółowo

Rój cząsteczek. Particle Swarm Optimization. Adam Grycner. 18 maja Instytut Informatyki Uniwersytetu Wrocławskiego

Rój cząsteczek. Particle Swarm Optimization. Adam Grycner. 18 maja Instytut Informatyki Uniwersytetu Wrocławskiego Rój cząsteczek Particle Swarm Optimization Adam Grycner Instytut Informatyki Uniwersytetu Wrocławskiego 18 maja 2011 Adam Grycner Rój cząsteczek 1 / 38 Praca Kennedy ego i Eberhart a Praca Kennedy ego

Bardziej szczegółowo

LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2

LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 opracował:

Bardziej szczegółowo

Wykorzystanie algorytmów mrówkowych w dynamicznym problem

Wykorzystanie algorytmów mrówkowych w dynamicznym problem Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 18 stycznia 2013 Przedmiot i cele pracy dyplomowej

Bardziej szczegółowo

Wykorzystanie algorytmów mrówkowych w dynamicznym problem

Wykorzystanie algorytmów mrówkowych w dynamicznym problem Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 14 czerwca 2013 Przedmiot i cele pracy dyplomowej

Bardziej szczegółowo

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie

Bardziej szczegółowo

Algorytmy mrówkowe. P. Oleksyk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne

Algorytmy mrówkowe. P. Oleksyk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne y mrówkowe P. Oleksyk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 14 kwietnia 2015 1 Geneza algorytmu - biologia 2 3 4 5 6 7 8 Geneza

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 6. Piotr Syga

Algorytmy metaheurystyczne Wykład 6. Piotr Syga Algorytmy metaheurystyczne Wykład 6 Piotr Syga 10.04.2017 Wprowadzenie Inspiracje Wprowadzenie ACS idea 1 Zaczynamy z pustym rozwiązaniem początkowym 2 Dzielimy problem na komponenty (przedmiot do zabrania,

Bardziej szczegółowo

Systemy mrówkowe. Opracowali: Dawid Strucker, Konrad Baranowski

Systemy mrówkowe. Opracowali: Dawid Strucker, Konrad Baranowski Systemy mrówkowe Opracowali: Dawid Strucker, Konrad Baranowski Wprowadzenie Algorytmy mrówkowe oparte są o zasadę inteligencji roju (ang. swarm intelligence). Służą głównie do znajdowania najkrótszej drogi

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

Wykład 4. Droga i cykl Eulera i Hamiltona

Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. i Hamiltona Wykład 4. i Hamiltona 1 / 35 Grafy Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie grafu, to taką

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Algorytmy mrówkowe w dynamicznych problemach transportowych

Algorytmy mrówkowe w dynamicznych problemach transportowych y w dynamicznych problemach transportowych prof. dr hab Jacek Mandziuk MiNI, PW 3 czerwca 2013 Cel pracy Zbadanie zachowania algorytmu go zwykłego oraz z zaimplementowanymi optymalizacjami dla problemów

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie

Bardziej szczegółowo

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie

Bardziej szczegółowo

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ). Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Metaheurystyki oparte na algorytmach lokalnego przeszukiwania Maciej Hapke maciej.hapke at put.poznan.pl GRASP Greedy Randomized Adaptive Search Procedure T.A. Feo, M.G.C. Resende,

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni

Bardziej szczegółowo

Problem Komiwojażera - algorytmy metaheurystyczne

Problem Komiwojażera - algorytmy metaheurystyczne Problem Komiwojażera - algorytmy metaheurystyczne algorytm mrówkowy algorytm genetyczny by Bartosz Tomeczko. All rights reserved. 2010. TSP dlaczego metaheurystyki i heurystyki? TSP Travelling Salesman

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań

Bardziej szczegółowo

Analiza stanów gry na potrzeby UCT w DVRP

Analiza stanów gry na potrzeby UCT w DVRP Analiza stanów gry na potrzeby UCT w DVRP Seminarium IO na MiNI 04.11.2014 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP DVRP na potrzeby UCB Analiza

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 10 - Mrówki w labiryntach Jarosław Miszczak IITiS PAN Gliwice 05/05/2016 1 / 48 Na poprzednim wykładzie 1... 2... 3... 2 / 48 1 Motywacja biologiczna Podstawowe mechanizmy

Bardziej szczegółowo

Algorytmy mrówkowe (ang. Ant Colony Optimization)

Algorytmy mrówkowe (ang. Ant Colony Optimization) Algorytmy mrówkowe (ang. Ant Colony Optimization) 1. Wprowadzenie do ACO a) mrówki naturalne b) mrówki sztuczne c) literatura (kilka pozycji) 2. ACO i TSP 1. Wprowadzenie do ACO a) mrówki naturalne ślepe,

Bardziej szczegółowo

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n i inne cykle Hamiltona na szachownicy n x n Uniwersytet Warszawski 15 marca 2007 Agenda 1 2 naiwne Prosty algorytm liniowy 3 Problem znany był już od bardzo dawna, jako łamigłówka logiczna. Był też stosowany

Bardziej szczegółowo

Zaawansowane programowanie

Zaawansowane programowanie Zaawansowane programowanie wykład 3: inne heurystyki prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Heurystyką nazywamy algorytm (metodę) zwracający rozwiązanie przybliżone.

Bardziej szczegółowo

Zaawansowane programowanie

Zaawansowane programowanie Zaawansowane programowanie wykład 3: inne heurystyki prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Heurystyką nazywamy algorytm (metodę) zwracający rozwiązanie przybliżone.

Bardziej szczegółowo

Programowanie dynamiczne cz. 2

Programowanie dynamiczne cz. 2 Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy

Bardziej szczegółowo

ALHE. prof. Jarosław Arabas semestr 15Z

ALHE. prof. Jarosław Arabas semestr 15Z ALHE prof. Jarosław Arabas semestr 15Z Wykład 5 Błądzenie przypadkowe, Algorytm wspinaczkowy, Przeszukiwanie ze zmiennym sąsiedztwem, Tabu, Symulowane wyżarzanie 1. Błądzenie przypadkowe: Pierwszym krokiem

Bardziej szczegółowo

Algorytmy wyznaczania centralności w sieci Szymon Szylko

Algorytmy wyznaczania centralności w sieci Szymon Szylko Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności

Bardziej szczegółowo

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują

Bardziej szczegółowo

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji

Bardziej szczegółowo

Minimalne drzewa rozpinające

Minimalne drzewa rozpinające KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Dokładne algorytmy optymalizacji Maciej Hapke maciej.hapke at put.poznan.pl Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem minimalizacji

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i

Bardziej szczegółowo

Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson)

Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson) Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson) 1 2 Wprowadzenie Sztandarowy problem optymalizacji kombinatorycznej. Problem NP-trudny. Potrzeba poszukiwania heurystyk. Chętnie

Bardziej szczegółowo

Algorytmy mrówkowe. Plan. » Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji» Testowanie

Algorytmy mrówkowe. Plan. » Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji» Testowanie Algorytmy mrówkowe w środowiskach dynamicznych Dariusz Maksim, promotor: prof. nzw. dr hab. Jacek Mańdziuk 1/51 Plan» Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji»

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą

Bardziej szczegółowo

Rozdział 8 PROGRAMOWANIE SIECIOWE

Rozdział 8 PROGRAMOWANIE SIECIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 8 PROGRAMOWANIE SIECIOWE 8.2. Ćwiczenia komputerowe Ćwiczenie 8.1 Wykorzystując

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

Kompresja danych Streszczenie Studia Dzienne Wykład 10,

Kompresja danych Streszczenie Studia Dzienne Wykład 10, 1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny

Bardziej szczegółowo

Seminarium IO. Zastosowanie wielorojowej metody PSO w Dynamic Vehicle Routing Problem. Michał Okulewicz

Seminarium IO. Zastosowanie wielorojowej metody PSO w Dynamic Vehicle Routing Problem. Michał Okulewicz Seminarium IO Zastosowanie wielorojowej metody PSO w Dynamic Vehicle Routing Problem Michał Okulewicz 26.02.2013 Plan prezentacji Przypomnienie Problem DVRP Algorytm PSO Podejścia DAPSO, MAPSO 2PSO, 2MPSO

Bardziej szczegółowo

Dobór parametrów algorytmu ewolucyjnego

Dobór parametrów algorytmu ewolucyjnego Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Algorytmy zrandomizowane

Algorytmy zrandomizowane Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik

Bardziej szczegółowo

Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań

Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań dopuszczalnych. NP-optymalizacyjny problem Π składa się: zbioru instancji D Π rozpoznawalnego

Bardziej szczegółowo

Modele całkowitoliczbowe zagadnienia komiwojażera (TSP)

Modele całkowitoliczbowe zagadnienia komiwojażera (TSP) & Zagadnienie komowojażera 1 Modele całkowitoliczbowe zagadnienia komiwojażera (TSP) Danych jest miast oraz macierz odległości pomiędzy każdą parą miast. Komiwojażer wyjeżdża z miasta o numerze 1 chce

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06

Bardziej szczegółowo

Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA

Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

Sprawozdanie do zadania numer 2

Sprawozdanie do zadania numer 2 Sprawozdanie do zadania numer 2 Michał Pawlik 29836 Temat: Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera 1 WSTĘP W ramach

Bardziej szczegółowo

Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych)

Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych) Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych) Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki leszekp@mimuw.edu.pl Horyzonty 2014 17-03-2014 Będlewo Zadania numeryczne

Bardziej szczegółowo

Instrukcja projektowa cz. 2

Instrukcja projektowa cz. 2 Programowanie lokalnych aplikacji.net 2018/19 Instrukcja projektowa cz. 2 Wielozadaniowość w Windows Prowadzący: Tomasz Goluch Wersja: 7.0 I. Zadania projektowe 02. Cel: Utrwalenie wiedzy zdobytej podczas

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

Optymalizacja. Przeszukiwanie lokalne

Optymalizacja. Przeszukiwanie lokalne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x

Bardziej szczegółowo

Priorytetyzacja przypadków testowych za pomocą macierzy

Priorytetyzacja przypadków testowych za pomocą macierzy Priorytetyzacja przypadków testowych za pomocą macierzy W niniejszym artykule przedstawiony został problem przyporządkowania priorytetów do przypadków testowych przed rozpoczęciem testów oprogramowania.

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Przygotowanie kilku wersji kodu zgodnie z wymogami wersji zadania,

Przygotowanie kilku wersji kodu zgodnie z wymogami wersji zadania, Przetwarzanie równoległe PROJEKT OMP i CUDA Temat projektu dotyczy analizy efektywności przetwarzania równoległego realizowanego przy użyciu komputera równoległego z procesorem wielordzeniowym z pamięcią

Bardziej szczegółowo

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule

Bardziej szczegółowo

Algorytmy estymacji stanu (filtry)

Algorytmy estymacji stanu (filtry) Algorytmy estymacji stanu (filtry) Na podstawie: AIMA ch15, Udacity (S. Thrun) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 kwietnia 2014 Problem lokalizacji Obserwowalność? Determinizm?

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

Harmonogramowanie przedsięwzięć

Harmonogramowanie przedsięwzięć Harmonogramowanie przedsięwzięć Mariusz Kaleta Instytut Automatyki i Informatyki Stosowanej Politechnika Warszawska luty 2014, Warszawa Politechnika Warszawska Harmonogramowanie przedsięwzięć 1 / 25 Wstęp

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

Algorytm grupowania danych typu kwantyzacji wektorów

Algorytm grupowania danych typu kwantyzacji wektorów Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych

Bardziej szczegółowo

5. Najkrótsze ścieżki

5. Najkrótsze ścieżki p. Definicja 5. Najkrótsze ścieżki 5.1 Odległości w grafach: definicje i własności (Długość ścieżki). Długościa ścieżki nazywamy liczbę krawędzi występujacych w tej ścieżce. Bardziej formalnie, jeżeli

Bardziej szczegółowo

Seminarium IO. Zastosowanie metody PSO w Dynamic Vehicle Routing Problem (kontynuacja) Michał Okulewicz

Seminarium IO. Zastosowanie metody PSO w Dynamic Vehicle Routing Problem (kontynuacja) Michał Okulewicz Seminarium IO Zastosowanie metody PSO w Dynamic Vehicle Routing Problem (kontynuacja) Michał Okulewicz 26.10.2012 Plan prezentacji Problem VRP+DR Algorytm PSO Podejścia MAPSO + 2-Opt 2-phase PSO Wyniki

Bardziej szczegółowo

Seminarium IO. Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem. Michał Okulewicz

Seminarium IO. Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem. Michał Okulewicz Seminarium IO Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem Michał Okulewicz 05.11.2013 Plan prezentacji Przypomnienie Problem DVRP Algorytm UCT Zastosowanie algorytmu UCT/PSO w DVRP Zastosowanie

Bardziej szczegółowo

zajęcia 1. Bartosz Górski, Tomasz Kulczyński, Błażej Osiński

zajęcia 1. Bartosz Górski, Tomasz Kulczyński, Błażej Osiński zajęcia 1. Bartosz Górski, Tomasz Kulczyński, Błażej Osiński Geometria dla informatyka wyłacznie obliczenia wszystko oparte na liczbach, współrzędnych, miarach programista i/lub użytkownik musi przełożyć

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 3: Marszruty, łańcuchy, drogi w grafach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Stochastic modelling of phase transformations using HPC infrastructure

Stochastic modelling of phase transformations using HPC infrastructure Stochastic modelling of phase transformations using HPC infrastructure (Stochastyczne modelowanie przemian fazowych z wykorzystaniem komputerów wysokiej wydajności) Daniel Bachniak, Łukasz Rauch, Danuta

Bardziej szczegółowo

PDM 3 zakres podstawowy i rozszerzony PSO

PDM 3 zakres podstawowy i rozszerzony PSO PDM 3 zakres podstawowy i rozszerzony PSO STEREOMETRIA wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny odróżnić proste równoległe

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

Programowanie sieciowe. Tadeusz Trzaskalik

Programowanie sieciowe. Tadeusz Trzaskalik Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście

Bardziej szczegółowo

Algorytmy ewolucji różnicowej (ang. differential evolution -DE) oraz roju cząstek (ang. particle swarm optimization -PSO)

Algorytmy ewolucji różnicowej (ang. differential evolution -DE) oraz roju cząstek (ang. particle swarm optimization -PSO) Algorytmy ewolucji różnicowej (ang. differential evolution -DE) oraz roju cząstek (ang. particle swarm optimization -PSO) 1 Ewolucja różnicowa - wstęp Stosunkowo nowy (połowa lat 90tych) algorytm optymalizacji

Bardziej szczegółowo

Stochastyczne zagadnienie rozdziału z dyskretnym rozkładem popytu

Stochastyczne zagadnienie rozdziału z dyskretnym rozkładem popytu Stochastyczne zagadnienie rozdziału z dyskretnym rozkładem popytu Marcin Anholcer Uniwersytet Ekonomiczny w Poznaniu 19 marca 2013, Ustroń Marcin Anholcer Stochastyczne zagadnienie rozdziału 1/ 15 1 Zagadnienie

Bardziej szczegółowo

Algorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego

Algorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego Algorytmy Mrówkowe Instytut Informatyki Uniwersytetu Wrocławskiego 11 maja 2011 Opis Mrówki w naturze Algorytmy to stosunkowo nowy gatunek algorytmów optymalizacyjnych stworzony przez Marco Dorigo w 1992

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Optymalizacja zadań bazy transportowej ( część 1 ) Opracowano na podstawie : Stanisław Krawczyk, Metody ilościowe w logistyce ( przedsiębiorstwa ), Wydawnictwo C. H. Beck, Warszawa

Bardziej szczegółowo

Porównanie szeregów czasowych z wykorzystaniem algorytmu DTW

Porównanie szeregów czasowych z wykorzystaniem algorytmu DTW Zlot użytkowników R Porównanie szeregów czasowych z wykorzystaniem algorytmu DTW Paweł Teisseyre Instytut Podstaw Informatyki, Polska Akademia Nauk 21 września 2010 Miary podobieństwa między szeregami

Bardziej szczegółowo

Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 13. Karol Tarnowski A-1 p.

Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 13. Karol Tarnowski A-1 p. Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy Wykład 13 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Złożoność algorytmów czy to istotne, skoro

Bardziej szczegółowo

Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 13. Karol Tarnowski A-1 p.

Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 13. Karol Tarnowski A-1 p. Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy Wykład 13 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Złożoność algorytmów czy to istotne, skoro

Bardziej szczegółowo